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Global loss of biodiversity and its associated ecosystem services is occurring at an
alarming rate and is predicted to accelerate in the future. Metacommunity theory
provides a framework to investigate multi-scale processes that drive change in
biodiversity across space and time. Short-term ecological studies across space
have progressed our understanding of biodiversity through a metacommunity lens,
however, such snapshots in time have been limited in their ability to explain which
processes, at which scales, generate observed spatial patterns. Temporal dynamics of
metacommunities have been understudied, and large gaps in theory and empirical data
have hindered progress in our understanding of underlying metacommunity processes
that give rise to biodiversity patterns. Fortunately, we are at an important point in
the history of ecology, where long-term studies with cross-scale spatial replication
provide a means to gain a deeper understanding of the multiscale processes driving
biodiversity patterns in time and space to inform metacommunity theory. The maturation
of coordinated research and observation networks, such as the United States Long Term
Ecological Research (LTER) program, provides an opportunity to advance explanation
and prediction of biodiversity change with observational and experimental data at
spatial and temporal scales greater than any single research group could accomplish.
Synthesis of LTER network community datasets illustrates that long-term studies with
spatial replication present an under-utilized resource for advancing spatio-temporal
metacommunity research. We identify challenges towards synthesizing these data and
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present recommendations for addressing these challenges. We conclude with insights
about how future monitoring efforts by coordinated research and observation networks
could further the development of metacommunity theory and its applications aimed at
improving conservation efforts.

Keywords: LTER, NCO, synthesis, metacommunity, biodiversity, spatio-temporal, long-term

INTRODUCTION

Biodiversity is a key asset for environmental sustainability
via its role in maintaining ecosystem functions and services
(Cardinale et al., 2012; Hooper et al., 2012; Díaz et al.,
2019). However, over the past half-century, human activities
have increased the rate of biodiversity loss more than at
any other time in history (World Health Organization, 2005;
United Nations, 2017). The term “biodiversity” has been used
to describe variation at many different levels of biological
organization, but here we focus on species diversity (i.e., data
sets from which a researcher can calculate measures of species
richness or evenness) (Cleland, 2011). In association with
declining biodiversity, researchers have documented changes
in species interactions (Tylianakis et al., 2008), distributions,
and phenology across ecosystems (Parmesan and Yohe, 2003;
Dudgeon et al., 2006; Parmesan, 2006; Martay et al., 2016).
These changes, which are not ubiquitous across taxa and
landscapes, are expected to accelerate in the future (Brook
et al., 2008; Bellard et al., 2012; Urban, 2015), further
affecting ecosystem structure and function (Seto et al., 2012;
Grimm et al., 2013).

A key goal of biodiversity science in the Anthropocene is to
anticipate threshold shifts in the distributions and abundances of
organisms and the ecosystem services that they afford to society
(United Nations, 2017). However, without explicit consideration
of multiple spatial scales and the within- and among-species
pool connections, conclusions about the processes driving
patterns of biodiversity are incomplete. Community structure
and processes are still very common research themes in ecology;
however, the greatest increase in number of publications has
been observed on themes such as scale, anthropogenic impacts,
and climate change (McCallen et al., 2019). Metacommunity
theory and its applications are essential to addressing scaling
in terms of space (e.g., local vs. regional) and time (i.e., linked
to organisms’ generation times), especially in today’s rapidly
changing communities and ecosystems (Mouquet and Loreau,
2002; Fahrig, 2003; Fischer and Lindenmayer, 2007).

In the past two decades, short-term field studies have
considerably advanced our understanding of metacommunities
across space by demonstrating how dispersal traits and landscape
heterogeneity can affect community assembly in predictable
ways (Logue et al., 2011; Leibold and Chase, 2017; Wilcox
et al., 2017). Such information can provide insight into the
types of metacommunity dynamics that organize biodiversity
in each ecosystem (e.g., Pulliam, 1988; De Bie et al., 2012).
However, spatially explicit snapshot data are limited in their
utility to identify the processes that underlie observed patterns
(Leibold et al., 2004; Brown et al., 2017; Sokol et al., 2017).

Because ecological studies are often limited to the short-
term (Hughes et al., 2017), considerable variability often
remains unexplained in examinations of observational data.
Assemblage composition and habitat availability may vary
through time because of disturbance, seasonality, multi-year
climatic variation (e.g., El Niño Southern Oscillation), and shifts
of propagules in and out of dormancy (Holyoak et al., 2020).
Many investigators acknowledge the limitation of not having
temporal data (Frishkoff et al., 2014), particularly in dynamic
systems such as streams (Datry et al., 2016; Sarremejane et al.,
2017; Tonkin et al., 2018). Not only can the environment
change through time (e.g., habitat availability, environmental
heterogeneity, and connectivity), but so too can the intrinsic
processes regulating local biotic interactions (e.g., priority effects,
intransitive competition) and dispersal from the relevant regional
species pool (Chase, 2003; Fukami, 2015; Zarnetske et al., 2017).
That is, temporal changes in biodiversity can occur regardless of
environmental change.

With short-term spatially replicated metacommunity
data, it can be difficult to distinguish between (1) exogenous
environmental drivers of compositional changes and (2)
endogenous community dynamics that may result from
deterministic processes (e.g., multiple stable equilibria,
endpoint assembly cycles, frequency-dependent coexistence
in continuous space) on metacommunity composition. For
instance, intransitive competition (i.e., “rock-paper-scissors”
competition scenario) can result in endpoint assembly cycles
(EACs) in which communities are decoupled from the influence
of local environmental factors (Law and Morton, 1993, 1996;
Steiner and Leibold, 2004). However, repeated observations
in both space and time are necessary to demonstrate EAC
dynamics. Specifically, the data would need to demonstrate that
(1) all species involved in intransitive competitive dynamics
persist regionally, (2) that the species involved cannot coexist
locally, and (3) that low to moderate levels of dispersal among
patches in the metacommunity allow for the EACs to play out.
Therefore, both temporal and spatial replication are needed to
test multiple hypotheses that explain how biodiversity is changing
in such spatially complex landscapes (Leibold and Chase, 2017).

In the context of metacommunity assembly, given the problem
of inferring spatio-temporal processes from spatial patterns
alone, there have been multiple calls for long-term, spatial data
collection to advance metacommunity research (Adler et al.,
2005; Cottenie, 2005; Leibold and Chase, 2017; Holyoak et al.,
2020). Financial and logistical constraints in field studies often
hamper a comprehensive exploration of biodiversity trends
across temporal and spatial scales. However, the various types of
coordinated research networks [e.g., the United States Long Term
Ecological Research (LTER) program, the International-LTER
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(ILTER), the global Nutrient Network, NutNet1, the Smithsonian
ForestGEO Network], and observatory networks [e.g., the
United States Global Lake Ecological Observatory Network
(GLEON), the National Critical Zone Observatory (CZO), and
the United States National Ecological Observatory Network
(NEON; Bourgeron et al., 2018)], provide a growing resource of
long-term data that can be leveraged in synthesis science. Most of
these coordinated research and observation networks, hereafter
referred to as observation networks, have been working for over
10 years (e.g., the United States LTER will be 40 years old in 2020,
the ILTER is 27 years old, GLEON is 16 years old, CZO is 12 years
old, and the Long Term Agricultural Research network is 9 years
old), while NEON recently completed construction of all 81 field
sites and is slated to collect data for the next 30 years (Table 1).

With the maturation of long term data sets from such
observation networks, the field of ecology is approaching an
exciting point where there is the opportunity to empirically
explore spatial and temporal representativeness of species
within and among sites across ecosystems. Ultimately, a deeper
understanding of the representativeness of species in space and
time will lead to a better understanding of how scale influences
metacommunity organization and biodiversity dynamics, which
is key to making more general theoretical insights that transcend
beyond the nuances of individual study systems. Here we
provide evidence from a synthesis effort of LTER data showing
that some LTER sites have the spatial replication within sites
over time needed to capture asymptotic species-time-area-
relationships (sensu Adler et al., 2005). The results of this
synthesis suggest that these datasets could provide an untapped
resource for metacommunity studies. When long-term studies
include spatial contexts through multiple sites (within the
regional species pool), they enable a more complete assessment
of biodiversity change relative to long-term studies at a single
site and allow for researchers to explore how sampling design
might influence insights into metacommunities (Box 1). Spatio-
temporal biodiversity patterns can take decades or longer to be
described and explained (Magurran et al., 2010), partly owing
to high temporal variability in community dynamics or lags in
the processes, such as extinction debt, that structure biodiversity
(Tilman et al., 1994; Kuussaari et al., 2009). More synthesis of
data from long-term observation networks has the potential to
uncover additional long-term, spatially replicated data that will
aid in exploring the problem in identifying the spatio-temporal
mechanisms underlying metacommunity assembly manifested in
spatial biodiversity patterns.

Another key aspect of some observation networks (e.g., LTER,
LTAR) is the existence of manipulative experiments that may also
aid in teasing apart pattern from process in metacommunities.
Observational studies considering metacommunity dynamics
across space and time can still result in limited inferences
about the dynamics of a metacommunity in the future. Most
ecological systems may exist in different states wherein species
compositions and abundances vary considerably, for example,
with gradual shifts between states during succession or abrupt
transitions when tipping points are reached (Suding and Hobbs,
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BOX 1 | Uncovering the regional species pool.
One of the most challenging aspects of any metacommunity study is adequately characterizing the regional species pool of interest because it is context-dependent
and the “region” is defined by the researcher. When samples are taken in multiple localities at a single point in time, we often assume that the species found across
all localities capture the whole regional species pool. However, we know that not all species that could occur at study sites are observed in a single temporal
snapshot because stochastic colonization/extinction events and/or transient dynamics might be occurring during the study (reviewed by Holyoak et al., 2020). For
example, species experiencing diapause or having low detection probability might be missed or demographic stochasticity may eliminate one or more species in an
isolated year (Figure 1). It takes time to sample the regional species pool, but spatially replicated sampling schemes can (1) increase the total number of species
encountered and (2) decrease the time it takes to discover them. Additionally, succession and environmental change may add to the pool of species that can
potentially occur in the study sites over time, as can the arrival of invasive species (Figure 2; Pickett, 1989; Li et al., 2020). Although the number of species observed
at a site may be approximately the same across years, substantial compositional temporal turnover of species may take place (Tonkin et al., 2017).

Long-term, spatially replicated data collection allows for the data to suggest the relevant spatial extent to study for characterizing the regional species pool for a
given question. For example, researchers can see whether spatial or temporal samples saturate first and which sites continue to reveal more species diversity with
greater sampling extent. Then, by looking at the temporal curves in a spatial context, researchers can better understand the most dynamic or undersampled regions
of the landscape. This may help identify local sites that are on the periphery of the metacommunity that may be less influenced by spatio-temporal variation and/or
dispersal (i.e., locally saturated sites whose composition is nested inside of the composition of other sites); and sites that are important integrators of spatio-temporal
processes or important dispersal connections (i.e., sites with highly variable composition where repeated sampling continues to reveal new species and different
composition). In a similar vein, Erõs and Schmera (2010) combined field survey data on fish in a temporally and spatially dynamic stream system with simulation
experiments to explore how spatial and temporal scales and their interaction influence species accumulation, which can lead to different inferences about
metacommunity organization (e.g., the role of spatial versus environmental effects; Sály and Erõs, 2016).

However, it is also important to note the limitations of species-time-area-relationships in evaluating sample representativeness over space and time within the
context of understanding spatio-temporal metacommunity dynamics. For instance, species-time-area-relationship curves do not reveal insights about the temporal
variability in changes in the abundance of organisms within and between sites, which is central to understanding mechanisms of metacommunity assembly [e.g.,
mass effects, species recovery from a historic disturbance (Scheffer, 2010)]. A new method for distinguishing changes in species richness across space due to
separate effects of species abundance distribution, density, and the spatial configuration of individuals on a landscape presented by McGlinn et al. (2020) presents a
promising path forward for more informed assessments of species-area-relationships, but incorporation of the temporal component into such new methods remains
lacking. Regardless, we recommend that monitoring programs include the longitude and latitude of each sample plot if they want to be amenable to this new
method, which requires plot locality information.

FIGURE 1 | Species accumulation curves over time (years) and space with increasing numbers of study sites, indicated with different colors. Species accumulation
curves through time (A,C) and space (B,D) are shown for birds from the Central Arizona – Phoenix United States LTER (2001–2016, Bateman et al., 2017) (A,B) and
for sessile invertebrates from the Santa Barbara Channel United States LTER (2004–2016, Reed, 2018) (C,D). The total number of species increases with the
number of study sites, and the steepness of the curve also tends to increase with the number of study sites. Curves were fit according to the Arrhenius, Lomolino,
and Michaelis-Menten models described in Dengler (2009) using the R package vegan (Oksanen et al., 2017). The most parsimonious model (lowest AIC) is shown
for each subset of sites. Data and R code for generating this figure can be found in the Supplementary Data Sheets 2–4.

(Continued)
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BOX 1 | Continued

FIGURE 2 | Changes in a regional species pool over time. The species accumulation curve for a collection of sites may not level off over time due to the
successional nature of communities, species invasions, or environmental change. (A) shows the species accumulation curve over 21 years for plants growing in the
pumice plain habitat on Mt. St. Helens, United States (1989–2009; del Moral, 2010), a community undergoing succession following volcanic eruption. (B) shows the
species accumulation curve over space for the same sites. Data and R code for generating this figure can be found in the Supplementary Data Sheets 1, 4.

2009). Even with extensive time series, it may be difficult to know
where organisms within communities and metacommunities lie
on a given temporal trajectory relative to a previous disturbance
or an impending state change (Bestelmeyer et al., 2011). By
contrast, field experiments with manipulations that influence
aspects of metacommunity dynamics present the opportunity
to test theoretical metacommunity frameworks to learn where
theory aligns with observations (Logue et al., 2011), thus allowing
for more robust predictions.

Long-term field manipulations are a key component of most
United States LTER Network and other long-term ecological
research programs because they can experimentally test how
biodiversity responds to ecological processes occurring over
extended periods (Turner et al., 2003). For example, by
simulating the loss of eastern hemlock (Tsuga canadensis) due
to the invasive wooly adelgid (Adelges tsugae) and measuring ant
biodiversity for 13 years, researchers at the Harvard Forest LTER
found that this experimental disturbance reduced the importance
of species sorting for community composition (Sackett et al.,
2011; Record et al., 2018). Long-term manipulations can also
reveal how biodiversity responds to repeated environmental
fluctuations, yielding knowledge that cannot be obtained with
short-term experiments. By simulating annual kelp forest loss
from ocean storms for 9 years, researchers at the Santa Barbara
Coastal LTER demonstrated strong shifts in marine biodiversity
that were contrary to findings from an earlier 2-year study
(Castorani et al., 2018).

The Cedar Creek Biodiversity Experiment is a long-term
manipulation of soil nitrogen availability and plant diversity
that critically demonstrated the importance of biodiversity for
ecosystem functioning (Tilman et al., 2012). This experiment has
also allowed United States LTER researchers to answer additional
questions related to community assembly and metacommunity
ecology. For example, to assess the extent to which plant
communities were dispersal-limited, seed mixtures were added
into plots of a native grassland (Tilman, 1997). Increased
seed additions led to greater local species richness, providing

evidence that some species are dispersal limited (Tilman, 1997).
Seed addition experiments have also shown that local species
interactions, such as resource competition, are important for
structuring local plant communities (Fargione et al., 2003). These
results, when placed in the broader context of metacommunity
ecology, show how both local and regional processes can
influence biodiversity.

Long-term ecological research programs situated within a
network of sites are critically important for understanding
trends in biodiversity, especially when historical contexts are
known and infrastructure enables long-term field experiments.
Data sets published by observation networks often contain
abundant and co-located biotic and abiotic data to investigate
patterns of biodiversity through the lens of metacommunity
theory. For example, spatio-temporal metacommunity dynamics
can be investigated across numerous ecosystems and taxa by
means of NEON’s frequent and coordinated biotic and abiotic
sampling within plots or stream reaches nested within sites
across 20 climatic domains (Keller et al., 2008). Such networks
provide economies of scale for infrastructure for long-term and
networked sites, dedicated human resources for data collection,
and taxonomic expertise (Bourgeron et al., 2018). Based on
insights we made while curating LTER data for metacommunity
analyses, we identify challenges towards synthesizing these data
and present recommendations for addressing these challenges.
We also provide guidance for long-term monitoring programs
based on our insights.

CHALLENGES TO ADVANCING
METACOMMUNITY SCIENCE AND
PATHS FORWARD

Challenge One – Scale Mismatch Among
Data Sets in Synthesis Efforts
To address broad questions about the generality of the
metacommunity framework in ecology, it is necessary to broadly
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test the theory across ecosystems and organisms. This presents
a challenge with respect to mismatches in temporal and spatial
scaling across data sets (Lamy et al., 2018). Observatory networks
can employ various scales of temporal resolution – days, weeks,
seasons, years, or even decades and plot sizes (e.g., Keller et al.,
2008). Cross-ecosystem syntheses of biodiversity often compare
data that has been aggregated or standardized to a common
temporal or spatial grain (e.g., annual observation frequencies;
Collins et al., 2018). However, trends or shifts in biodiversity
can be affected by species’ generation times (Kuussaari et al.,
2009), phenological patterns, and the frequency and duration
of dispersal events (e.g., Tilman, 1997) and environmental
fluctuations (e.g., Free et al., 2013), which do not always align
with common ways of standardizing space and time across data
sets (e.g., annual sampling schedules).

In light of these challenges, research questions focused
on understanding the underlying processes that structure
metacommunity assembly (i.e., species interactions,
environmental filtering, dispersal limitation) must be aware
of heterogeneity in sampling effort and spatial grain (i.e., plot
size) across studies, which biodiversity estimates and variability
among samples are sensitive to [Chase and Knight (2013),
Spake et al. (2020)]. Spake et al. (2020) suggest that in formal
meta-analyses scale dependence in effect sizes may be assessed
using meta-regressions exploring relationships between either
spatial (i.e., plot size) or temporal (i.e., sampling interval)
grain and effect sizes across studies. They also illustrate with
simulated community data how effect sizes calculated with the
log response ratio metric applied to biodiversity estimates (i.e.,
species richness) were more accurate than those calculated with
the common Hedge’s g metric. In instances, when effect sizes
applied to biodiversity estimates are highly scale dependent, the
use of a scale-independent metric (e.g., Hurlbert’s Probability
of Interspecific Encounter) is preferred (Chase and Knight,
2013). Given the challenges of synthesizing biodiversity data
with varying grains of sampling in space and time, we have
two recommendations for monitoring programs. First, ensure
that raw data are published with ample metadata, so that
synthesis researchers can extract relevant information on
grains of sampling (Spake et al., 2020). Second, we recommend
that programs coordinate efforts to agree upon standardized
sampling protocols for particular taxa to promote synthesis (see
more specifics on such coordination in the Challenge Three
subsection below).

Challenge Two – Rare Species
In a non-stationary world, rare species will be crucial for
predicting future states of novel ecosystems (Lyons et al., 2005;
Jain et al., 2014). However, trends and patterns observed for
rare taxa can be challenging to interpret because they arise from
a combination of observation error and stochastic colonization
dynamics (Hanski et al., 2004; McGill et al., 2007). Capturing
rare species dynamics is an important step in quantifying the
regional species pool, which is an essential component of studies
that embrace spatial dimensions and/or dispersal. Only with
long-term temporal data from multiple sites can one understand
the presence or absence of rare taxa because transient or local

dynamics can influence how community assembly proceeds
(Brown et al., 1995; Pandit et al., 2009; Siqueira et al., 2012). Local
and regional species composition patterns universally contain
a few dominant species, while most taxa are rare and show
stochastic local colonization and extinction dynamics (Hanski
et al., 2004; McGill et al., 2007). Although dominant species can
contribute disproportionately to ecosystem function (Degrassi
et al., 2019), rare species can also contribute meaningfully to
ecosystem functions and services through novel additions to
functional diversity and functional redundancy in a community
(Lyons et al., 2005; Jain et al., 2014; Leitao et al., 2016). Despite
the low abundances of rare species, it is critical to better
understand how they contribute to community trait diversity and
resilience, as environmental change may favor their increase in
abundance and influence future ecosystem functioning (Tilman
and Downing, 1994; Lyons et al., 2005; MacDougall et al., 2013;
Jain et al., 2014).

Based on insights from our LTER data synthesis, we suggest
observation networks balance temporal and spatial replication
to better characterize the regional species pool, including rare
taxa (Box 1). For instance, a higher frequency of observations
is necessary to capture seasonally distinct communities or
seasonally rare taxa (Tonkin et al., 2017). Another approach
would be to implement adaptive cluster sampling to capture rare
species, where the study area is spatially partitioned into a grid
and the intensity of survey effort is intensified around grid cells
with higher counts of particular rare species (Brown et al., 2013).
Also, working groups should develop strategies for monitoring
and interpreting future trends of the rare taxa that might predict
invasion or threshold responses in future climate scenarios.

Challenge Three – Economies of Scale
It can often be difficult to assess whether long-term data
are collected at optimal temporal resolutions and spatial
extents to capture all relevant community assembly dynamics
(e.g., dispersal kernel shape, demographic rates) or structural
characteristics (e.g., spatial heterogeneity of suitable habitat,
species occurrence, biomass). Increasing the spatial extent of
data collection around existing long-term study sites will enable
researchers and managers to compile the information needed for
understanding trends in biodiversity and will allow for better
characterization of regional species pools informed by data.
Resources are often not available in any individual research
program to capture both the necessary spatial and temporal
resolution. There is a growing need for both spatial and temporal
replication in biodiversity data, which requires a plan for
coordination among single-PI projects and multiple long-term
observatories in a network of networks to provide economies of
scale within the research community.

We recommend that scientific societies provide a hub
for coordination among and between single-PI and large-
scale observation networks to help identify opportunities
where single-PI and observation network projects can fill
complementary knowledge gaps. For instance, the National
Science Foundation’s Macrosystems Biology program and
NEON-Enabled Science solicitations provide an opportunity
for short duration (3 years) studies that leverage NEON
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infrastructure. We also recommend that researchers use
cross-project collaborative opportunities (e.g., Research
Coordination Network working groups, United States
LTER All Scientist Meeting working groups) to establish
data collection priorities and standards for advancing
metacommunity research.

Data collection priorities could inform monitoring frequency
and spatial replication based on organismal life histories
(e.g., time until reproduction, dispersal abilities) and current
knowledge gaps (Wolfe et al., 1987). Adopting pre-existing,
standardized sampling and data archiving protocols that are
consistent among sites will also enable researchers and policy
makers to scale-up local studies to global scale research initiatives
(e.g., Group on Earth Observations – Biodiversity Observation
Network’s essential biodiversity variables; Haase et al., 2018).
Recent proposals for integrating measures of biodiversity and
ecosystem integrity across observatory networks may advance
synergy within and among these networks (Haase et al., 2018).
In addition to observation networks, spatially replicated studies
in long-term databases, such as BioTime (Dornelas et al., 2018),
offer additional data sources.

Data standards can also aid synthesis efforts. Furthermore,
data to be used for multi-site analyses are best archived in
harmonized datasets (with consistent structure and format).
Examples include the GLEON DataONE Repository for
synchronized hydrological sensor data2 and the ecocomDP
standard data pattern for community data3 that members
of our group have developed with the Environmental Data
Initiative (EDI)4 for implementation in their data portal, which
publishes data products from the United States LTER and NSF
Macrosystems Biology programs. A key outcome of the LTER
synthesis group that we are a part of has been to harmonize LTER
community ecology data sets into the ecocomDP standard data
pattern to promote future use of LTER data in metacommunity
studies. A key first step in using LTER time series to address
hypotheses in metacommunity ecology is the identification
of appropriate data sets. The analysis ready data provided by
ecocomDP provides additional metadata for improved discovery
with information on taxonomic resolutions, and nesting of
sampling designs over space and time – key pieces of information
for identifying the suitability of a data set for a metacommunity
study. Currently, seventy community ecology data sets generated
by the LTER network have been formatted into the ecocomDP
standard data pattern and there are ∼100 more data sets in the
queue for processing. Completed data sets are discoverable by
going to the EDI Data Repository5 and searching for the term
“ecocomDP.” Ultimately, these types of harmonized data sets will
allow for greater advances in metacommunity studies because
efforts to clean and format data leading up to analyses do not
have to be repeatedly performed by individual researchers and
there is the additional benefit that results from studies can then
also be more reproducible (Reichman et al., 2011).

2http://gleon.org/data/repositories
3https://github.com/EDIorg/ecocomDP
4https://environmentaldatainitiative.org
5https://portal.edirepository.org/nis/home.jsp

Challenge 4 – Statistical Integration of
Long-Term, Spatially Replicated Data
With Theory
Although we are at a point where some observation networks
have amassed long-term, spatially replicated community data
sets with saturating species-time-area relationships, the statistical
integration of these data with theoretical concepts remains a
key challenge. There have long been calls for moving beyond
the classic metacommunity conceptual archetypes (i.e., mass
effects, patch dynamics, species sorting, neutral theory) to
better account for temporal dynamics, but theoretical and
statistical approaches remain incomplete (Leibold and Chase,
2017). For instance, ecosystem stability over large spatial scales
can be addressed in a metacommunity framework with long-
term, spatially replicated data (Wang and Loreau, 2014, 2016).
However, such analyses often consider aggregate metrics of
ecosystems (e.g., biomass) rather than species diversity and
composition, which may be of greater interest to federal agencies
or non-governmental organizations, as these often uphold policy
based on species diversity rather than aggregate metrics (i.e., the
Endangered Species Act).

Greater strides in metacommunity science will be made as
long-term, spatially replicated observation network data enter a
loop, wherein the data impart information into the development
of models and theory, and models and theory inform future
data collection (Dietze, 2017). A promising path forward involves
incorporating novel approaches to quantify metacommunity
dynamics [e.g., joint species distribution models (Ovaskainen
et al., 2019), open-source simulation tools (Sokol et al., 2017),
process-based models (Keyel et al., 2016; Thompson et al., 2020)]
into such cyclical rapid data assimilation and model/theory
refinement. For instance, recent work by Thompson et al.
(2020) revisits the metacommunity concept with a process-
based framework that integrates local and regional dynamics of
ecological communities with three main underlying dimensions
(i.e., density independent responses to abiotic conditions,
density-dependent biotic interactions, and dispersal) that link
to the classic metacommunity conceptual archetypes. Near-
term forecasting of process-based metacommunity models based
on this reconceived metacommunity framework could help to
identify which species traits best capture variation within and
between species that influence density dependence to inform
future monitoring and data collection efforts.

PROSPECTUS

Given the alarming rate at which biodiversity and associated
ecosystem services are being lost (Ceballos et al., 2015;
Johnson et al., 2017), understanding changes in biodiversity
in both space and time is fundamental for science-informed
conservation. While the metacommunity framework has the
potential to uncover mechanisms explaining biodiversity patterns
to inform conservation, the lack of spatio-temporal data
has hindered researchers’ ability to disentangle environmental
drivers from biotic niche-based processes generated within the
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community. Incorporating a long-term temporal dimension into
field-based metacommunity research is key to understanding
the mechanisms generating observed patterns in biodiversity.
However, resources for field studies are limited and temporal
replication often comes at the expense of spatial replication
and taxonomic resolution (e.g., Keller et al., 2008). Large,
collaborative observation networks provide the opportunity
to inform metacommunity theory with empirical data at
spatial and temporal scales greater than any single researcher
could accomplish on their own. To better understand how
metacommunity dynamics operate in reality, the infrastructure
of manipulative field experiments at sites within these networks
allows ecologists to test challenging questions posed by
metacommunity theory at real-world scales. Looking forward,
such large-scale efforts can be better leveraged (Bourgeron et al.,
2018) to address issues of scale mismatches in data synthesis,
rare species, economies of scale, and the integration of data with
theory. By coordinating biodiversity research efforts, ecologists
will better understand how and why species persist across space
and time, and how biodiversity patterns emerge across a diverse
range of ecosystems and over long temporal scales.
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