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Wooden poles are one of the most commonly used utility carriers in North 

America. Even though they are under different protection treatments, after decades of 

weatherworn, wooden poles might have defection because of four main factors: 

Oxygen, Moisture, Temperature, and PH level, which are suitable for worm growth. 

Since maintenance and replacement of wooden poles are mainly based on their 

damage inspection results, an accurate and effective damaging inspection method for 

wooden poles is essential. However, accuracy of the damage inspection method used 

by the Baltimore Gas and Electric Company is highly dependent on technicians’ 

experience and inspections always cause extra damage to wooden poles. In this work, 

an accurate and effective vibration-based wooden pole inspection method is 

developed in conjunction with a neural network approach. Since the current 

inspection method is vibration-based, it would not cause any damage to wooden poles 

during inspection. Lab testing is first conducted using wood samples to verify 

feasibility of the current inspection method, and two vibration-measurement 

approaches, which use a microphone and accelerometers, are used to obtain data for 

neural network analysis. Results from the neural network shows that the current 



  

method can accurately and effectively identify healthy and damaged wood samples. 

Field testing is then conducted for real wooden poles. Due to complex environment 

background noise, data from the microphone are no longer effective for neural 

network analysis and only those from accelerometers are obtained and analyzed using 

the neural network approach. One hundred wooden poles are tested and final results 

show that the current vibration-based wooden pole inspection method with the neural 

network is accurate and effective. 
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Chapter 1: Introduction 

Wooden utility pole is widely used among all utility. According to Baltimore 

Gas and Electric company (BGE), wooden utility poles are widely used in North 

America， it can be traced back for over a hundred years; because of its strong 

structure strength and comparatively low maintenance costs. Southern Yellow Pine is 

one of major types utilized by BGE. However, after decades of weatherworn, even 

though these poles were under anti-decay protection [1], wooden poles are still facing 

erosion threat. In year 2016, there are 38,500 poles required reliability inspection. 

During inspection, all the poles should be examined by holes-drilling and sample 

extraction at base to check conditions of decaying, shown in Figure 1.1. There are 

two holes are randomly drilled on different heights, from close to ground height to 

men’s height. Technicians apply a steel bar and insert into sampling holes to judge 

the remaining radius of hard wood. Meanwhile, Condition of surface decay is tested 

by visual examination, around twenty inches from underground. Comparison is made 

to the percentage of healthy part to remain and decay condition from underground. A 

final score of specific wooden pole will be generated, and according to that result, 

different procedures would be applied. However, this inspection method has some 

shortages; the accuracy of traditional inspection method depends on randomly located 

drilling position. More importantly, the current inspection method does damage to the 

pole structure. This method would directly affect pole’s life time. This is the reason 

why a non-damage, conventional inspection method is ideal for wooden pole 

inspection.  
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Figure 1.1 Non-conventional Inspection Method 

There are many types of conventional inspection means. An ultrasonic 

tomography technology inspection method for wooden poles developed by a Japanese 

professor Dr. Tomikawa [2], the idea was based on conventional X-Ray to measure 

data; on each section layer; the image of each section shows rotten area and healthy 

wood area with particular simplicity. By gathering multiple section layers, an entire 

X-ray image for a particular wooden pole can be captured. However, the defect for 

ultrasonic inspection method is that ultrasound doesn’t propagate linearly because of 

Yong’s modules is different in sap and center. Moreover, ultrasound can’t penetrate 

rotten area. To clarify, if ultrasonic meets a pocket, no further detection can be 

reached to the core of a wooden pole, thus it can’t have a complete of a certain 

section. Wooden pole inspection is not stopped only by ultrasonic, Dr. Wyckhuyse 

and Dr. Maldague [3, 4] approach to infrared thermography to inspect wooden poles. 

Infrared thermography technology built a model based on different moisture content 

to the sound wood, in order to compare of wood thermal properties. 

The work is focused on bringing practical inspection means to technicians, 

making it effective and time-saving. Other inspection method, like ultrasonic and 

infrared thermography and have its own limits for applications. Ultrasonic technology 



 

3 

scans each chasm of an entire pole. Although the image of decay would be clear, the 

device takes time to analysis the image, requiring technician to measure the entire 

pole with this scanning procedure. A more practical scenario, a technician inspects 50 

poles in 8 hours working time; convert to each pole for 10 minutes. Additionally, 

signal of infrared thermography would be retarded by exterior wood, without a 

chance to detect any decay interior or core of the pole, unless decaying position is 

close to the surface of a pole.  

Many other studies on wooden pole inspections have been made similar to 

inspection methods introduced above. Although their advantages are quite obvious, 

the shortages are also quite noticeable. As for Microphone method, Dr. Sabatier [5] 

published a paper about Microphone for soil physical properties. Dr. Sabatier focus 

on evaluating soil physical properties by gathering acoustic sound and phase by 

inverting sound signal into two porous materials in capillary tube model. Dr. McGraw 

[6] introduces a phosphorescence microphone to test oxygen sensors and films in 

detailed explanation in her paper on this procedure. 

No matter what kinds of inspection methods are applied, we should take all 

advantages as well as reduce defects. Most importantly, all means should match 

engineering practical needs for inspection, such as time efficiency and easy 

application. In order to meet engineering practical concerns for inspection and 

accuracy of detecting decay and pocket, this paper approaches Neural Network 

modeling. 

Neural network modeling approximates the idea of human brain structure. 

Neural network modeling propagates weights from one layer to the next, like similar 
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to neuron to neuron. A neural network involves large amounts of data and the 

relationship among the data. Initially fed with a trained data model; the input enters 

values to neural network model, from which an output will be generated, to the most 

accurate results. Usually, the more input data for the neural network model, the more 

accurate the model will be. 

Neural network uses several principles, such as fuzzy logic, winner takes all, 

perception, feed-forward and so on. Wooden pole has a nonlinear feature. The 

approach is superior to the approach using recurrent neural network (RNN) in many 

ways. The RNN approach applies detection and localization of damages in any 

objects in which the sound and vibration propagation is linear. On the other hand, as a 

feed-forward neural network with multiplayer nonlinear perception, back-propagation 

neural network (BPNN) is applicable for modeling of wooden poles. It is known that 

BPNN method typically fits for nonlinear structure system like tree barks and 

structure with nodes. BPNN and RNN are the typical learning method suitable for 

nonlinear case. 

This paper will focus on two kinds of neural network training methods: BPNN 

and RNN; two kinds of training methods will be compared with each other.  

BPNN is a very classical approach to non-linear problems. Among all Neural 

Network, BPNN is the best way to approach multi-layer nonlinear material. This is 

typical of the inside of a wooden structure. All trees, including Southern Yellow Pine 

have nonlinear structure, when erosion begins in the pole, the structure inside consists 

of several small pockets, making it more non-linear. Our idea of applying BPNN is to 

study the structure inside, by imaging the wooden inside is in one spot after a another 
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spot. When two spot connected, the information would transmit to the next spot. If 

the two spot do not connect, that information couldn’t be transmitted. Instead, 

modified information would eventually get to the specific spot that doesn’t 

connection with previous one.  Although through another spot’s connection, it would 

receive. But this information is not correct. When building this a kind of structure, we 

would introduce “Weight”. Weight is used to measure how much difference from the 

spot it should have. For example, if a line is on a sine wave, and in the line, there is a 

weak connection, eight would compensate for that value. For eight in a non-linear 

multi-layer case each spot has its own weight. By calculating weight and input value, 

the output is the result.  

In the scope of testing chapter, two kinds of testing equipment will be 

introduced. One is microphone vibration sound testing, the other is acceleration 

transducer testing. Both are broadly used in field testing. Each of these testing 

methods has its own advantage and disadvantage. For example, microphone testing 

directly obtains feedback sound after hammer knocking the pole itself. Feedback is 

straightforward and easy to interpret. As for disadvantage, it requires relatively higher 

background noise. Each single time testing by microphone would be affected by 

airplane noise, bird singing, even a vehicle horn. On the other hand, acceleration 

transducers require a fine attachment surface. Its signal may not reflect a real 

situation. Because trees surfaces are not plane, it is difficult to attach transducers on 

the tree. 

At the experiment phase, the whole testing plan is consisted of several parts. In 

the first phase, prove the data extracted from vibration and transducer can be applied 
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to neural network. During first phase, examiner needs to find the most suitable neural 

network model. The second step is to build a math model. Fortunately, only adapt 

Mat-lab neural network model to execute calculation to prove math model is correct. 

The second phase requires Lab testing. The supplier from BGE provides 10 wooden 

samples obtained from field. In review of those samples, different conditions of 

erosion and whether it has pocket occur. We classified 3 categories.  Categories are 

good, slightly eroded and pocket. In this phase, we build a new model of BPNN in 

order to find a more accurate model for field testing in next phase; it also doing this 

brings us more accurate data, because those pole samples are obtained from real 

world after several decades of seasonal weather-beaten exposure. The pockets and 

conditions of erosion that we can conduct in lab are equal to field situation. The third 

phase is field testing. In this step, examiners will go to field, extract data directly from 

in-use wooden pole utilities. The most difficult part is to test the previous model and 

whether it can detect erosion and pocket from below the earth. In fact, the under-earth 

part of pole is most likely to have erosion and pocket situations. Therefore, whether 

the whole inspection plan can work, depends on field testing. In order to conduct this 

field testing, equipment required are Portable Batteries, Converter, Microphone, 

Siglab, Laptop, Transducers, Hammer.  

The remaining part is organized as follows. The kinematics of a three-

dimensional Euler–Bernoulli beam is first discussed in Sec. 2. Governing equations 

of the beam and constraint equations are derived in Sec. 3 using Lagrange’s equations 

for systems with constraints. Static equilibrium and linear dynamics problems are 

formulated in Sec. 4. Numerical examples are presented in Sec. 5 to demonstrate the 
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performance of the current formulation. Finally, some conclusions from this study are 

presented in Sec.6. 
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Chapter 2: Neural Networks Training Method 

Artificial Neural Network is broadly used in machine learning. It used to 

approximate functions that can be adapted on inputs and outputs. Artificial Neural 

Network has supervised learning and unsupervised learning. In this chapter, BPNN 

and RNN as supervised learning method are introduced for wooden pole training.  

In order to prove damaged wooden pole is non-linear character, a linearity 

validation experiment is conducted. Shown as Figure 2.1. In engineering 

convenience, linearity validation is conducted in following method. 

1. Randomly mark Point A and Point B on a single wooden pole. 

2. Use hammer hitting Point A and accelerometer attaches on Point B. 

3. Reverse Point A and Point B, conduct step 2 again. 

In Figure 2.1, green curve is from first vibration acquisition, red curve is from second 

vibration acquisition. Their FRF plot doesn’t match each other; peaks are not 

matching the same frequency. Thus, wooden pole is non-linear. 

In Mathematic aspect, linearity verification should be conducted by Amplitudes 

superposition. That is, normal hard force plus twice hard force should equal to three 

times hard force. In favor of engineering convenience and practical purpose, 

nonlinearity experiment is validated through Points exchange.       
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Figure 2.1 Wooden pole non-linearity validations 

After wooden pole linearity experiment, data shows wooden pole has strong 

non-linear character, especially on corrosive poles. BPNN and RNN can be applied 

for this situation. In the following, BPNN and RNN training method will be 

explained. Each method will be compared with each other, to decide which one could 

best match the requirement for the inspection. 

2.1 Back Propagation Feed- Forward Neural Network 

Feed-forward and Back-Propagation are the two major steps for BPNN [7]. In 

BPNN, it has three layers: Input layer, hidden layer and output layer. Because BPNN 

is a supervised learning method, desired outputs are required in training. The aim for 

BPNN is: Calculate the gradients of loss function with respect of weights and 

networks.  

In feed-forward step, apply the input values through layers with suitable 

propagates, that’s weights, with bias all the way to the desired outputs. In Back-
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Propagation phase, the algorithm chases the minimum value of error function. It 

traces back to adjust the weight values by each neuron. Along with several iterations, 

finally the model reaches stable, the error value between Target and output reaches a 

minimum. 

Mathematical approach 

Observing from wooden pole structure, it consists of multilayers of year rings. 

Although it has layers, the layer is not linearized. Therefore, the capability of 

computing in a wide range of judging function is suitable for multilayered networks. 

Therefore, in order to handle a black box model with hidden nodes and unknown 

number of neurons and of its structure in a multilayer case, Back-propagation 

algorithm will be introduced. 

 

Figure 2.2 Back-Propagation structure layouts 

Back-Propagation algorithm adapts supervised learning, uses data from inputs as 

well as desired outputs to train the math model. Once training begins, outputs 

compute with new inputs, and it varies from time to time. The only value won’t 
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change is the weight of each node. Weight is the key to build a model. A simple form 

of neural network shown as following: 

 
1

( * ) ( )
r

j j

j

A f W P b f W P b


       (2.1) 

Where A is output Matrix, 
1 2[ , , ]rW W W W   is weight, 

1 2[ , , ]T

rP P P P   is inputs 

matrix, b is bias. 

The bias can be easily being told that it is another input value based on W*P. 

Additionally, bias is also a weight value. Normally bias is settled as 1 for input. In 

the network design phase, bias is also very important, as it increases the possibility 

for solving problems by letting diagrams of activation functions move around. 

Activation functions 

Gradient descent is the crucial point introduced in activation function. Back-

Propagation use error functions as reference value of weight. The error function will 

be minimized after combination by using series of combination of weights and 

neurons feedforward calculation. The error functions are also important in calculation 

at each step of iteration. During each iteration step, like other iteration functions, 

make sure those error functions are continuous and differentiable. Moreover, steps are 

not to input to error function, because not similar to activation function, step function 

is discrete. Here, activation function match error functions requirement: continuity 

and differentiable. The descent of gradient of a sample activation function derives as 

Eq. (2.2) 

                                                       

 
1

( )
1

c cx
S x

e



  (2.2) 
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Where 1/ c  is associate with temp in neural network, it is randomly generated 

number. The shape of sigmoid activation function would be also changed, When c  

changes. Similarly, the value of sigmoid function will be closer to step function, once  

c  increases, shown as Figure 2.2. 

 

 
Figure 2.3 Shape of sigmoid activation function 

The derivative function of the sigmoid activation functions as: 

                                         

 
2

( ) ( )(1 ( ))
(1 )

x

x

d e
s x s x s x

dx e




  


  (2.3) 

Derive for the sigmoid activation function to get symmetrical function ( )S x :                                         

 
1

( ) 2 ( ) 1
1

x

x

e
S x s x

e






  


  (2.4) 

The ( )S x  is a hyperbolic tangent function. Tangent function and sigmoid function are 

the two most popular functions used for Back-propagation algorithm. User can decide 

to use one each that matches its requirement. 
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Error function calculation  

At a node n , the activation value
nO  , the Target value is 

nT , the error function is 

 

2

1

1

2

P

n n

n

E T O


    (2.5) 

After calculating error function, a minimized gradient will be generated for this 

training set, this value measures gap between target and output. The network would 

judge the gradient values after several iterations of weights adjustment whether the 

gradient of error function reaches a minimum.  

Approaching steps 

Steps 1-6 are the feed-forward steps, since step 7 and the following are the Back-

Propagation steps. 

Step 1: Calculate the total for hidden neuron.  

 
1

*
ij

n

hi j i

j

Net W P b


    (2.6) 

There, ijW  is the weight parameter for connection key between neurons, jP  is the 

input for each neuron, jb  is the bias value to compensate for current layer. 

Step 2: Then apply activation function 

 
1

1 hi
hi net

Out
e





  (2.7) 

Carry the hiOut out for the same process for the same layer neuron; repeat the same 

process for all hidden layers of neuron. 

 Step 3: Then comes to output. 

 
1

*
n

oi ij hj i

j

Net W Out b


    (2.8) 
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There, 
ijW  is the weight parameter for connection keys in hidden layer, 

hjOut  is the 

neuron output of the first input layer, 
ib  is the bias value to compensate for hidden 

layer . 

Step 4: Apply Activation function again 

 
1

1 oi
oi Net

Out
e





  (2.9) 

Step 5: separately estimate outputs to target values for the error function  

 21
( arg )

2
i oi oiE T et Out    (2.10) 

Step 6: Total error for the neural network is the sum of errors 

 
1

i

total oi

i

E E


   (2.11) 

Then, one would get the value from
1

totalE

W




 , 

 * total
ij ij

ij

E
W W

W
 

 


  (2.12) 

And 

 * total
ij ij

ij

E
W W

W
 

 


  (2.13) 

Update the value from each iW  , after several iterations, system would reach a 

regression status. A BPNN neural network model will be created. 
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BPNN Examples 

Following case shows a BPNN application example of mathematical calculation. 

[8]. For ease of understanding, eliminate bias and downsizing to two inputs and one 

hidden layer. 

Input 1

Input 2

Hidden 1

Hidden 2

Output 

Input 
A

Input 
B

W1

W4

W3

W2

W5

W6

Output

Hidden Layer

 
 

Figure 2.4 BPNN layouts with weights 

In order to calculate error function, gives each cell an initial value: 

 

1 3 5

2 4 6

0.4, 0.1, 0.4, 0.2,

0.9, 0.7, 0.6, 0.8,

arg  0.5,

A W W W

B W W W

T et

   

   



  (2.14) 

According to Eq. (2.6), one has 

 1 1 3* *hNet A W B W    (2.15) 

Substituting parameters in Eq. (2.14) into Eq. (2.15) yields 

 1 0.4*0.1 0.9*0.4 0.4hNet      (2.16) 

According to Eq. (2.6), one has 

 2 2 4* *hNet A W B W    (2.17) 

Substituting parameters from Eq. (2.14) into Eq. (2.17) yields 
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2 0.4*0.7 0.9*0.6 0.82hNet      (2.18) 

According to Eq. (2.9), sigmoid activation function is 

 
1

1

1

1 h
h net

Out
e





  (2.19) 

Substituting Eq. (2.16) into Eq. (2.19) yields 

 
1 0.4

1
0.60

1
hOut

e
 


  (2.20) 

Substituting Eq. (2.18) into Eq. (2.19) yields 

 
2 0.82

1
0.69

1
hOut

e
 


  (2.21) 

According to Eq. (2.22), output is 

 1 5 2 6* *h hOutput Out W Out W    (2.23) 

Substituting Parameters from Eq.(2.20), Eq.(2.14) and Eq.(2.21) into Eq.(2.23) yields 

 

 0.6*0.2 0.69*0.8 0.67Output      (2.24) 

According to Eq.(2.10), Error Function is 

 21
( )

2
E Target Output    (2.25) 

Substituting Parameters from Eq. (2.25)and Eq. (2.24)into Eq. (2.25)yields 

 21
(0.5 0.67) 0.01445

2
E      (2.26) 



 

17 

Input 1

Input 2

Hidden 1

Hidden 2

Output 

Input 
0.4

Input 
0.9

0.1

0.6

0.4

0.7

0.2

0.8

Target
0.5

Hidden Layer

0.6

0.69
Outout

0.67

 
Figure 2.5 BPNN layouts with given weights 

 

In order to minimize the value of error function, a Back-propagation method is 

applied to check each the value of gradient of descent 
E

W




, then update weight 

values on each chain all the way back to the very first layer. 

According to Eq.Error! Reference source not found., one has 

 
5 5

( arg )*
E Output

T et Output
W W

 
  

 
  (2.27) 

Substituting parameters of Eq.(2.27) yields 

 
5

0.0226
E

W





  (2.28) 

According to Eq.Error! Reference source not found., one has 

 
6 6

( arg )*
E Output

T et Output
W W

 
  

 
  (2.29) 

Substituting parameters from Eq. (2.29)yields 

 
6

0.0260
E

W





  (2.30) 

Then each weight’s value needs to be updated. According to Eq.(2.12), one has 

 5 5

1

0.2 0.0226 0.1774
h

E
W W

Out

 
    


  (2.31) 
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According to Eq.(2.12), one has 

 
6 6

2

0.8 0.0260 0.774
h

E
W W

Out

 
    


  (2.32) 

According to the same procedure of Eq.(2.27), one has  

 1

1 1 1

( )
* * *

( )

h

h

NetE E Target Output Output

W Target Output Output Net W

    


     
  (2.33) 

 

 

 

The serious solution of descent of gradient 1~4 are listed as Eq.(2.33)   

 

4 3

1 2

3 3

3 4

6.4*10 , 2.49*10 ,

1.44*10 , 5.6*10

E E

W W

E E

W W

 

 

 
 

 

 
 

 

  (2.34)  

Substituting parameters from Eq.(2.31) and Eq.(2.32) yields 

 

1 1 2 2

1 2

3 3 4 4

3 4

0.09936, 0.69751

0.39856, 0.5944

E E
W W W W

W W

E E
W W W W

W W

 

 

 
     

 

 
     

 

  (2.35) 

Substituting parameters from Eq.(2.35) and Eq.(2.14) into Eq.(2.36) yields 

 1 1 3* * 0.3984hNet A W B W       (2.36) 

Substituting parameters from Eq.(2.35) and Eq.(2.14) into Eq. (2.37)yields 

 2 2 4* * 0.813964hNet A W B W       (2.37) 

Substituting parameters from Eq. (2.38) into Eq. (2.39) yields 

 
1

1

1
0.59830

1 h
h Net

Out
e






 


  (2.40) 

Substituting parameters from Eq.(2.40) into Eq. (2.41)yields 
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2

2

1
0.69295

1 h
h Net

Out
e






 


  (2.41) 

Substituting parameters from Eq. (2.23)into Eq. (2.42)yields 

 
5 1 6 2* * 0.6425h hOutput W Out W Out         (2.42) 

Substituting parameters from Eq.(2.42) into Eq.(2.43) yields 

 2 21
( arg ) 0.5*(0.5 0.6425) 0.0102

2
E T et Output        (2.43) 

Shown as the result of error function, E=0.01445> E =0.0102, by using gradient 

descent actually improves training results. After more iterations, the error will reduce. 

Thus, this is how the BPNN training method works. 

2.2 Recurrent Neural Network 

Recurrent neural network was developed in the 1980s. Compared to other 

developed training methods in neural network, it is a relatively a new approach. It 

includes many possibility, and reviews are now available for RNN, this includes [9]. 

The variable in life, such as: figures recognition, feed-forward thinking meets 

requirement. However, RNN is unit architecture; has a feedback loop to update the 

weight value. It is a supervised learning method; scientists always choose to use 

discrete time setting to training for sequences. 
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Figure 2.6 Recurrent Neural Network Layouts 

Mathematical approach 

The previous chapter introduced BPNN. Accordingly, this chapter will introduce 

a recurrent training method. By contrast to Feed-Forward Method, recurrent neural 

network has some advantages like: 

 Recurrent neural network is much closer to real biological neurons, because 

all the biological neural are recurrent. 

 There is no definite winner in this model, it has several training algorithms. 

 Recurrent neural network plays in dynamical system.  

 Recurrent neural network is a supervised training method, so it can 

approximate arbitrary with arbitrary precision. 

 It’s not a popular training method. 

Because recurrent neural network is like a black-box for engineering, it fits for 

different types of signal processing. 
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Supervised Training 

In Recurrent Neural Network training [10] has two methods. It has supervised 

and un-supervised, in order to recognized the pattern and towards what consequence 

is desired, here will introduce the supervised one. 

A whole scale of recurrent neural network is consisted by inputs, hidden layers, 

and output units. Each layer has a certain number of neurons and they are connected 

by synaptic strength. At a given situation, no matter inputs, outputs and hidden layers 

are called units. In each unit, there is activation. Activation is denoted separately by 

inputs ( )u n , output units by ( )y n , internal units by ( )x n . In some situations, those 

separated parts are ignored, just by adapting ( )x n . The formula 

 ( 1) ( ( ))j ij jx n f W X n     (2.44)                                                              

is a discrete time of RNN; and                                                

 
.

( )i i ij jx x W f x      (2.45)                      

is a continuous time of RNN. 

The solution of RNN is to approach the expended algorithm by piling up the 

identical sizes of copies of RNN. The connection will be re-directed to the network to 

gain chains of connections among those copies.   

Weights of each unit, in

ijw  , ijw , out

ijw , back

ijw  are identical between them. 

Therefore, the training data connect a line of input to output time series                                            

 1( ) ( ( ),..... ( ))ku n u n u n    (2.46)                                            

Then differential the formula above           

 1( ) ( ( ),..... ( ))Ld n d n d n    (2.47) 
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Beginning from the very first epoch to each epoch introduced later on, the 

forward passing is updated the old stacked network, because of recurrent character. 

Therefore, at each epoch, the u (n) is read from inputs, however the inertial part x (n) 

is updated from inputs u (n) and also affected by previous epoch x (n-1). As more and 

more epochs from hidden layer are computed, the output y (n), is eventually derived. 

Error Function 

With updates from each time, the value of outputs are updated, therefore the 

value of Error Function is going to be minimized.                                    

 2

1,..., 1,...,

|| ( ) ( ) || ( )
n T n T

E d n y n E n
 

      (2.48) 

The aim of every neural network is to minimize the value of error function. Once the 

value is smaller, the shape after training is much closer to the real d (n). 

Computation Steps 

In RNN training, included are three steps, Forward Pass, Compute by Backward, 

and adjust the connection weights. 

Forward Pass 

By applying formula 3.3, 3.4, forward pass consists of each updated neuron of 

each epoch. It starts from the very first epoch, and then goes through all the epochs in 

hidden layers to the final output. From the description, one can tell the forward pass 

doesn’t have much difference from other training methods, like WTA, or BPNN 

training method. However, the key is the update stack value from each neuron. Those 

values make a big difference from training model. 
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Compute by Backward 

In this step Time is from 1 to T, but the proceeding is backwards, where n is from 

T to 1. For each time n, denote the input activation ( )ix n  , output activation ( )iy n  , 

error term for the back- propagation is ( )i n                                 

 
( )

( )
( ) ( ( ) ( )) |

jj j j u z T

f u
T d T y T

u
 


 


  (2.49) 

      Error propagation is to measure the error range between target value and actual 

value. Each unit has its own discrepancy. 

For outputs at layer T 

 ( )

1

( )
( ) ( ) |

j

L
out

i j ji u z n

j

f u
T T w

u
  



  
  

 
   (2.50) 

The same reason for the discrepancy in internal units in layer T, it shows as below: 

For internal units ( )ix T , at layer T 

 ( )

1

( )
( ) ( ( ) ( )) ( 1)

j

N
back

j j j i ij u z n

j

f u
n d n y n n w

u
  



  
    

 
   (2.51) 

The same reason for the discrepancy in output units, the calculation method is 

different from previous equation. In the output unit, the accumulated value of n+1 

error propagation times with adjusted weight plus the accumulated value of n error 

propagation time with adjusted output’s weight. In this equation, it shows the 

characteristic of backward calculation in recurrent method.  

For the output units of earlier layers 

 ( )

1 1

( )
( ) ( 1) ( )

i

N N
out

i j ji j ji u z n

j j

f u
n n w n w

u
   

 

  
   

 
    (2.52) 
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For internal units ( )ix n  at earlier times, where ( )iz n  again is the potential of the 

corresponding unit. In order to compute error propagation in backward computation, 

it needs to know the adjusted weights value in each unit. As shown in the equation 

above. jiw And out

jiw . 

Adjust the connection weights 

Different from error propagation calculation, weights are computed by iteration. 

The value at n-1 is displaced by the value at n. 

New 

 
1

( ) ( 1)
T

ij ij i j

n

w w n x n 


     (2.53) 

where ( 1) 0jx n   for n=1. So, the input unit is followed the same procedure as 

above iteration. 

 
1

( ) ( )
T

in in

ij ij i j

n

w w n u n 


     (2.54) 
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n u n if j refers to input unit

w w

n x n if j refers to hidden unit




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







  






  (2.55) 

New  

 
1

( ) ( 1)
T

back back

ij ij i j

n

w w n y n 


     (2.56) 

where ( 1) 0jy n   for n=1. 

2.3 Chapter Summary 

It is very clear that BPNN and RNN are quite different RNN updates weights 

and also weight of hidden neurons for every single iteration epoch.  However, the 
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BPNN only re-calculates the weights and feed forward to the desired value. Because 

of different structure, RNN may differ to calculate error function; it changes too many 

parameters to find a right pattern. 
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Chapter 3: Data processing for wooden utility poles 

3.1 Scope of Data Processing 

In order to build a mathematical model to tell difference of conditions of healthy 

or unhealthy, it requires a large number of testing samples. There are over 100 

wooden poles tested for the experiment, over 6000 vibration response samples have 

been collected. Regardless of sample quality or diversity of wooden pole ages, and 

hitting points of range, data capacity is quite enough to have a complete data analysis. 

This enables experiment accuracy for the wooden pole inspection experiment. The 

experiment consists of Microphone acoustic testing and Accelerometer vibration 

testing comparing data collected from vibration and acoustic approach and extent of 

model fitting percentage. Eventually, the best testing method will be applied to 

conduct field testing. Each hammer hitting point is designed to hit 5 times average, 20 

times for each wooden pole. Following the standard wooden pole inspection 

procedure and evaluation standard, the same inspection standard as well as testing 

results are applied during neural network data processing. In wooden pole inspection 

cases, the class category from one to four are the actual values set as Target values 

during neural network training, shown as Table 3.4. The entire testing procedure has 

two major phases, which are lab testing phase and field testing phase. In lab testing, 

an executable testing six wooden pole samples vibration and acoustic data will be 

collected, with adjustments to the practical situation.    
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Table 3.4 Inspection Score Table 

Inspection 

Class Score 

Procedure 

Internal  External  

Evaluation Action healthy 

wooden 

Rotten 

Wooden 

>0.10 m without 1 80~90 Good None 

0.07 to 0.10 

m 

max 0.01 

m 
2 70~80 

Initial 

decay 

Retreat 

Int./Ext. 

0.03 to 0.70 

m 

max 0.02 

m 
3 60~70 

Advanced 

decay 
Retreat Int. 

<0.03 m  total 4 >60 Failure Replace 

3.2 Model Decomposition Algorithm & Lab Testing 

In lab testing, testers are supplied with 6 retired wooden utility poles, which 

are around 2-3 feet long. Due to the volume of samples for lab testing are not 

compatible with field testing set, the target set for lab testing has a minor change.  

According to observation for internal and external decay conditions and actual feeling 

measured by hands, the 6 poles are separated into 2 classes, which are healthy and 

unhealthy. From Figure 3.1, those in healthy conditions are in the first row, those 

suffered with decay and pocket are in the second row.  

The 6 wooden utility poles are separately tested by microphone acoustic tests 

and accelerometer vibration tests. During sensors setup, each wooden utility pole is 

attached 8 accelerometers and marked evenly with 20 points for hammer hitting. 4 

accelerometers are placed 90 degrees each around poles top circle surface, another 4 

accelerometers are placed 90 degrees each, around the poles bottom circle surface; 

microphone is placed 30 cm away, 40 cm high from wooden utility pole. Every pole 

is marked evenly with 20 points for hammer hitting, Shown as Figure 3.2.  
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(a) (b) (c) 

   

(d) (e) (f) 

 

Figure 3.1 Six wooden utility poles for lab testing 

All wooden pole samples for this lab testing are southern pine, they have the same 

features but different ages, and species difference can be ignored at this time. As Figure 3.1 

shows, the different conditions of wooden pole samples, Figure (a), (b), (c) are in better 

condition with no decaying or pocket exist inside or the surface of poles. On the contrary, 
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Figure (d), (e), (f) are the unhealthy condition of wooden pole samples, with decaying on the 

surface and Pocket inside the pole.  

 

Figure 3.2 Sensors and microphone placement 

All six wooden pole samples are standing exactly like Figure 3.2, during 

testing, room background sound level is less than 10 dB, after listening to each clip, 

no background noise has impact to test results, and sound clips are acceptable for 

further analysis. Meanwhile, room environment temperature remains at 17 to 20 ℃，

testing setup are the same for samples. 

3.2.1 Accelerometer vibration test 

Data is collected respectively based on vibration test. 960 set of data though 8 

accelerometers is listed in Appendix A. In order to eliminate the impact from hammer 

and force/impact difference during lab test, adapt FRF measurements with best 
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correlation for each hammer hitting. FRF testing generates response data. In 

Frequency domain, the testing range is between (0~ 2400) Hz. To convert the 

amplitude, here one uses normalized amplitude, which is actual amplitude divided by 

largest amplitude. The display range is from (0~1). Figure 3.3 and Figure 3.4 list a 

single hammer hit response of 8 accelerometer sensors of a single pole. From Figure 

3.3, curves have a great repeatability, tend to be more uniform; contrarily, from 

Figure 3.4, curves tend to be more randomly generated. That is, natural frequencies of 

healthy poles locate in a small area, and have less variance compare to unhealthy 

poles. From this point, collect the natural frequencies from curves and put natural 

frequencies into training is a way of approaching. From Figure 3.3 and 3.4, the 

normalized amplitude doesn’t show a strong connection to classification for healthy 

and unhealthy poles, even useless for cutoff frequencies.  

 
Figure 3.3 FRF response of healthy pole 
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Figure 3.4 FRF response of unhealthy pole 

From Figure3.3, the response of accelerometers of a single hit shows strong 

uniformness; On the contrary, response of Figure3.4 doesn’t show uniformness. 

However, on the other perspective, one accelerometer with multiple hits holds the 

same results as expected. Figure3. 5 and Figure3.6 illustrate hammer hitting point 

doesn’t have impact on frequency of a single sensor.  
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Figure 3.5 Healthy pole FRF response a single sensor for multiple hits  
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Figure 3.6 Unhealthy pole FRF responses a single sensor for multiple hits  

Therefore, results from two major factors can be concluded from Figure3.3, 

3.4, 3.5, and 3.6. First, FRF testing response reflects that different accelerometers at 

different position on a single wooden pole reflect differently between a healthy 

wooden pole and an unhealthy pole. Anywhere on a single healthy pole should be the 

same natural frequencies; however, the natural frequencies from a single unhealthy 

pole are different from measuring points. This is true because wood has nonlinear 

characteristic. Second, the same sensor at various spots on a single wooden pole 

reflects differently between a healthy wooden pole and an unhealthy pole.  From 

Figure 3.5 and Figure 3.6, no matter where to put the sensor, the FRF response should 

remain the same, so is the natural frequencies.   

Based on those two factors, finding the locations of natural frequencies are a 

key to tell difference of between healthy and unhealthy wooden poles; while peaks 

are not a key at this point. 
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From Figures above, curves combine with strong noisy signal; it would affect 

peaks extracting accuracy when one faces large volumes of data. Thus, before 

extracting peaks, it is important to smooth signal. In the scope of data processing, 

various kinds of tool can be used. High pass filter and low-pass filter and so on. A 

low-pass filtering [5] is the result after filtering shown as Figure 3.7   

 

Figure 3.7 Filtering noise wooden pole signal 

Figure 3.7 shows one of the curves from Figure 3.5; Comparing Figure 3.5 

with Figure 3.7, it is obvious that it peaks after smoothing restrained signal distortion, 

yet keeps the curve shape.  During testing, wooden pole displays low frequency 

feature, from 0 to 2500 Hz; therefore, low-pass filter let the low frequency signal pass 

through, restrain the high frequency signal. Majority of undesired signal has been 

eliminated after filtering.  As discussed from Chapter 3.2, next step is to extract 

locations of natural frequencies at each peak. Shown as Figure 3.8, system picked 7 

peaks from a single curve. It is important to know that even though FRF response 
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curves have been filtered, the noise signal still exists. Therefore, function parameters 

of computer program should be modified from piece to piece to meet target peaks. 

 

Figure 3.8 Extract Peaks from natural frequencies 

Peak point 4
th

 and 5
th

 are not accurate peaks, they should be removed for further 

analysis. After selecting, a set of frequencies are extracted, shown at Table3.5. Each 

Curve may generate different numbers of peaks, each curve is required to check bad 

data extract, as in this case above, and peak 4 on Figure 3.4 should be deleted. 

Table 3.5 Frequency extracted from curve 

Curve-1 
Normalized 

Amplitude 
X-axis Frequency(Hz) 

Peak 1 0.1205 730 213.8411 
Peak 2 0.5775 2892 847.1622 
Peak 3 0.5015 4843 1418.674 
Peak 4 0.2674 7199 2108.825 
Peak 5 0.5910 7671 2247.089 
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3.2.2 Microphone Acoustic test 

In the lab test, a single microphone was placed on a clamp about 30 cm away 

from a sample pole. On each pole, 20 points are marked from top to bottom for 

hammer hitting. Using 6 poles, 120 points in total, acoustic data has been collected 

Figure 3.5 shows sound wave collected by microphone in time domain.   

 

Figure 3.9 Original microphone signal 

 

Figure 3.10 Signal after Fourier transform 
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In data processing, signal from time domain has the same volume of 

information. Normally, signal after Fourier transformation is straight forward for 

people to extract and analyze data from a certain frequency range. In wooden pole 

inspection, one would more care about the peaks’ frequency responding location. 

From figure3.6, there are 4 major peaks in 0-2400 Hz. Thus, frequencies from those 4 

peaks are useful for data training in neural network. Testers adapt new model 

decomposition algorithm based spectrum segmentation [11]. 

Model decomposition algorithm has two parts, one is Partial peak locating 

algorithm, another one is clustering algorithm.  It uses concept of K-means algorithm, 

automatically gather clustering. ( , )D x y  defines distance between peak and 

clustering.  

 
2

( , )
( )

m m

x x

B C
D B C

B C



  (3.1) 

Where, mB  is weight of current peak; mC  is weight of peak random peak; xB  is 

centroid of current peak; xC  is centroid of random peak. 

Take BN  as total amount of peaks, sort peaks from biggest to lowest, take the 

biggest peak as initial cluster compare current peak centroid with both limits on left 

and right in the same cluster, it will get distance D(B,C). After several steps of 

iteration, the biggest value of peak merges current cluster of the particular peak as 

new cluster. Thus, new Modal spectral curve as:  

2 2 2 2 2
4 2

2 2 2

( )1
( ) 2 k dk k dk

k s s s

k k k

w w
X w w w

 

  

 
     (3.2) 

Where, k is model parameter; sw  is frequency parameter; dkw  is random frequency 

parameter. 
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By applying iteration of distance of peak, would modify the range of cluster. Take 

model parameter from new cluster and peak to generate Modal Spectral Curve. In the 

particular case, eventually generates 4 clusters, shown as Figure 3.7. The values of 

new peaks are shown in Table 3.6. 

Table 3.6 the values of new peaks 

Peaks Peak 1 Peak 2 Peak 3 

Frequency(Hz) 293.8 599.1 766 

 
Figure 3.11 Peaks and Cluster 

3.3 Neural Network Training 

After extracting peaks from over 7 wooden pole samples, arrange peaks of 

same pole as column, match 7 poles as row. Take the peak data as input for neural 

network. 



 

38 

636.5 578.75 … 694.5 523 614 … 806 …

1025.5 666.75 … 1038.75 605.5 815 … 1034.5 …

1321.75 848.5 … 1144.25 778 975.25 … 1147 …

1522.5 1097 … 1546 978 1093.75 … 1276 …

1st hit of 

sensor 1

1st hit of 

sensor 2 

1st hit of 

sensor 8 

2nd hit of 

sensor 1

20th hit 

of sensor 

8  

Figure 3.12 Table set of peaks 

 

(a)                                                                    (b) 

 

(c)                                                                   (d) 

Figure 3.13 Network training results diagram 
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During neural network training, input data is separated into three groups. They are 

Training set, Validation set and Test set. Three set of data are distributing as default 60%, 

20% and 20%. Figure 3.14 (a) shows at epochs 35, training data among validation data and 

test data reaches the smallest error. Meanwhile the training model reaches convergence after 

41 iterations. The error stage is less than 10^-1. (b) shows errors at 0.0488 has most of 

values, that proves the training model is good enough to use. (c) and (d) are separated 

discussion for training, validation and test. From Matrix and ROC plots, three sets of data 

have over 90% accuracy; the training model is accurate enough for applying.  

In order to verify the accuracy of the model, one selects 4 sets data from healthy 

wooden samples, and intentionally marks those data as unhealthy ones. The result shown as 

the value in matrix from Figure 3.15, only 12.5% to prove the model is accurate. On the other 

hand, the training model is a good training model identifying difference from healthy ones to 

unhealthy. 

 

Figure 3.15 modeling testing result 
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3.4 Chapter Summary 

Accelerometer vibration test uses different data processing algorithm from 

microphone acoustic test. This chapter introduced low pass filtering and Model 

decomposition algorithm, since different tools fit in different situations. Both of them 

collect frequency values of peaks from vibration signal and acoustic signal. We mark 

those frequency values as inputs to neural network as discussed in Chapter 2. 
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Chapter 4:  Experiment Setup 

4.1 Experiment Preparation 

In the previous chapter, RNN and microphone test are mentioned. However, 

due to the model error is larger than 10
1 

there would be inaccuracy and environment 

background noise. In this chapter, only Back Propagation Neural Network model and 

Accelerometer vibration test method will be covered for wooden pole inspection. At 

the beginning of experiment, hardware and its configuration will be mentioned.  

For hardware, it has three major parts, data acquisition analyzer, and hammer 

for exciting vibration and accelerometer for receiving signal. In hardware 

introduction, hardware configuration and setup will be elaborated, including sensors 

installation height and angles, hammer exciting point, bad acquisition rejection 

condition. 

4.2 Hardware selection and position placement 

4.2.1 Data acquisition analyzer --Bobcat 

In order to prepare for actual field testing, testers use Bobcat, portable model 

analyzer equipment, it can deal with various kinds of data extractions in time domain 

and in frequency domain, which meets the minimum field testing requirement.  
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Figure 4.1 Model Analyzer Bobcat 

4.2.2 Force excitation transducer—PCB Hammer 

There are four attached heads compare with hammer, testers conducted a 

small demonstration for each hammer head, from hard to soft (Hardness: Black> 

Red> Brown>Gray). The specific hammer configuration parameter is shown as Table 

4.1.   

Table 4.1 Configuration parameters for Force Transducer 

Force Transducer 086D20 

Sensitivity 1 mV/N 

Measurement Range ±5000 N pk 

Resonant Frequency ≥12 kHz 

Constant Current Excitation 2 to 20 mA 

Excitation Voltage 20 to 30 VDC 

Hammer Mass 2.4 lb 
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Figure 4.2 Force Transducer, according from left to right is from softest to hardest. 

4.2.3 Vibration sensor—PCB accelerometer 

Due to Bobcat design, it has four channels inputs, one channel is reserved for 

hammer, only three channels leave for accelerometers.  

 

Figure 4.3 PCB accelerometer 

Table 4.2 Accelerometer parameter Table 

Accelerometer PCB 352C66 

Sensitivity 100 mV/g 

Measurement Range ±50 g pk 

Frequency Range 0.5 to 10000 Hz 

Frequency Range 0.3 to 12000 Hz 

Frequency Range 0.2 to 20000 Hz 

Resonant Frequency ≥35 kHz 

Phase Response 2 to 6000 Hz 

Broadband Resolution 0.00016 g rms 

 

Table 4.3 Sensor placement on a single pole 



 

44 

 

Accelerometer Sensor 2 Sensor 3 Sensor 4 

Height （m） 0.2  1.5 1.5 

Angle (
 。

) 0 -120 120 

 

Due to input channels limit, only three inputs can be used for accelerometers. 

The location of each accelerometer is referred on Table 4.3 and Figure 4.4. Three 

accelerometers are placed as 120
。 

of a single layer circle. Sensor 2 is placed close to 

ground, because the damping ratio varies from measurement height, it enables sensor 

2 to acquire from a separated angle from sensor 3 and 4. 

4.3 Hammer Head Selection  

There are various kinds of hammer that can be chosen. In order to have the right 

hammer head on the field test, one need to observe the excitation range over 

frequency axis and attenuation on the PSD figure. From figure3.4 below, from 

amplitude axis on FRF, they are in the same range, curves reflect properly by the 

excitation of different hammer head. In (a), frequency of the curve can last over to 

400Hz; In (b), frequency of the curve can last to 400Hz, but the attenuation is higher 

than (a); In (c), frequency of the curve can last to 600Hz; In (d), frequency of the 

curve can last to 800Hz, which tells the effective sampling frequency of (d) is higher 

than any other. Figure3.4 (d) reflects more information of the curve.  
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(a)                                                                  (c) 

 
(b)                                                                   (d)      

Figure 4.4 Hammer excitation of different hammer heads with accelerometer 

response 

 

Accelerometer response with hammer excitation range is a crucial to this project. 

Additionally, sensors’ coherence of the excitation is another crucial standard in 

testing. As (a), (b), (c), (d) figures below, shows sensor coherence response with 

hammer excitation. Before the PSD curve reduce to zero, during that curve range, if 

the coherence curves of each sensor are closing to 1, it means accelerometer reflects 

more actual response to hammer excitation. From the figures below, (d) has a better 

trajectory match with less shake of signal.   
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(a)                                                                        (c) 

   
                          (b)                                                                            (d) 

Figure 4.5 Hammer heads PSD with accelerometer coherence 

Based on FRF and Coherence standard, the hardest hammer head (black hammer 

head) has the better effects in testing. The hammer excitation has a wider effective 

range till 800Hz, more information can be extracted from FRF, and more so, the 

accelerometers’ coherence has a better match and less signal shake. Therefore, the 

black hammer head is the one to be applied in field. 
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4.4 Field testing 

 

 

 

 

The field testing was conducted in Baltimore area, 65 poles are located in 

Ellicott City and 35 poles are located in Glen Burnie; These 100 poles aging between 

2 years old to 80 years old. The entire testing scope has two phases, phase one, 

student collect data on the field, by using experiment equipment, such as Analyzer, 

hammer and accelerometer to collect wooden poles’ oscillation data feedback. Phase 

two, analyzed collected FRF, time history data to conduct model analysis, then set 

featured values as input of neural network, simultaneously, set the target for neural 

network, the target data is provided by specialist of professional wooden pole 

inspection company. The target values include: “No damage”, “Early stage of decay” 

and “Exposed Pocket”. Those three conditions are labeled separately. By defining 

different conditions of wooden poles, the inspection company gives a reference 

standard.  

Table 4.1 Wooden pole field inspection results 

Numbe
r 

BGE 
Code 

OrigGL
Circ 

EffeGLC
irc 

Decay 

1 97233 40 40 N 

2 156008 39 39 N 

4 174204 33.5 33.5 N 

5 478991 38 38 N 

6 174210 36 36 N 

9 174212 24 24 N 

10 174213 28 28 N 

11 477958 33 33 N 

12 214856 40 40 N 

13 174215 34.5 33.5 Y    

15 213685 41 41 N 

16 247504 36 36 N 
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17 247505 32 32 N 

18 170576 34 34 N 

19 802502 36 36 N 

20 802500 27.5 27.5 N 

21 170573 32.5 32.5 N 

22 170572 28 28 N 

23 244984 36 36 N 

24 170571 34 34 N 

25 215848 34 34 N 

26 565130 37 37 N 

28 331121 40 40 N 

29 336917 41.5 41.5 N 

29 565137 37 37 N 

30 272856 44.5 44.5 N 

31 32334 44 44 N 

32 451711 38 38 N 

33 342222 36 36 N 

34 811189 35 35 N 

35 811190 41 41 N 

36 502833 42 42 N 

37 85898 35 35 N 

38 85895 40 40 N 

39 282602 38 38 N 

40 195780 37 37 N 

41 85899 45 45 N 

42 57700 45 45 N 

43 57701 39 39 N 

44 57702 38 38 N 

45 57703 41 41 N 

46 57704 42 42 N 

47 57707 45 45 N 

48 265290 38 38 N 

49 472924 35 35 N 

50 813229 34 34 N 

51 266060 36 36 N 

52 451713 36 36 N 

53 451712 39 39 N 

54 540815 44 44 N 

55 813227 43 43 N 

56 334718 40 40 N 

57 475840 38.5 38.5 N 

58 813226 39 39 N 

59 527883 38 38 N 

60 483948 41 41 N 

61 483949 39.5 39.5 N 

62 483951 33.5 33.5 N 
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63 483947 35 35 N 

64 230527 35 35 N 

65 264167 35 35 N 

66 333601 36 36 N 

67 333602 32 32 N 

68 333603 32 32 N 

69 264166 40 40 N 

70 316127 36 36 N 

71 316126 38.5 38.5 N 

72 316124 35 35 N 

73 306233 36 36 N 

74 175150 38 38 N 

75 174084 28 28 N 

76 812134 27.5 27.5 N 

77 812434 28.5 27.5 Y    

78 172023 36 36 N 

79 316070 30 30 N 

80 316092 36 36 N 

81 373476 33.5 28 Y    

82 316096 34.5 34.5 N 

83 316122 31 28.09 Y 

84 282477 32 32 N 

85 129203 32 32 N 

86 316105 32 32 N 

87 316108 34 34 N 

88 373322 36 36 N 

89 316110 33.5 33.5 N 

90 316111 40 40 N 

91 316113 33.5 33.5 N 

92 248179 39 39 N 

93 373323 36 36 N 

94 248182 33 33 N 

95 373474 32 32 N 

96 373475 33 33 N 

97 353147 34 34 N 

98 361197 32 32 N 

99 362879 34.5 34.5 N 

100 560325 39 39 N 

101 265173 31 26.88 Y 

 

Table 4.1 is a portion of inspection report provided by Inspection Company: 

98 poles in total have been inspected; 93 poles are healthy and 5 poles are pocketed. 

From the report, visual inspection method is used to judge surface decaying 
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condition. If the surface of a pole shows beginning signs of corruption, then it will be 

labeled as early stage of decay, this means surface decay might have potential chance 

of advancing towards interior, to eventually generate a pocket. However, by only 

judging surface decay, it is difficult to determine the pole is with certainty being 

unhealthy. Thus, the effective remaining length is introduced in Table 4.1. By 

comparing Effective GL circle length with Original GL circle length, once those two 

values are equal, the specific pole is a healthy one, Once Effective GL circle length is 

less than Original GL circle length, that specific pole is an unhealthy pocketed pole. 

Namely, the poles labeled as “Early stage of decay” could be separated as 

healthy or pocketed. 

During field testing, the accelerometer is place in 21 locations, shown as 

Figure 4.5. Each layer has 6 locations despite the hammering points on each layer.   

 

Figure 4.6 Measurement points assignment  

 Each hammer hitting point has three accelerometers data collections, shown 

as Figure 4.6. Namely, Sensor 2, Sensor 3, Sensor 4. Accelerometers are placed on 



 

51 

the same level, 90 degrees’ interval. 

 

Figure 4.7 FRF feedbacks from accelerometers 

Regarding of the data from Inspection Company, every three channels would 

be set as one group. Each pole has more than 20 groups, thus, for a single pole, there 

are 60 pieces of FRF data which can be collected. Eventually, there are 5 pocketed 

poles and 95 healthy poles included in field testing. 

Due to FRF data doesn’t have a very clear clue in picking peaks; however, 

Bobcat also catches Signal in Time domain, a single raw data is shown as Figure 4.8. 

Because of data in time domain is not readable, thus, time domain should covert to 

frequency domain via FFT transformation. Figure 4.8 is vibration response data in 

time domain for a single channel. 
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Figure 4.8 vibration responses in time domain 

From Figure 4.9 a), effective range of Hammer can reach up to 1600 Hz. After 

classical FFT transformation, vibration response in frequency domain is shown as 

Figure 4.9 b). For a single point on one wooden pole, FFT response in frequency 

domain reaches up to 1250 Hz, the original frequency was up to 2500 Hz, due to FFT 

transformation has two sided and equal curve, thus, the effective FFT is half size of 

its range. Data from FFT transformation is shown as Figure 4.9. 

 

Figure 4.9 a) Hammer PSD b) 3 channels FFT converted vibration data 
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Cut the first several hundreds of noise FFT data, remaining FFT response is shown as 

Figure 4.10, in this Figure, low frequency response signal contains noise and 

background disturbance, thus, frequency from 0 to 500 Hz is cut. 

 

Figure 4.10 Refined vibration data in frequency domain for 3 channels 

By collecting vibration data as Figure 4.10, group data in order of layers and 

categorized in different poles, then refer to the label set by BGE technician, then it is 

ready to put into neural network. 

 

Neural network training 

In previous chapter, the Back-Propagation and Recurrent Neural Network are 

introduced. The Recurrent Neural Network receives great training results in lab 

experiment. Yet for the data from field testing, the error of Cross-Entropy at the 

validation of model performance is larger than 10
1
. In the scope of 100 poles, more 

than 10 poles are about to designated in the wrong group. Thus, Recurrent Neural 
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Network won’t be covered in the following steps. Compare data sets from healthy and 

pocketed poles are shown in Table 4.2. 

In Neural Network, higher model accuracy doesn’t mean the model is more 

suitable for data validation. So, after building the model, additional performance tests 

should be conducted to validate the accuracy of neural network training. Once the 

additional performance tests remain the same or more accurate validation percentage, 

the model is a great neural network. Regarding of Table 4.2, a group from 95 healthy 

poles combined with 5 unhealthy poles has the highest model accuracy, however, in 

the additional performance test; the accuracy is less than 20% that is a bad neural 

network. The reason for this situation is because the number of healthy poles and 

unhealthy poles do not have a good peroration, data for training is 60%, data for 

Validation is 20% and data for Testing is 20%, the unhealthy poles would not be 

sufficient for validation or testing. In all, a proper percentage of data separation 

matters for neural network. 

Table 4.2 Poles Percentage during Neural Network Training 

Healthy and Unhealthy Poles Percentage 

Healthy poles 20 40 60 93 

Unhealthy Poles 5 5 5 5 

Model Accuracy 76% 80% 85% 100% 

 

 
Figure 4.11 Back-Propagation Neural Network set up. 
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(a)                                                             (b) 

Figure 4.12 Neural Network Model (a) Validation Performance and (b) Error 

Histogram 

Shown as Figure 4.12a, it indicates the neural network model reaches 

convergence at the 56
th

 epoch with no tendency of over-training. Difference between 

output value and target value is less than 10
0
. While, the Error Histogram through 

another way proves the largest error is at 0.04905. There is a small gap between target 

and outputs, which can be neglected.   

Confusion Matrix and ROC tells more about status and data in validation 

group, training group and testing group.” All confusion Matrix” and “All ROC” are 

the ultimate result combined with those three groups. From Figure 4.12a shows, 85% 

of FRF data are accurately trained.  

With additional data to validate this neural network model is accurate to 

reflect the poles inspection. Student extracted the FRF data from previously unused 

poles. Accuracies are higher than 80%, thus, this Backpropagation Neural Network 

model can be applied in the field wooden poles inspection. 
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(a)                                                             (b) 

Figure 4.13 Neural Network Model (a) Confusion Matrix and (b) ROC Rate 

After the model is validated, then get vibration response data from other un-used 

group to verify whether it’s functioning. Randomly pick data from Pole 94 and input to 

neural network, the result shows 95% accuracy. Shown as Figure 4.14. 

 

Figure 4.14 Neural network model further validations 

Judging from results, the BPNN network can be applied for further data 

verification. Only by recording this BPNN model configuration parameter and extract 

the weights that have already been trained of this model, it can be applied to BGE 

technician for their daily inspection reference. 
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Chapter 5: Conclusion 

In this work, an accurate and effective vibration-based wooden pole 

inspection method with neural network is developed, which would not cause any 

extra damage to wooden poles during inspection. Two vibration-measuring 

approaches, which are using microphone and accelerometers, are used to obtain data 

for neural network analysis in the lab testing, and results show that the current 

method can accurately and effectively identify healthy and unhealthy wood samples. 

Due to the complex environment background noises, data from microphone are no 

longer effective for neural network analysis and only data from accelerometers are 

obtained and analyzed using neural network. In data transformation, two peak 

extracting methods are applied. For data collected by accelerometer, Savitzky-Golay 

filtering and thread holding is applied; for data collected by Microphone, Model 

decomposition algorithm is adapted. Both of them have limitation in patch 

processing, all peaks should be confirmed manually. During field testing, microphone 

is affected by high volume background noise, thus, microphone couldn’t be applied. 

On the other hand, two neural network models are compared each other, RNN has 

way much larger error state value, only BPNN is adapted in handling field testing. 

Final results show that the current vibration-based wooden pole inspection method 

with neural network is accurate and effective. With 85% of overall confusion matrix 

accuracy to be the highest accuracy value achieved and this model which would be 

applied for practical wooden pole inspection in the future.  
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