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Abstract. Clear-sky contamination is a challenging and long-lasting prob-

lem for cloud optical thickness (τ) and effective droplet radius (reff) retrievals

using passive satellite sensors. This study explores the feasibility of improv-

ing both τ and reff retrievals for partly cloudy (PCL) pixels by using avail-

able subpixel samples in a visible to near-infrared (VNIR) band, which many

satellite sensors offer. Data is provided by high-resolution reflectance (R) ob-

servations and cloud property retrievals by the Advanced Spaceborne Ther-
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mal Emission and Reflection Radiometer (ASTER) at horizontal resolutions

between 30-960m. For partly cloudy 960-m observations, the clear-sky com-

ponent of the pixels induces significant underestimations of up to 58% for

τ , while overestimations in reff can exceed 41%. This yields underestimations

in the derived liquid water path and cloud droplet number concentration of

up to 68% and 72%, respectively. By means of three different assumptions

it is shown that subpixel R observations in the VNIR can be used to esti-

mate higher-resolution R for the second band in the retrieval scheme, as well

as the subpixel cloud cover. The estimated values compare well to actually

observed ASTER results and are used to retrieve cloud properties, which are

unbiased by the clear-sky component of PCL pixels. While the presented re-

trieval approach is only evaluated for marine boundary layer clouds, it is com-

putationally efficient and can be easily applied to observations from differ-

ent imagers. As an example, the PCL retrieval scheme is applied to data by

the Moderate Resolution Imaging Spectroradiometer (MODIS), where sim-

ilar biases for PCL pixels are observed.
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Keypoints:

• Cloud property retrievals for partially cloudy pixels can be significantly

biased.

• Based on simple assumptions, the average of the overcast subpixel re-

flectance can be estimated for MBL cloud scenes.

• The estimations yield retrievals, which are unbiased by the clear-sky com-

ponent of the pixels.
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1. Introduction

Marine boundary layer (MBL) clouds cover a majority of the Earth’s surface [Wood ,

2012; King et al., 2013]. They are characterized by an overall negative net radiative forcing

(solar plus terrestrial), which implies a cooling effect [Warren et al., 1988; Albrecht , 1989;

Klein and Hartmann, 1993]. Since these low-level clouds are situated in the boundary

layer, their optical and microphysical properties, as well as the solar radiation reflected

by these cloud layers, are particularly sensitive to aerosol particle properties such as the

particle number concentration or particle size. Thus, MBL clouds are regularly the focus

of aerosol-cloud-interaction studies, including the first [Twomey , 1977; Ackerman et al.,

2000; Werner et al., 2014] and second indirect aerosol effect [Albrecht , 1989; Seifert et al.,

2015]. Moreover, shallow cumulus convection plays an essential role in the transport

of moisture, momentum and heat into the free troposphere [Tiedtke, 1989]. Global cloud

property observations, such as τ , reff , liquid water path (LWP ) and cloud droplet number

concentration (N), from satellite sensors are indispensable to quantify the role of MBL

clouds in the climate system and improve their representation in climate models.

Currently, the most widely used satellite-based remote sensing product of cloud prop-

erties is provided by the MODIS imager aboard NASA’s Terra and Aqua satellites. The

MODIS retrieval algorithm uses R from a non-absorbing (in the VNIR) and absorbing

(in the shortwave-infrared; SWIR) spectral band to retrieve τ and reff via the bispectral

solar reflective method [Twomey and Seton, 1980; Nakajima and King , 1990; Nakajima

et al., 1991]. While the respective MODIS R are observed at 250m and 500m, these

observations are aggregated and the cloud products are subsequently derived at a hori-

c⃝2018 American Geophysical Union. All Rights Reserved.



zontal resolution of at 1000m. Macrophysical properties of MBL clouds depend on the

meteorological regime. Trade wind cumuli , which are ubiquitous over the tropical and

subtropical oceans [Siebert et al., 2013], typically exhibit horizontal scales < 1000m [Nor-

ris , 1999; Zhao and Di Girolamo, 2007]. Meanwhile, stratocumulus layers, despite their

often homogeneous appearances, are composed of small cellular convective eddies driven

by longwave cooling and precipitation[Wood and Hartmann, 2006; Feingold et al., 2010].

In addition, pockets of open cells (POC) are often observed within otherwise overcast

cloud decks [Stevens et al., 2005; Wood et al., 2008]. As a result, MODIS observations

(or those from similar satellite imagers) over broken cumuli and the edges of cumulus and

stratocumulus fields inevitably sample partially cloudy (PCL) pixels, which are notori-

ously challenging for cloud remote sensing. While the operational MODIS collection 6

(C6) product attempts retrievals on the PCL population, the results are reported in a

separate data set, because of their lower expected quality. Apart from a bias in retrieved

τ and reff , which subsequently impacts the estimates of aerosol indirect effects, the cloud

property retrieval is known to fail regularly. A study of global retrieval failure rates for

marine liquid phase clouds by Cho et al. [2015], using MODIS C6 cloud products for the

year 2007, concluded that about 33.81% of retrievals fail (for SWIR observations centered

around a wavelength λ = 2.1µm). This is due to the fact that the sampled SWIR re-

flectances fall outside the precomputed lookup tables (LUT) and the sensitivity towards

reff is lost. However, that study also reported that PCL pixels account for about 30% of

the studied population. Thus, simply omitting PCL pixels (and thus sub-1000m clouds)

from the observational data set may lead to a significant sampling bias.
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Approaches to retrieve MBL cloud properties for PCL pixels have been discussed by

Arking and Childs [1985] and Coakley et al. [2005]. The proposed methods determine the

cloud properties of the cloudy part of PCL pixels by means of an iterative retrieval scheme,

where the average clear-skyR and brightness temperatures of the closest overcast and clear

pixels are used to estimate the subpixel cloud fraction. Studies using this retrieval scheme

are very successful in demonstrating the impacts of surface contamination on satellite

retrievals of PCL pixels [Han et al., 1994; Coakley et al., 2005; Hayes et al., 2010; Boeke

et al., 2016]. However, they share several important limitations: (i) The retrieval assumes

a single cloud layer in the subregion in order to derive average cloud top altitudes and

associated brightness temperatures for each cloudy cluster. This may induce significant

uncertainties in the estimated subpixel cloud fractions. (ii) The approach makes no use

of sampled information at the subpixel scale (e.g., R observations at 250m and 500m for

MODIS). (iii) The iterative estimation of subpixel cloud cover and retrieval of τ and reff

is computationally expensive, which makes an application for a large number of scenes,

or a potential semi-operational implementation, impractical. (iv) Most importantly, no

ground truth observations are provided to validate and evaluate the results.

This study uses ASTER cloud reflectances, cloud mask information and cloud property

retrievals at horizontal scales between 30m and 960m to (i) quantify the biases in retrieved

cloud products for PCL pixels, and (ii) facilitate a retrieval for PCL pixels by using

observed subpixel reflectances in a VNIR band, which mitigates the impacts of clear-sky

contamination. The analysis benefits from the availability of reference retrievals that yield

the cloud properties from the overcast part of each PCL pixel. The data set explored in

this study consists of 48 MBL cloud scenes, which have been thoroughly characterized and

c⃝2018 American Geophysical Union. All Rights Reserved.



co-located with the operational MODIS C6 cloud products [Werner et al., 2016]. This

manuscript is structured as follows: an overview of the ASTER data set, the retrieval

algorithm and the cloud masking scheme is given in section 2. A statistical analysis of

the frequency of PCL observations, the observed retrieval bias for τ and reff , as well as

the dependence on subpixel horizontal resolution, is given in section 3. Approaches to

estimate the subpixel cloud cover and reflectance distribution of the absorbing band for

the bispectral solar reflective method are presented in sections 4.1 and 4.2, respectively.

These estimates facilitate the proposed retrieval scheme for PCL pixels, which is evaluated

in section 4.3. Since LWP and N can be derived from the retrieved τ and reff , the

performance of the new retrieval approach is compared to the standard retrieval for PCL

pixels in section 5. The results are validated by means of a much larger ASTER data

set in sections 6, which consists of rather complex broken cumulus scenes. To test the

application of the proposed PCL retrieval for the MODIS imager, the retrieval scheme is

applied to MODIS data in section 7. Finally, a summary and conclusions are given in

section 8.

2. ASTER Data

Data in this study are provided by high-resolution ASTER observations over 48 marine

altocumulus and broken cumulus scenes, which were sampled over the Pacific Ocean off the

Coast of California (covering the area 125.924◦ W−117.038◦ W and 32.051◦N−44.427◦ N)

between May 2003 and Sept. 2007. These granules, which are listed in Table 1, were

manually selected and are characterized by sufficient scene cloud covers and cloud sizes,

a large number of co-located ASTER and MODIS pixels with successful cloud property

retrievals, and the absence of overlying cirrus, multiple cloud layers and ice phase. These
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cloud fields cover most of the τ and reff solution space, as well as varying solar zenith

angles and scene cloud covers (C).

The ASTER imaging spectroradiometer aboard NASA’s Terra satellite samples ≈ 650

scenes daily (mostly over land), with each scene about 60× 60 km2 in area. Information

on the ASTER instrument design and technical specifications are reported in Yamaguchi

et al. [1993, 1998] and Abrams [2000]. The horizontal resolution of ASTER observa-

tions in the VNIR, SWIR and thermal infrared (TIR) spectral wavelength range is 15m,

30m and 90m, respectively. From the equations and coefficients in Abrams et al. [2004]

ASTER cloud top reflectances (R) can be derived from the raw digital counts, which are

characterized by an absolute radiometric uncertainties of < 4% [Yamaguchi et al., 1998].

Retrieved τ and reff are provided by an ASTER-specific, research-level retrieval algo-

rithm [Werner et al., 2016]. This algorithm utilizes the operational MODIS C6 retrieval

core [King et al., 1997; Platnick et al., 2003] and yields reliable cloud top, optical and

microphysical variables, which compare well with the operational MODIS C6 products

[Werner et al., 2016]. The retrieval is based on the bispectral solar reflective method,

where R at two different wavelengths (λ) are used to simultaneously infer τ and reff

[Twomey and Seton, 1980; Nakajima and King , 1990; Nakajima et al., 1991]. This ap-

proach utilizes so-called LUTs from 1-dimensional (1-D) radiative transfer simulations,

that are comprised of modelled R over a model cloud for varying τ and reff , as well as

different solar and viewing geometries. For the ASTER cloud property retrieval the obser-

vations in the non-absorbing band are provided by ASTER band 3N (nadir-viewing mode)

reflectances centered around λ = 0.86µm in the VNIR (R0.86), while the observations in

the absorbing band are from ASTER band 5 reflectances centered around λ = 2.1µm in
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the SWIR (R2.1). The mean retrieval uncertainties are estimated to be 15% and 23% for

τ and reff , respectively [Werner et al., 2016]. Due to the native resolution of the ASTER

SWIR observations, the highest possible horizontal resolution of retrieved τ and reff is

30m. However, by aggregating R0.86 and R2.1 within increasingly larger pixel footprints

both cloud variables are available at arbitrary horizontal resolutions. In this study both τ

and reff are derived for horizontal resolutions between 30−960m, which covers the native

ASTER and operational MODIS C6 scales. Note, that the retrieved τ is scaled to the

0.65µm band (i.e., band 2).

The distinction between clear-sky and overcast pixels in this study is performed with

the cloud-conservative cloud masking scheme introduced in Werner et al. [2016]. Cloud

detection from this algorithm is based on five spectral tests that compare absolute ASTER

reflectances, as well as color ratios and a derived brightness temperature, to predefined

thresholds. Those thresholds, which were carefully developed and tested on a number

of different ASTER data sets, flag each ASTER pixel as either confidently cloudy, prob-

ably cloudy, probably clear, or confidently clear (flag values of 0-3, respectively). As

illustrated in Werner et al. [2016], the results from this scheme compare well with the

operational MODIS cloud mask product for co-located observations, as well as the case-

by-case ASTER cloud mask reported in Zhao and Di Girolamo [2006]. It is important to

note, that in this study a binary cloud flag is applied (i.e., cloudy pixels are comprised of

those with flag values of 0-1, while flag values of 2-3 consequently designate clear pixels).

3. ASTER Observations of Partially Cloudy Pixels

This section provides information about the observed cloud properties of the 48 ASTER

scenes. Statistics about the occurrence of PCL pixels are given in section 3.1. The biases
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in pixel-level retrievals of τ and reff , which are induced by clear-sky contamination on the

subpixel scale, are assessed in section 3.2. Finally, a scale analysis with different subpixel

horizontal resolutions is presented in section 3.3.

3.1. PCL Statistics

A map of R0.86 sampled at a horizontal resolution of 30m above a small broken cumulus

field over the ocean on 12/03/2005 (case 47 in Werner et al., 2016) is shown in Figure

1(a). This example scene covers an area of about 10 × 10 km2 and depicts parts of two

convective clouds, as well as some smaller cloudy fragments. At this scale the highly

heterogeneous cloud structure becomes obvious and numerous illuminated and shadowed

areas are visible. In comparison, at 960-m horizontal resolution most of the fine-scale

cloud structures are smoothed out, as illustrated in Figure 1(b). Due to the abundance

of cloud edges in this scene, there are a multitude of 960m pixels that are only partially

covered with clouds on the subpixel scale. For each of these pixels the subpixel cloud

cover (Csub) is calculated from the observed number of cloudy 30-m subpixels, which is

determined by the extensive cloud masking scheme described in section 2. Note that at

this subpixel scale, there are 32 × 32 = 1024 available subpixels within a 960-m pixel

to calculate Csub. Cloudy 30-m pixels for this scene are shown in white color in Figure

1(c). Here, red boxes indicate cloudy 960-m pixels with a successful τ and reff retrieval

and Csub < 0.95, while light green boxes show pixels with Csub = 0.95 − 1 (i.e., almost

overcast pixels). Since the applied cloud mask is cloud-conservative with respect to clouds

very thin clouds might be missed by the algorithm, which explains some of the missed

cloud detections for very low reflectances. Still, it is obvious that for the example scene in

Figure 1 a majority of the cloudy 960m samples can be considered to be PCL pixels. Even
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though all pixels outlines in red have a successful cloud property retrieval at a horizontal

resolution of 960m there are a number of observations with very few cloudy subpixels.

Similar analysis has been performed for all 48 ASTER scenes. Figure 2(a) shows the

cumulative probability density function (CDF) of observed Csub for all cloudy 960m pix-

els. As before, only pixels with a successful cloud property retrieval are considered.

Overall, about 28.2% of data points are classified as PCL pixels (i.e., Csub < 0.95;

37, 164 pixels in total), while 15.7% (20, 697), 8.0% (10, 463) and 2.4% (3, 206) exhibit

Csub < 0.75, 0.5, 0.25, respectively. This means, that close to 30% of observed pixels

are either excluded from standard retrieval approaches or are misrepresented as overcast,

which agrees well with the findings of Cho et al. [2015]. Figure 2(b) shows the probability

density function (PDF) of Csub for all PCL observations. Clearly, the largest contribution

comes from observations with Csub > 0.95. These pixels are usually not cloud-edge sam-

ples, but rather in-cloud observations with low pixel-level τ retrievals. Note, that a less

conservative cloud masking algorithm might classify such pixels as overcast. Apart from

Csub < 0.1, there are noticeable contributions from the whole Csub range.

The Csub-statistics in Figure 2 are derived from ASTER samples at a horizontal reso-

lution of 30m. However, the analysis in this study covers subpixel horizontal resolutions

up to 480m, with a fixed pixel-level horizontal resolution of 960m. This has a signifi-

cant impact on Csub, because for subpixel observations at 240m (480m) only 4× 4 = 16

(2× 2 = 4) subpixels are available to calculate Csub. As a result, a 960-m pixel can only

exhibit Csub = 0.00, 0.25, 0.5, 0.75, 1.00 if calculated from 480-m data. Compared to the

30-m cloud mask, where almost clear and almost overcast pixels are possible (i.e., Csub

close to 0 and 1, respectively), such pixels will either be classified as clear or fully over-
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cast from 480-m subpixel data. This is illustrated in Figure 3(a)-(c), where the subpixel

cloud cover at the native ASTER resolution is statistically compared to Csub based on

120, 240 and 480−m observations, respectively. The horizontal bars indicate the spread

of the 30-m results for each 120, 240, 480 − m Csub-bin. For the 120 − m results, the

median 30-m cloud mask values (dots) closely follow the identity line and high values

of Pearson’s product-moment correlation coefficient between the low and high-resolution

Csub are observed (r = 0.994). Moreover, the normalized root-mean-square deviation

(nRMSD; defined as the RMSD between the two data sets, normalized by the mean 30-m

Csub) is 2.13%. Increasing the subpixel horizontal resolution to 240m (480m) yields a

decreased correlation of r = 0.973 (0.894), as well as larger deviations from the 30-m re-

sults with nRMSD= 4.58% (nRMSD= 9.10%). Overall, an increase in subpixel horizontal

resolution from 30m to 120, 240 and 480m results in an increase in average Csub of 0.72%,

1.91% and 4.34%, respectively.

Note, that these statistics are particular to the 48 ASTER scenes in this study. More

comprehensive statistics about the scale-dependence of cloud fraction estimates are re-

ported by Shenk and Salomonson [1972]; Wielicki and Parker [1992]; Krijger et al. [2007];

Dey et al. [2008]; Ackerman et al. [2008], where the relationships between domain size,

pixel resolution, cloudiness and cloud macrophysical parameters are analyzed for a wide

range of observational conditions. However, similar to the comparisons in Figure 3, these

studies find a strong dependence of cloud fraction on observational scale, with significant

increases in cloud cover with increasing sensor resolution due to PCL pixels being counted

as overcast. Thus, in this study PCL pixels: (i) are characterized by a successful τ and

reff retrieval at 960m horizontal resolution, (ii) exhibit Csub < 1 at all possible subpixel
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scales between 30− 480m, and (iii) include at least one subpixel with a successful cloud

property retrieval. These conditions provide a reliable data set of 10, 484 PCL pixels at

all scales that avoids almost clear (i.e., very low 30-m Csub; minimum remaining value is

Csub = 0.21) and almost overcast pixels (i.e., very high 30-m Csub; maximum remaining

value is Csub = 0.88).

3.2. Retrieval Bias for PCL Pixels

A partially cloudy observation at the pixel-level scale consists of both clear-sky subpixel

reflectances (R0.86,c and R2.1,c; indicated by the index c) and overcast subpixel reflectances

(R0.86,o and R2.1,o; indicated by the index o), which are sampled above clouds. These

reflectances are connected to the total reflectances at the pixel-level scale (the standard

R0.86 and R2.1 samples at, e.g., 960m) as follows:

R0.86 = (1− Csub) ·R0.86,c + Csub ·R0.86,o

R2.1 = (1− Csub) ·R2.1,c + Csub ·R2.1,o. (1)

Here, the horizontal bars above the clear-sky and overcast reflectance indicate the spatial

averages of the respective variable. In the case of an overcast pixel, Csub = 1 and sub-

sequently R0.86 = R0.86,o (similarly for R2.1). Conversely, for a PCL pixel Csub < 1 and,

assuming observations above a dark surface (e.g., over oceans), both R0.86 < R0.86,o and

R2.1 < R2.1,o. As a result, for PCL pixels there is a difference between the standard τ

and reff retrievals, which are based on the total reflectances R0.86 and R2.1, and the actual

underlying cloud properties τo and reff,o (based on R0.86,o and R2.1,o).

A comparison between τo and τ for all PCL observations is shown in the scatter plot in

Figure 4(a). Colors indicate the value of Csub, with black (red) colors indicating high (low)
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Csub. Because of the reduced VNIR reflectance for PCL pixels following Eq. (1), almost

all samples are characterized by a strong underestimation of the pixel-level τ compared to

τo. This underestimation becomes more pronounced with decreasing Csub. Even though

the correlation coefficient between τo and τ is still high (r = 0.853), the bias between the

two data sets is significant (nRMSD=30.72%). Rather similar PDFs of τo (red) and τ

(blue) for all PCL pixels are illustrated in Figure 4(b). There is a shift towards larger

values as the 1st, 50th and 99th percentiles of τ observations change from 0.61, 2.35 and

4.62 to 1.26, 3.05 and 6.95 for τo, respectively. Compared to the results for PCL pixels,

the cloud optical thickness distribution of all overcast pixels (black), where Csub = 1 and

τ = τo, shows significantly larger values. While the PCL and overcast distributions are

not directly comparable because they are comprised of completely different populations,

these vastly different τ ranges are not surprising. PCL pixels are usually associated with

cloud holes and edges, where turbulent mixing and evaporation processes yield a reduced

liquid water amount and geometrical thickness [Schmeissner et al., 2015]. A PDF of

the difference between τ and τo for all PCL pixels is illustrated in Figure 4(c); however,

although a wider range of −8.22 < τ − τo < 0.62 is observed, only the 1st and 99th

percentiles of the difference (−3.21 < τ − τo < −0.19) are shown for visibility reasons.

For all analyzed PCL pixels the median underestimation in cloud optical thickness due to

clear-sky contamination is −0.66.

Similarly, a comparison between reff,o and reff is shown in Figures 4(d)-(f). While τ < τo

for almost all PCL pixels, both over- and under-estimations of reff (compared to reff,o) are

observed and the comparison exhibits a higher correlation (r = 0.967) and lower nRMSD

(13.74%). As before, the deviations between the two retrievals increase with decreasing
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Csub. The PDF of reff for PCL pixels is rather flat, as the 1st, 50th and 99th percentiles of

observations are 5.21µm, 15.36µm and 29.31µm. In particular, a prominent tail in the

PDF with retrievals of reff > 25µm is observed and about 5.67% of retrievals fail, mostly

due to reff > 30µm (i.e., R2.1 is too low and the apparent effective radius becomes larger

than the maximum value in the LUT). Conversely, a bi-modal distribution for reff,o is

apparent and the distribution bears a resemblance to the PDF for overcast pixels. There

are significantly less observations of reff,o < 6µm and reff,o > 25µm compared to the

standard PCL results, while the 1st, 50th and 99th percentiles of observations are 6.73µm,

14.60µm and 26.90µm. Overall, differences cover the range of −7.65µm < reff − reff,o <

12.00µm, which is reduced to −3.18µm < reff − reff,o < 6.76µm if only the 1st and 99th

percentiles are considered. This indicates that while both over- and under-estimations

are observed for PCL pixels, clear-sky contaminations yield a primarily positive bias in

retrieved effective droplet radius with a median bias of about half a micron. These findings

are consistent with the reported findings in Marshak et al. [2006], where some very small

and mostly very large reff can occur for PCL pixels.

Note, that in this study we do not analyze the impact of 3-dimensional (3-D) radia-

tive effects (i.e., ignoring horizontal photon transport in realistic 3-D cloud structures

in the 1-D radiative transfer simulations). Retrieval biases due to 3-D radiative effects

are commonly associated with cloud shadows and illuminated cloud sides, among others

[Barker and Liu, 1995; Chambers et al., 1997; Marshak et al., 2006]. Due to increased

variability in cloud top height and an abundance of cloud edges with low τ these biases

can be substantial for heterogeneous, broken cumulus fields. As a result, the τo and reff,o
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retrievals, while correcting for the effects of clear-sky contamination, are not necessarily

the true underlying cloud properties.

3.3. Dependence on Subpixel Horizontal Resolution

The scale-dependence of Csub, which is illustrated in Figure 3, indicates that a decrease

in subpixel horizontal resolution might induce significant uncertainties, which directly

impacts the reliability of R0.86,o and R2.1,o and, subsequently, the cloud property retrieval.

A comparison of τo, using observations from the native horizontal resolution of 30m,

and those based on 240-m reflectances is shown in Figure 5(a). A summary of the results

is presented in table 2. Even though lower-resolution subpixel data was used to calcu-

late both R0.86,o and R2.1,o, there is overall good agreement between the two retrievals

for the overcast part of PCL pixels with r = 0.985 and nRMSD= 8.79%. A decrease of

subpixel horizontal resolution to 480m reduces the correlation (r = 0.941) and increases

the nRMSD to 15.55%, as shown in Figure 5(b). Considering the uncertainty in Csub

(compared to the 30-m results) this behavior is not surprising. Distributions of the differ-

ence between τo from lower-resolution subpixel data and from 30-m observations is shown

in Figure 5(c). These PDFs can be directly compared to the distribution of τ − τo in

Figure 4(c). Using 240-m reflectances, the 1st, 50th and 99th percentiles of the difference

are reduced to −0.94, −0.17 and 0.13, respectively (−1.66, −0.29 and 0.35 for the 480-m

results). While the comparison is worse than for 240m subpixel observations, retrieved

τo from 480-m and 30-m data still agree better than the standard retrievals from the

pixel-level reflectances (see Fig. 4(a)).

Retrieved reff,o based on 240-m subpixel observations also agree well with the 30-m re-

sults, as shown in Figure 5(d). Compared to the standard retrievals shown in Figure 4(d),
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the correlation coefficient is increased (r = 0.996) and significantly reduced deviations

from the identity line yield a much lower nRMSD of = 4.06%. As before, the retrieval

based on 480-m data deviates more from the 30-m results, as illustrated in Figure 5(e).

The scatter around the identity line is increased and starts to resemble the behavior of reff

shown in Figure 4(e), although the correlation coefficient is still higher (r = 0.977) and

the nRMSD is lower (9.26%). Figure 5(f) illustrates the PDF of the difference between

reff,o from the lower-resolution subpixel data and the 30-m results. Compared to the stan-

dard reff retrieval the maximum deviations are significantly reduced, as the 1st, 50th and

99th percentiles of the difference of reff,o from 240-m and 30-m observations are −1.77µm,

−0.34µm and 1.11µm, respectively (−3.92,−0.80, 2.54µm for the 480-m results). Again,

these results are summarized in table 2.

Considering the good agreement between derived Csub from 30-m and 120-m data, the

agreement between the respective τo and reff,o is even better if higher-resolution subpixel

data are available to calculate the average overcast subpixel reflectance following Eq.(1).

However, at all subpixel scales the results are less biased than the standard retrieval of τ

and reff , which simply utilizes the pixel-level reflectances and assumes Csub = 1.

4. Improved PCL Retrieval with Subpixel VNIR Information

The unique ASTER data set in this study provides the necessary subpixel information

about Csub, R0.86 and R2.1 at arbitrary horizontal resolutions (as long as it is > 30m).

However, most satellite-based passive sensors are characterized by more limited subpixel

observations. Imagers that facilitate operational retrievals with a global coverage (e.g.,

MODIS, VIIRS) usually sample reflectances at much coarser spatial resolutions. The

operational MODIS C6 retrievals are performed at horizontal scales of 1000m and are
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based on aggregated VNIR and SWIR reflectances, which are observed at 250m and 500m,

respectively. Meanwhile, the VNIR and SWIR reflectances from VIIRS are sampled at

a horizontal resolution of 375m and are subsequently aggregated to 750m for the cloud

property retrieval. Other instruments (e.g., SEVIRI) only have a single high-resolution

VNIR band and no high-resolution SWIR reflectances are available.

This section introduces approaches to estimate the subpixel cloud cover (section 4.1)

and high-resolution R2.1 (section 4.2) for MBL cloud scenes. These techniques make use

of available subpixel VNIR reflectance observations and thus are applicable for common

satellite missions. However, the analysis is geared towards a potential MODIS application

and thus features similar pixel-level and subpixel horizontal resolutions of 960m and

240m. The estimated subpixel properties provide the input for a retrieval for PCL pixels

following Eq. 1, which is evaluated in section 4.3.

4.1. Estimation of Subpixel Cloud Cover

Approaches to determine cloud cover in the presence of partially cloudy pixels have

been reported by Minnis et al. [1987]; Wielicki and Parker [1992]; Coakley et al. [2005].

These techniques are highly scene-dependent, include observations at a thermal band to

determine brightness temperatures, and consist of comparisons with cloud albedo clima-

tologies. A simpler approach is employed by the operational MODIS cloud mask product

[Ackerman et al., 1998; Baum et al., 2012], which yields a binary 250-m cloudiness flag

from a pair of visible reflectance thresholds. The proposed estimation of the subpixel cloud

cover (C∗
sub; the superscript ∗ indicates the estimated value) closely follows this MODIS

approach and is based on a simpler cloud masking scheme based on 240-m VNIR data.

In a first step, the pixel-level cloud mask value is assigned to each of the 240-m subpixels.
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Note that for this study the four cloudiness flags are already reduced to a binary cloud

mask, as described in section 2. Subsequently, two spectral tests are performed for each

subpixel of a cloudy pixel-level observation. The first test is comprised of a comparison

of the 240-m subpixel VNIR reflectance to the 90th percentile of clear-sky pixels in the

respective scene (p90). The second test determines whether the color ratio of R0.86/R0.65

is within the range of two predefined thresholds (here, R0.65 indicates ASTER band 2 re-

flectances centered around λ = 0.65µm). This test closely resembles the third cloudiness

test of the full ASTER cloud mask algorithm described in Werner et al. [2016] and is

used to distinguish clouds from the darker ocean surface, as well as from measurement

over land. Consequently, a subpixel is determined to be cloudy if:

R0.86 > p90 and

0.8 < R0.86

R0.65
< 1.75. (2)

It is important to emphasize the limitations of this technique, which essentially just

accentuates the general uncertainties of satellite-based cloud fraction estimations. As dis-

cussed by [Di Girolamo and Davies , 1997; Dey et al., 2008; Yang and Di Girolamo, 2008],

cloud detection algorithms should be designed individually with a particular application

in mind. Its performance is not only affected by observational scale and thresholding

effects, but also by scene characteristics such as cloud type and surface albedo, as well

as the presence of three-dimensional radiative effects and sun glint, among others. The

applied cloud masking scheme in this study was designed for (and validated by) marine

cumulus and stratus scenes, with only liquid phase and low to moderate aerosol turbidity,

and which were sampled outside of strong sun-glint and large solar zenith angles (i.e.,

θ0 > 65◦). Consequently, the presented results in this section, which evaluate the subpixel
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cloud cover estimates based on Eq. (2), are only valid for similar cloud scenes with a high

contrast in the visible spectral wavelength range between cloudy and clear pixels.

Figure 6(a) shows a comparison between the actually observed Csub (based on 240-

m data) and C∗
sub, derived for all cloudy 960-m pixels. Dots indicate the median of

the C∗
sub distribution within each Csub-bin (in increments of 0.05), while the vertical bars

illustrate the interquartile range (IQR; 75th-25th percentile of data points). There is a high

correlation between C∗
sub and Csub with r = 0.948 and nRMSD= 6.40%. Most deviations

from the identity line tend to be overestimations of the estimated subpixel cloud cover,

which increase with decreasing Csub. Since in the standard retrieval of τ and reff the PCL

pixel is assumed to exhibit Csub = 1, a slight overestimation indicates that the derived

R0.86,o and R2.1,o from Eq. (1) fall between the actually observed values and the total

reflectances at the pixel-level scale. This behavior is preferable to an underestimation of

C∗
sub (compared to the true Csub), where the R0.86 and R2.1 would be overcorrected.

Comparing C∗
sub to the actually observed values from 30-m data (i.e., calculated from

observations at the highest possible resolution) instead of Csub at 240m reveals that the

general overestimation of C∗
sub becomes more prominent, as shown in Figure 6(b). This

is especially true for pixels with large subpixel cloud cover (Csub > 0.85), where the

estimated results almost universally exhibit C∗
sub = 1. However, for these PCL pixels the

biases associated with pixel-level retrievals of τ and reff are comparatively small (see Figure

3) and the impact of C∗
sub overestimations should be negligible. Overall, the correlation

between C∗
sub and Csub decreases (r = 0.930) and the bias (nRMSD= 8.13%) becomes

larger when Csub is derived from 30m observations.
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Considering the limitations of the approach, while keeping in mind that the comparisons

are performed for marine liquid water clouds only, it can be concluded that the steps

outlined in this section provide reasonable estimates of the actually observed subpixel

cloud cover for the 48 MBL cloud fields in this study. Naturally, this also indicates that

the binary 250-m cloudiness flag provided by MODIS yields good estimates of C∗
sub, at

least for MBL cloud scenes in the absence of cirrus, low sun or sun-glint.

4.2. Estimation of High-resolution SWIR Observations

While many sensors provide information about the distribution of subpixel VNIR re-

flectances within the remotely sensed pixels, some sensors, like MODIS, even provide

subpixel SWIR reflectance data, albeit at lower spatial scales. In the following para-

graphs three methods are discussed, which provide estimations of R2.1 for each subpixel,

based on different assumptions and the information about the observed subpixel behavior

of R0.86.

The first method, which is referred to hereafter as Oversampled SWIR Reflectance Ap-

proach and is illustrated in Figure 7(a), assumes that while there is variability in R0.86

within a pixel, R2.1 remains constant on the subpixel scale. This means that the pixel-level

R2.1 value is simply assigned to each of the available subpixels, which makes this approach

easy to implement and computationally inexpensive. The red triangle in the example LUT

indicates a pixel with average observations of R0.86 = 0.305 and R2.1 = 0.200, while the

black dots represent the position of four subpixels with varying VNIR reflectance (gray

lines indicate the values R0.86,i and R2.1,i of the i = 1− 4 subpixels). Since it is assumed

that there is no variability in R2.1,i within the pixel, it follows that R2.1,i = R2.1 = 0.200.

To test the quality of this assumption, the inhomogeneity index Hσ,2.1 is calculated, which
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is defined as the ratio of standard deviation (σ2.1) to spatial average (i.e., the pixel-level

value R2.1) of subpixel SWIR reflectances [Liang et al., 2009; Di Girolamo et al., 2010;

Zhang and Platnick , 2011; Zhang et al., 2012; Cho et al., 2015]:

Hσ,2.1 =
σ2.1

R2.1

. (3)

Figure 7(d) shows the PDF of observed Hσ,2.1 for all cloudy ASTER pixels. The pixel-

level and subpixel scale is 960m and 240m, respectively. The peak of the distribution is

found around low values of Hσ,2.1 ≈ 0.03, which is representative of rather homogeneous

distributions. However, there are a multitude of pixels with significantly higher values

that are associated with inhomogeneous pixels. The 1st, 50th and 99th percentiles of

Hσ,2.1 observations is 0.013, 0.074 and 0.434. This indicates that for the sampled cloud

fields in this study there is a non-negligible subpixel variability in R2.1 and that a general

assumption of Hσ,2.1 = 0 is not appropriate.

A second approach is based on the assumption that the inhomogeneity index of the

VNIR reflectance equals Hσ,2.1 (i.e., spectrally consistent subpixel deviations from the

spatially averaged reflectance):

Hσ,2.1 = Hσ,0.86

σ2.1

R2.1

=
σ0.86

R0.86√
1

n−1
·∑i=n

i=1 (R2.1,i −R2.1)2

R2.1

=

√
1

n−1
·∑i=n

i=1 (R0.86,i −R0.86)2

R0.86

, (4)

where the index i = 1, 2, . . . , n indicates each of the n available subpixels. Additionally,

if deviations of individual subpixel reflectances from the average (pixel-level) values are

similar for both bands (i.e., R2.1,i −R2.1 = R0.86,i −R0.86), Eq. (4) can be simplified to:

R2.1,i

R0.86,i

=
R2.1

R0.86

. (5)
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Equation 5 suggests that the ratio of SWIR to VNIR reflectance at the subpixel scale is

equal to the ratio of the pixel-level results. Consequently, this method is called Constant

Reflectance Ratio Approach and is illustrated in Figure 7(b). Similar to Figure 7(a),

the pixel-level reflectances of R0.86 = 0.305 and R2.1 = 0.235 are indicated by a red

triangle in the example LUT. While the individual subpixels have the same R0.86,i as

before, the corresponding estimates of R2.1,i show some variability. Positive and negative

R0.86,i deviations from the pixel-level VNIR reflectance yield positive and negative R2.1,i

deviations from R2.1, respectively. To test the viability of the assumption in Eq. 5, the

PDF of the difference between subpixel and pixel-level SWIR to VNIR reflectance ratio

(i.e.,
R2.1,i

R0.86,i
− R2.1

R0.86
) is calculated and shown in Figure 7(e). These ratios are derived for all

cloudy 960m ASTER pixels, while the subpixel horizontal resolution is 240m. The 1st,

50th and 99th percentile of the calculated differences are −0.56, −0.02 and 0.50. However,

50% of observations are in the range −0.13− 0.07 (i.e., a difference between subpixel and

pixel-level reflectance ratio of ≤ 13%) and the median is close to zero. This indicates that

for a majority of observations the assumption of constant reflectance ratios at different

scales is reasonable.

A third approach to estimate R2.1,i assumes a constant reff within a pixel. Since the

relationship between retrieved cloud properties and cloud-top reflectance is determined by

the LUT, each R2.1,i can be derived via interpolation of the modeled SWIR reflectances at

the position of each R0.86,i along the respective reff-isoline. This Constant reff Approach is

illustrated in Figure 7(c), where individual R2.1,i align with the reff = 12µm-isoline. The

appropriate reff-isoline can be determined in different ways: (i) depending on the retrieved

pixel-level cloud properties the interpolation is performed along the isoline corresponding
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to the closest reff that exists in the LUT simulations. Depending on the reff resolution

of the applied LUT (i.e., the reff values for which simulations exist) this can lead to

substantial uncertainties, while the computational costs are low. (ii) Interpolated LUT

values are generated for the retrieved τ and reff , which reduces uncertainty and increases

computational costs. To test whether the assumption of constant reff within a pixel is

reasonable, the inhomogeneity index with regard to the effective radius (Hσ,reff ; defined as

the ratio of standard deviation to spatial average of subpixel reff at 240m) is calculated

for all cloudy pixels with a horizontal resolution of 960m. Figure 7(f) shows the PDF of

Hσ,reff , which is visibly narrower than the PDF of Hσ,2.1 in Figure 7(d). The 1st, 50th and

99th percentiles of observations are 0.00, 0.02 and 0.21, which suggests that a majority of

ASTER pixels indeed exhibit little variability in subpixel reff .

Each of the proposed approaches offers advantages and disadvantages. The Oversam-

pled SWIR Reflectance Approach is simple and computationally inexpensive, but based

on the PDF of observed Hσ,2.1 in Figure 7(d) this method might result in significant un-

certainties in the estimation of R2.1,i. Meanwhile, ASTER observations indicate that the

assumptions in the Constant Reflectance Ratio Approach seem reasonable. While this

method is computationally inexpensive, it is only valid for thinner clouds, where τ and

reff are strongly correlated (note the almost linear increase of the reff-isolines in Figure

7 for τ < 8). Conversely, for τ > 17 the R0.86 sensitivity to τ is nearly orthogonal to

the R2.1 sensitivity to reff (i.e., the respective isolines become orthogonal). As a result,

large subpixel R0.86 variability is associated with low R2.1 variability for such pixels. Fi-

nally, the Constant reff Approach requires a successful cloud property retrieval, which

has been shown to frequently fail for pixels with very low Csub. Moreover, the pixel-level

c⃝2018 American Geophysical Union. All Rights Reserved.



reff can be significantly biased due to clear-sky contamination (see biases in Figure 4),

as well as the plane-parallel homogeneous bias [Marshak et al., 2006; Zhang et al., 2016;

Werner et al., 2018], which describes the difference between pixel-level retrievals and the

spatial average of the subpixel results. For such observations the derivation of R2.1,i is per-

formed along a wrong isoline. Note that if applied to MODIS observations, 250-m SWIR

reflectances can be estimated from actually observed R2.1 at 500m, while the retrieval

products are provided at horizontal resolutions of 1000m. Thus, applying this approach

for such geometries requires an additional 500-m retrieval of reff , which would increase the

computational costs even further.

To evaluate the three techniques with ASTER data, joint PDFs of actually observed

R2.1 at a horizontal resolution of 240m and the estimated results (R∗
2.1; the superscript

∗ again indicates the estimated value) are calculated and shown in Figure 8 for (a) the

Oversampled SWIR Reflectance Approach, (b) the Constant Reflectance Ratio Approach

and (c) the Constant reff Approach. The first two approaches are facilitated by pixel-

level R2.1, which were sampled above all cloudy 960-m pixels. To minimize the influence

of clear-sky contamination and the plane-parallel homogeneous bias, the respective reff-

isoline in the Constant reff Approach is determined from the spatial average of actually

observed 240-m retrievals and not from the pixel-level result.

The Oversampled SWIR Reflectance Approach yields the lowest correlation (r = 0.980)

and largest bias (nRMSD= 9.36%) between R2.1 and R∗
2.1, although the majority of ob-

servations are concentrated around the identity line. The comparison improves noticeably

for the Constant Reflectance Ratio Approach, where r = 0.995 and the bias is reduced

to nRMSD= 4.40% (i.e., less than half the bias of the first method). Both approaches
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yield n = 2, 094, 838 high-resolution R∗
2.1 values. However, due to the extra constraint of

a successful effective radius retrieval, this number is reduced by about 34, 000 data points

(2%) if the Constant reff Approach is applied. While this method results in the highest

correlation (0.998) and lowest bias (nRMSD= 2.40%; almost half the bias of the Con-

stant Reflectance Ratio Approach), some significant over- and underestimations of R∗
2.1

are observed. This is not surprising, because the approach assumes a successful cloud

property retrieval along a fixed reff-isoline. If some of the subpixels deviate substantially

from this line, or are positioned outside the LUT, the error in R∗
2.1 can become quite

large. If the pixel-level horizontal resolution is increased to 480m (i.e., closely resembling

the MODIS geometry), the comparisons improve noticeably. Correlation coefficients in-

crease to r = 0.991, 0.998, 0.999 for the three approaches, while the biases are reduced

to nRMSD= 6.02, 2.93, 1.77%. The number of successful R∗
2.1 estimations is slightly in-

creased, which can be explained by the increase in the number of cloudy pixels at 480m.

As before, this number is lower for the Constant reff Approach, where a successful cloud

property retrieval is required.

Both the Constant Reflectance Ratio Approach and Constant reff Approach yield reason-

able estimates of R∗
2.1. However, depending on the magnitude of the bias in the pixel-level

reff retrieval, employing the Constant reff Approach for a PCL observation requires mul-

tiple retrieval iterations. During each iteration the new estimate of reff,o provides a more

reliable isoline for the R∗
2.1 interpolation. This makes the Constant reff Approach com-

putationally less efficient in comparison to the other two approaches. Note, that due to

the better comparison with actual ASTER observations for small R2.1,i (which are more
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common in PCL pixels) the cloud property retrievals in the following sections have been

derived with the Constant Reflectance Ratio Approach.

4.3. Evaluation of Estimated PCL Retrieval

Section 4.1 demonstrates that information about the subpixel VNIR distribution can be

used to infer reasonable estimates of the subpixel cloud cover, while section 4.2 introduces

methods to reliably estimate the SWIR reflectance for each subpixel. Both provide the

means to calculate the average of estimated cloudy reflectances, i.e., R∗
0.86,o and R∗

2.1,o in

Eq. (1), and subsequently retrieve τ ∗o and r∗eff,o (as before, the superscript ∗ indicates the

estimated value). Naturally, any uncertainty in the respective estimations will induce an

uncertainty in the derived cloud properties.

Figures 9(a) and (d) show a comparison between τ ∗o and r∗eff,o and the respective τo

and reff,o, which are based on ASTER observations at 30-m horizontal resolution. The

estimated retrievals are based on the Constant Reflectance Ratio Approach with R2.1

samples at 480m; as before the analysis is performed for all cloudy PCL pixels with a

horizontal resolution of 960m. This geometry not only allows for a direct comparison

to the results in Figure 4, but also for an evaluation of the estimated retrieval for PCL

pixels (based on Eq. 1) in regard to a potential MODIS application. Derived τ ∗o agree

well to the actually observed τo with r = 0.973 and a reduced bias of nRMSD= 11.59%,

which resembles a significant improvement from the standard retrieval based on the the

pixel-level reflectance. A similarly improved comparison between reff,o and r∗eff,o is shown

in Figure 9(d), where the correlation is increased (r = 0.989) and the bias is reduced (from

nRMSD= 13.74% to nRMSD= 6.06%). As a result, the PDFs of τ ∗o and r∗eff,o (orange)

in Figures 9(b) and 9(e) closely resemble the respective distributions of τo and reff,o. The
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improvement from the standard retrieval is particularly obvious for the effective droplet

radius, where the prominent tail of large reff > 25µm is not observed for r∗eff,o. Similar

to Figures 4(c) and 4(f), PDFs of the remaining biases between estimated and observed

cloudy part retrievals (black lines) are shown in Figures 9(c) and 9(e). The distributions

are much narrower, as the 1st, 50th and 99th percentiles of the difference τ ∗o − τo are −1.26,

−0.22 and 0.10 (2.42,−0.43, 2.20µm for the difference r∗eff,o − reff,o). These statistics are

also very similar to the 240-m results from the scale analysis in Figures 5(c) and 5(f). If

τ ∗o and r∗eff,o are compared to τo and reff,o from 240-m subpixel observations (instead of

the high-resolution 30-m results), the differences become even smaller (blue lines). Here,

the 1st, 50th and 99th percentiles of the difference τ ∗o − τo are −0.71, −0.01 and 0.22

(1.64,−0.06, 2.11µm for the difference r∗eff,o − reff,o).

The remaining biases between τ ∗o and r∗eff,o from the three approaches highlighted in

section 4.2 and the actually observed cloud retrievals at 240m are summarized in Table 3.

To provide the appropriate reference statistics, the differences τ − τo and reff − reff,o (i.e.,

the performance of the standard retrieval approach) are also listed. Regarding the differ-

ence τ ∗o −τo the three approaches described in section 4.2 yield considerable improvements

in comparison to the standard retrieval. Statistics for the three methods are very similar

and highlight that the estimated retrieval for PCL pixels can effectively mitigate the bias

introduced by clear-sky contamination (i.e., a median difference close to 0). Larger vari-

ability between the three approaches exist for the differences of r∗eff,o − reff,o. Considering

the uncertainties in R∗
2.1 shown in Figure 8(a), the differences for the Oversampled SWIR

Reflectance Approach are characterized by the largest 50th and 99th percentiles, that are

even larger than the ones from the standard retrieval. This approach can also not mitigate
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the extended tail of reff > 25µm in the PDF (however, it minimizes observations of very

small reff,o < 6µm). Both the Constant Reflectance Ratio- and Constant reff Approach

provide considerable improvements and the retrievals exhibit substantially reduced biases.

Distributions of r∗eff,o have no tail of large droplets for either approach and the PDFs look

almost indistinguishable. The Constant Reflectance Ratio Approach yields a minimum

median difference between reff,o and r∗eff,o (it also has the lowest 99th percentile). Note

that while the respective deviations become larger, these conclusions do not change when

τo and reff,o are derived from 30-m data.

The results in Figure 9 and Table 3 illustrate that for the 48 MBL cloud scenes in this

study the estimations presented in sections 4.1 and 4.2 yield retrievals, which correspond

to the cloudy part of PCL pixels and agree well with the actually observed ASTER

properties. This approach is directly applicable to MODIS observations and represents a

significant improvement over the standard retrieval, which simply utilizes the pixel-level

observations of R0.86 and R2.1.

5. Impact on Liquid Water Path and Droplet Number Concentration

Retrievals of τ and reff are widely used to infer the liquid water path (LWP ) and the

cloud droplet number concentration (N). Both parameters are key variables for studies

of aerosol-cloud interactions [Twomey , 1974; Albrecht , 1989] and the subsequent radiative

forcing [Ramaswamy and Chen, 1993; Lohmann et al., 2010]. Therefore, it is essential to

evaluate how these parameters are biased, when they are derived for PCL pixels.
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The LWP can be calculated from the product of τ and reff [Brenguier et al., 2000;

Miller et al., 2016]:

LWP = Γ · ρl · τ · reff , (6)

where ρl and Γ are the density of liquid water and a coefficient, which accounts for the

vertical cloud profile. For vertically homogeneous clouds Γ = 2/3. Relating the retrieved

cloud variables to N requires a number of assumptions and simplifications [Brenguier

et al., 2000; Schüller et al., 2005; Bennartz , 2007]:

N = α · τ 0.5 · r−2.5
eff , (7)

with α = 1.37 · 10−5 following Quaas et al. [2006]. As before, for PCL pixels both

parameters can be derived from (i) τ and reff , which represent the biased results due to

clear-sky contamination, (ii) τo and reff,o, which correspond to the parameters from the

overcast part of a pixel, and (iii) τ ∗o and r∗eff,o, which are the estimated results that mitigate

the PCL bias. The analysis in section 3.2 reveals an overall negative and positive bias in

retrieved τ and reff , respectively. This would indicate an overall negative bias for derived

N , while the bias in LWP could be either positive or negative, depending on whether the

τ or reff contribution dominates.

Figure 10(a) shows a comparison between derived LWPo, which is based on τo and reff,o

at a horizontal resolution of 30m, and the standard results of LWP for all PCL pixels.

The relationship looks similar to the one for τ , which is illustrated in Figure 4(a), as there

are strong underestimations of LWP with r = 0.937 and nRMSD= 27.48%. The 1st,

50th and 99th percentiles of the normalized difference between LWP and LWPo (defined

as the difference between both parameters, divided by LWPo) are −72%, 18.67% and
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1.40% (corresponding to absolute differences of −35.1 gm−2, −5.1 gm−2 and 0.46 gm−2).

The respective distribution is almost exclusively comprised of negative values, as shown

in Figure 10(b). These biases are drastically reduced, if the liquid water path is derived

from τ ∗o and r∗eff,o. Figure 10(c) shows the normalized difference between LWP ∗
o and

LWPo. Similar to previous Figures, LWP ∗
o is derived from 240-m subpixel reflectances

and compared to LWPo based on both 30-m (black) and 240-m (blue) subpixel data.

Naturally, the estimated results compare best to LWPo at 240m, where the 1st, 50th and

99th percentiles of the normalized difference are −26.21%, −1.72% and 10.70%. However,

even compared to the 30-m results of LWPo there is a significant improvement, if the

derivation is based on τ ∗o and r∗eff,o instead of the standard results.

Figures 10(d)-(f) illustrate the relationships between N , No and N∗
o , which are derived

from τ and reff , τo and reff,o, as well as τ ∗o and r∗eff,o, respectively. The pixel-level com-

parison between No and N reveals a lot of scatter, a lower correlation (r = 0.871) and

a rather large bias (nRMSD= 51.66%). Besides the expected underestimation in N a

number of samples with large overestimations are apparent, which are associated with

small effective radius retrievals around 5µm. While these observations, which exhibit a

relative difference in droplet number concentration of > 40%, exist for only 3.6% of all

PCL pixels, they still have a sizable statistical impact. The 1st, 50th and 99th percentiles

of the relative difference are −68.37%, −18.41% and 104.15% (i.e., absolute differences of

−42.7 cm−3, −4.3 cm−3 and 101.2 cm−3). The median biases, as well as the minimum and

maximum deviations, are reduced significantly when N∗
o is compared to No. The median

of normalized differences between the two variables at 240m is 0.77%, while the 1st and

99th percentiles are −25% and 31.81%, respectively.
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The analysis in this section shows that there are significant biases in LWP and N ,

if both are derived for PCL pixels. A derivation based on Eq. (1) and the approaches

detailed in sections 4.1 and 4.2 not only mitigates the overall biases for the analyzed cloud

scenes, but also drastically reduces the range of observed deviations from the actually

observed cloud properties.

6. Validation with Extensive ASTER Data Set

The previous analysis in this study is based on the ASTER data set described inWerner

et al. [2016, 2018], which consists of 48 marine altocumulus and broken cumulus scenes

sampled off the coast of California. While there are a number of granules with scene cloud

covers < 25%, most scenes are characterized by a cloud fraction of > 75%. Observations

from these cloud fields were carefully co-located with the simultaneous MODIS samples

and comparisons of retrieved cloud properties exhibit a good agreement with the opera-

tional MODIS C6 products [Werner et al., 2016]. In this section we applied the proposed

PCL retrieval approach to 446 ASTER scenes sampled over the tropical western Atlantic

Ocean (12 − 20◦N, 55 − 66◦W) between Sept. and Dec. 2004 during the RICO cam-

paign [Rauber et al., 2007], over the Gulf of Mexico (26− 30◦N, 90− 98◦W) between July

and Sept. 2006 during the GoMACCS campaign, and over the Indian ocean (5◦S-12◦N,

68 − 78◦E) between Nov. 2006 and Apr. 2007. More information about these scenes is

given in Zhao et al. [2009].

These broken cumulus fields are characterized by small cloud sizes, generally low scene

cloud fractions (with a median scene cloud cover of 7.79%) and the occasional presence

of land surfaces (due to the inclusion of small islands), while a handful of scenes even

exhibit noticeable sun-glint. Furthermore, these scenes have not been co-located with the
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respective MODIS observations and, as a result, the retrieved cloud properties have not

been compared to the operational MODIS C6 results. However, this comprehensive data

set provides the opportunity to test the viability of the assumptions and estimations in

sections 4.1 and 4.2 under more complex observational conditions. While the correlation

between C∗
sub and Csub (based on 240-m data) for these scenes is r = 0.781, the bias is

significantly larger with nRMSD= 35.46%. Most of the deviations occur for Csub < 0.2,

where a pixel-level cloud property retrieval fails in more than 54% of cases (because

reflectances are too small and fall outside the LUT) and the median of successful τ = 1.12.

Here, the average overestimation of C∗
sub is 32.97%. For pixels with Csub > 0.2 there is an

average overestimation of C∗
sub of 7.62% and r = 0.834. Similarly, there are slightly lower

correlation coefficients and increased biases between R∗
2.1 and R2.1 (at 240-m horizontal

resolution) of r = 0.991 and nRMSD= 8.16%, if determined from the Constant Reflectance

Ratio Approach.

Figure 11 illustrates how the increased uncertainties in C∗
sub and R∗

2.1 impact the cloud

property retrieval for PCL pixels. PDFs of τ (i.e., the standard retrieval approach; black),

τo (i.e., the retrieval based on the observed R0.86,o and R2.1,o; blue) and τ ∗o (i.e., the re-

trieval based on the estimated R∗
0.86,o and R∗

2.1,o; red) are shown in Figure 11(a). The

distributions are based on n = 54, 328 cloudy PCL pixels at a horizontal resolution 960m,

while τ ∗o is derived from the Constant Reflectance Ratio Approach. The subpixel horizon-

tal resolution is 240m. While the distribution of τ ∗o is slightly shifted towards smaller

values, it can reliably reproduce the shape and range of the τo distribution. The 1st,

50th and 99th percentiles of the normalized difference between τ and τo are −79.89%,

−37.86% and 1.37%. In contrast, the comparison between τ ∗o and τo becomes significantly
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better with percentiles of −52.75%, −6.01% and 9.07%, respectively. Similar improve-

ments are observed for the effective droplet radius, liquid water path and droplet number

concentration, illustrated in Figures 11(b)-(d). The 1st, 50th and 99th percentiles of the

normalized difference between reff and reff,o are −48.96%, 6.80% and 62.13%, which im-

proves to −25.33%, −0.16% and 24.63% for r∗eff,o. Most importantly, about 36.81% of all

pixel-level retrievals with the standard approach fail, predominantly because R2.1 becomes

too low (i.e., the retrieved reff would be larger than the maximum value in the LUT). This

finding is similar to the one in Cho et al. [2015], who reported that for marine liquid wa-

ter clouds about 33.81% of MODIS 2.1µm-retrievals fail. Conversely, observations with

very large values are almost non-existent for reff,o and r∗eff,o. Meanwhile, differences be-

tween LWP and LWPo exhibit percentiles of −88.14%, −33.76% and 4.37%, while those

between N and No are −84.26%, −32.61% and 216.83% (as for the California scenes,

there is a general underestimation in N for PCL pixels, but maximum deviations can be

very large). Comparing the observed results for the cloudy part of PCL pixels to LWP ∗
o

and N∗
o yields much better agreements and the respective percentiles become −58.88%,

−7.72%, 10.59% (LWP ∗
o ) and −58.31%, −1.59%, 91.97% (N∗

o ).

The complex nature of these scenes seems to have no discernible negative impact on the

reliability of the retrieval of the estimated cloud products τ ∗o , r
∗
eff,o, LWP ∗

o and N∗
o and

the significant improvements observed for PCL pixels, which were sampled above MBL

clouds off the coast of California, can be reproduced for more complex broken cumulus

fields from different locations.

7. MODIS PCL Data
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MODIS VNIR and SWIR reflectances are reported at their native horizontal resolution

of 250m and 500m in the operational MOD02QKM and MOD02HKM files, respectively

(these file names are reserved for the Terra platform; for Aqua the MYD-designation

replaces MOD). Similar to the ASTER application before, in this section these subpixel

observations are used to derive τ ∗o , r
∗
eff,o, LWP ∗

o and N∗
o . Since no MODIS cloud property

retrievals are performed at the 250-m scale, in a first step the ratio of atmospherically

corrected to uncorrected reflectance is determined for the necessary bands and applied

to each of the 16 (for VNIR band observations) and 8 (for SWIR band observations)

subpixels. Note, that atmospherically corrected reflectances at the pixel-level scale of

1000-m are reported in the operational MOD06 -level 2 files. Subsequently, the average

cloudy reflectances are determined from Eq. (1). Here, the pixel-level reflectances R0.86

and R2.1 are the atmospherically corrected values provided by MODIS, while the average

clear-sky reflectance is derived from the subpixel VNIR observations and the estimated

C∗
sub and 250-m R∗

2.1. Also note, that only the respective ≈ 60× 60 km2 ASTER scene is

included in the MODIS analysis, i.e., data is only from the respective subscene and not

the whole MODIS granule. These subscenes are the co-located MODIS data set reported

in Werner et al. [2016].). While ASTER does offer cross-track pointing capability, our

data has all observations close to nadir, with viewing zenith angles ranging from 0.03◦ to

13.99◦.

Compared to the ASTER analysis in this study, this test with MODIS data exhibits

some inherent uncertainties: (i) The atmospheric correction based on 1000-m data might

be different from a theoretical 250-m result. (ii) The observational geometry of ASTER

960m data and the operational MODIS results is different; not only due to the different
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pixel sizes, but also because of different pixel orientations. This means, that the retrieved

cloud properties and calculated PCL biases might be noticeably different. (iii) For MODIS

there is no ground truth to compare the retrieval results to. Consequently, the derived

PCL biases are based on the difference between the retrieved cloud properties from the

standard retrieval approach and the estimated results from the methods described in

sections 4.1 and 4.2. Similarly, no operational Csub is available, aside from the estimated

values based on Eq. (2). As before, nearly clear or overcast pixels (i.e., very low and

high C∗
sub) are excluded from the analysis. Here, the somewhat arbitrary thresholds of

C∗
sub = 3/16 and C∗

sub = 13/16 are chosen, respectively, which yield a comparable number

of PCL pixels as for the ASTER analysis.

Figure 12(a) shows a pixel-level comparison between τ ∗o and τ , while Figure 12(d) illus-

trates a similar comparison between r∗eff,o and reff . Even though the reference retrievals

are the respective estimated cloud properties, which are related to the overcast portion of

a pixel, clear-sky contamination yields a similar underestimation of τ and general over-

estimation of reff for the MODIS observations (see Fig. 4 for the ASTER comparison).

The correlation coefficients are comparable to the ASTER analysis, whereas the nRMSD

results are noticeably higher. Figures 12(b) and 12(e) show the respective PDFs of the

relative difference between standard retrievals and the estimated, overcast results. For

the cloud optical thickness, the 1st, 50th and 99th percentiles of the relative difference

τ − τ ∗o are −65.06%, −25.24% and −5.63% (absolute values of −3.70, −0.46 and −0.06),

while statistics of −19.09%, 3.62% and 68.00% (absolute values of −2.38µm, 0.39µm

and 8.72µm) are observed for the difference reff − r∗eff,o. These differences, as well as the

observed distributions, are very similar to the ASTER biases reported in Table 3 and Fig-
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ure 4, especially for the cloud optical thickness. Likewise, distributions for the difference

N −N∗
o and LWP − LWP ∗

o are shown in Figures 12(c) and 12(f), respectively. The 1st,

50th and 99th percentiles of each difference are −81.36%, −20.37% and 39.13% (absolute

values of −138.83 cm−3, −8.39 cm−3 and 22.78 cm−3) for N and −61.69%, −22.83% and

15.14% (absolute values of −26.73 gm−2, −2.89 gm−2 and 1.74 gm−2) for LWP . While

the maximum differences are rather different for both cloud parameters, the minimum

and median biases are very similar to the ASTER PCL results (see Figure 10). Given the

difficulties in comparing the two data sets and the lack of true reference retrievals, this

good agreement confirms the improvements that can be achieved for PCL retrievals and

a possible application for MODIS.

8. Summary and Conclusions

This study uses ASTER observations from MBL cloud scenes at different horizontal

resolutions to evaluate cloud property retrievals for partially cloudy pixels. It subsequently

introduces techniques to estimate the subpixel cloud cover and reflectance distribution

in the SWIR band by utilizing available subpixel observations of R0.86 (in the VNIR).

The high-resolution ASTER data provide the means to compare the pixel-level results to

reference retrievals, which are representative of the overcast part of a PCL pixel. As a

result, this study conclusively illustrates that these estimates facilitate an improved cloud

property retrieval for PCL pixels, which successfully mitigates the effects of clear-sky

contamination. The approach can easily be adopted to similar MBL cloud observations

from other imagers, such as MODIS, VIIRS and SEVIRI.

ASTER measurements at a horizontal resolution of 30m provide high-resolution cloud

properties at the subpixel scale, while an aggregation of the observations to a scale of
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960m yields pixel-level retrievals of τ and reff , which are comparable to the operational

MODIS resolution. While the total reflectances R0.86 and R2.1 are comprised of clear-sky

and overcast subpixel reflectances, averages of the subpixel reflectances from the overcast

part yield the actual cloud properties τo and reff,o, which are unbiased by the clear-sky

component of the PCL pixels. Naturally, for overcast pixels τ = τo and reff = reff,o, but

for PCL observations the pixel-level retrievals of τ and reff can be severely biased. For

the analyzed ASTER scenes in this study there are significant underestimations of τ and

overestimations of reff , which can be larger than −58.46%) and 41.05% in magnitude,

respectively. These biases directly impact the derivations of LWP and N , which both

exhibit general underestimations of up to −68.37% and −72.00%, respectively. Due to the

power laws involved in the calculations of N , biases can become as large as 104%. Note,

that these quantitative results are specific to the studied data set and are not necessarily

expected for other observations (e.g., global MODIS retrievals).

To mitigate the impact of clear-sky contamination for PCL pixels, methods to estimate

C∗
sub and R∗

2.1 at a horizontal subpixel-resolution of 240m are introduced, which are based

on the availability of high-resolution R0.86 observations. The derivation of C∗
sub follows

the operational MODIS approach and a comparison between the results and the actually

observed Csub reveals a good agreement with a high correlation. Meanwhile, estimates

of R∗
2.1 are subject to different assumptions about the subpixel cloud characteristics. Of

the three proposed assumptions, the Constant Reflectance Ratio Approach yields a good

comparison between R∗
2.1 and the observed R2.1 for PCL pixels, while remaining inde-

pendent of a successful pixel-level retrieval and computationally efficient. The described

methods provide the necessary estimates of the average cloudy subpixel reflectance for

c⃝2018 American Geophysical Union. All Rights Reserved.



the retrieval of τ ∗o and r∗eff,o, which agree well with the actually observed cloud proper-

ties. The remaining mean biases for both results are greatly reduced, from −17.01% to

−0.45% (for τ and τ ∗o ) and from 6% to −0.56% (for reff and r∗eff,o). Similar improvements

compared to the standard results are achieved for the derived parameters LWP ∗
o and N∗

o ,

where remaining mean biases are −1.72% (down from −18.67%) and 0.77% (down from

−18.41%), respectively.

The assumptions to estimate C∗
sub and R∗

2.1, as well as the reliability of the improved

PCL retrieval, are evaluated by means of an extended ASTER data set. These additional

MBL cloud fields are comprised of broken cumulus and are significantly more complex.

They are characterized by small horizontal cloud diameters and low scene cloud covers,

as well as the the occurrence of sun glint and land surfaces. However, the retrieved τ ∗o ,

r∗eff,o, LWP ∗
o and N∗

o still agree well with the actually observed cloud properties and the

impact of clear-sky contamination can be successfully mitigated. Considering that C∗
sub is

already provided by the operational MODIS C6 cloud product, implementation of a PCL

retrieval following those estimations and Eq. (1) for all cloudy MODIS pixels appears to

be feasible and would likely result in an improved cloud property retrieval for MBL cloud

scenes.

While for MODIS observations there is neither an operational Csub nor the necessary

reference retrievals for an evaluation, an application of the proposed PCL retrieval scheme

still allows for an analysis of retrieval biases due to clear-sky contamination, similar to

the ASTER analysis. Here, the subpixel VNIR and SWIR reflectances are provided by

the MODIS level-1 samples at horizontal resolutions of 250m and 500m, respectively. A

comparison between the operational retrievals results at the native 1000m scale and the
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estimated values τ ∗o and r∗eff,o yields underestimations of > 3.00 and overestimations of

> 8µm, respectively. Despite different observational geometries, the derived bias distri-

butions and median biases are similar to the ASTER results.

It is important to note that the proposed PCL retrieval approach has only been tested

and evaluate for MBL clouds, where there is sufficient contrast between the bright cloud

tops and the dark ocean surface. It is reasonable to assume that the reliability of the

retrieved cloud products suffers for more complex cloud fields, primarily due to uncer-

tainties in C∗
sub. The simple cloud masking scheme based on high-resolution observations

at VNIR bands will likely yield substantial overestimations of C∗
sub if the sampled scenes

exhibit an increased aerosol particle loading, overlying cirrus, sun-glint or strong radiative

smoothing as a consequence of 3D radiative effects (i.e., low solar zenith angles and hor-

izontal photon transport). Similarly, estimates of C∗
sub that are only determined by the

R0.86 threshold are subject to possible false cloud classifications on the subpixel scale for

measurements over bright surfaces (e.g., sand, urban landscapes). However, given that

the standard retrieval for PCL pixels assumes that Csub = 1, a slight overestimation of

C∗
sub would still signify an improvement, while a worst case scenario (C∗

sub = Csub = 1)

would provide identical results (i.e., τ ∗o = τ ; similar for the other cloud properties).

Not discussed in this study is the possibility of reducing the number of failed PCL re-

trievals. About 36.81% of all PCL observations for the data set in section 6 exhibit failed

retrievals, predominantly because R2.1 becomes too low. The removal of the clear-sky

component yields a successful τo and reff,o retrieval for 87.65% for these pixels. Addi-

tionally, Eq. (1 also helps to identify 14.44% of clear pixel-level observations as partially

cloudy ones (i.e., a clear 960−m pixel includes at least one cloudy 240-m subpixel). Also
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not discussed are biases due to the plane-parallel homogeneous bias. While the mathemat-

ical framework presented in Zhang et al. [2016] is shown to successfully mitigate observed

retrieval biases, it is only suitable for overcast conditions [Werner et al., 2018]. Since this

study provides the means to derive the average cloudy reflectance and respective cloud

properties, a correction of the plane-parallel homogeneous bias can now also be applied to

PCL pixels, which improves the reliability even further. At last, it is important to note

that the retrieved τo and reff,o might be impacted by 3-D radiative effects. PCL pixels are

more susceptible to biases induced by unaccounted horizontal photon transport, especially

for observations with low Csub. These issues will be studied in future works.
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Table 1. Case number (C1-C48) and sample date of the 48 MBL scenes, which were sam-

pled over the Pacific Ocean off the Coast of California. The date format is MM/DD/YYYY

Hour:Minute:Second.
# Date # Date # Date
1 03/02/2006/ 19:14:44 21 06/25/2004/ 19:10:45 41 10/06/2003/ 19:04:27
2 03/06/2005/ 19:20:37 22 07/04/2007/ 19:09:35 42 10/21/2006/ 19:09:31
3 03/06/2005/ 19:20:46 23 07/04/2007/ 19:10:19 43 10/25/2005/ 19:14:44
4 03/06/2005/ 19:20:55 24 07/04/2007/ 19:10:46 44 10/25/2006/ 18:45:26
5 03/06/2005/ 19:21:04 25 07/11/2007/ 19:16:06 45 10/25/2006/ 18:45:35
6 03/06/2005/ 19:21:13 26 07/20/2007/ 19:10:07 46 10/30/2006/ 19:03:35
7 03/08/2005/ 19:08:35 27 07/20/2007/ 19:10:16 47 12/03/2005/ 19:20:56
8 03/08/2005/ 19:08:44 28 07/20/2007/ 19:10:25 48 12/16/2004/ 19:20:41
9 03/08/2005/ 19:08:53 29 08/18/2006/ 19:09:01
10 04/19/2006/ 19:14:55 30 08/18/2006/ 19:09:18
11 04/19/2006/ 19:15:13 31 08/26/2003/ 19:09:37
12 04/19/2006/ 19:15:22 32 08/26/2003/ 19:09:55
13 04/19/2006/ 19:15:31 33 08/26/2003/ 19:10:12
14 05/13/2003/ 19:15:46 34 08/29/2006/ 18:52:02
15 05/30/2006/ 19:08:57 35 08/29/2006/ 18:52:11
16 06/02/2007/ 19:09:29 36 09/02/2003/ 19:15:12
17 06/02/2007/ 19:09:47 37 09/07/2005/ 19:14:31
18 06/03/2005/ 19:14:42 38 09/07/2005/ 19:14:49
19 06/10/2005/ 19:20:47 39 09/10/2006/ 19:15:21
20 06/10/2005/ 19:21:04 40 09/11/2004/ 19:21:08
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Table 2. Comparison between pixel-level retrievals (τ and reff) and the 30-m subpixel cloud

properties (τo and reff,o), as well as comparisons between τo and reff,o at different horizontal

resolutions. The 1st, 50th and 99th percentiles of relative biases, the normalized root-mean-

square deviations (nRMSD), and the correlation coefficients (r) between the respective variables

are given.

1st p., 50th, 99th p. nRMSD r
τ − τo (30m) −62.98%, −22.30%, −7.68% 30.72% 0.853
τo (240m) – τo (30m) −19.74%, −5.99%, 3.73% 8.79% 0.985
τo (480m) – τo (30m) −36.12%, −10.34%, 10.76% 15.55% 0.941
reff − reff,o (30m) −34.60%, 3.54%, 38.36% 13.74% 0.967
reff,o (240m) – reff,o (30m) −14.24%, −2.53%, 5.51% 4.06% 0.996
reff,o (480m) – reff,o (30m) −28.64%, −6.03%, 13.20% 9.26% 0.977
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Table 3. The 1st, 50th and 99th percentiles of the difference τ ∗o − τo and r∗eff,o− reff,o. Statistics

are given for the Oversampled SWIR Reflectance, Constant Reflectance Ratio and Constant reff

Approaches. Also, the statistics for the difference between standard PCL retrievals, which are

based on the average pixel-level reflectance, and τo and reff,o are also presented. The pixel-level

and subpixel horizontal resolutions are 960m and 240m, respectively.

τ ∗o − τo r∗eff,o − reff,o
Approach 1st p. 50th p. 99th p. 1st p. 50th p. 99th p.
Standard −3.74 −0.47 −0.07 −3.27µm 0.84µm 6.16µm
Oversampled SWIR Reflectance −0.66 0.01 0.30 −0.38µm 1.67µm 9.00µm
Constant Reflectance Ratio −0.71 −0.01 0.22 −1.64µm −0.06µm 2.11µm
Constant reff −0.53 0.00 0.25 −0.90µm 0.43µm 3.20µm
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Figure 1. (a) Single-band, grayscale image of ASTER band 3N reflectances (R0.86) for a

scene observed off the coast of California on 12/03/2005 at 19:20:56. The horizontal resolution

is 30m. (b) Same as (a) but the R0.86 sampled at the 30-m scale are aggregated to a horizontal

resolution of 960m. (c) Binary cloud flag based on 30-m ASTER data; white colors indicate

cloudy 30-m pixels, based on the cloud masking algorithm described in section 2. Red and light

green boxes highlight partially cloudy 960-m pixels with a successful cloud property retrieval,

where the subpixel cloud cover (Csub; derived from 30m data) is in the range of 0 > Csub < 0.95

and 0.95 > Csub < 1.0, respectively. Grey boxes indicate overcast 960-m pixels (i.e., Csub = 1.00)

with a successful cloud property retrieval.
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Figure 2. (a) Cumulative density function (CDF) of Csub for all cloudy pixels (for visibility

reasons the last data point at 100% is not shown). Data is from 48 altocumulus and broken

cumulus scenes sampled off the coast of California. The horizontal resolution at the pixel-level

is 960m. (b) PDF of Csub for all partially cloudy pixels.
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Figure 3. Comparison between subpixel cloud cover (Csub; based on the extensive cloud

masking scheme described in section 2) derived from ASTER reflectances sampled at a horizontal

resolution of 30m and those from (a) 120-m, (b) 240-m and (c) 480-m data. The correlation

coefficient r and normalized root-mean-square deviation between Csub from 30m and lower-

resolution reflectances (nRMSD) is given. The gray diagonal line indicates the identity line.
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Figure 4. (a) Comparison between retrieved cloud optical thickness based on the average

reflectance of the cloudy part of a pixel (τo) and the one retrieved from the total reflectance (τ).

The pixel-level scale is 960m, while the subpixel data is provided by 30−m observations. Colors

indicate the subpixel cloud cover (Csub; based on the extensive cloud masking scheme described

in section 2); the gray diagonal line indicates the identity line. The number of observations (n),

correlation coefficient (r) and normalized root-mean-square deviation between τo and τ (nRMSD)

is given. (b) PDFs of τo (red) and τ for PCL pixels (blue). Additionally, τ = τo for overcast

pixels is illustrated (black). (c) PDF of the difference between τ and τo for all PCL pixels. The

1st, 50th and 99th percentiles are given. (d)-(f) Same as (a)-(c), but for the effective droplet radius

(reff,o and reff).
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Figure 5. Comparison between retrieved cloud optical thickness based on the average 30-

m reflectance of the overcast part of a PCL pixel (τo) and τo based on the average (a) 240-m

and (b) 480-m subpixel reflectance. The pixel-level scale is 960m. Colors indicate the subpixel

cloud cover (Csub; from 30m data and based on the extensive cloud masking scheme described in

section 2); the gray diagonal line represents the identity line. The correlation coefficient (r) and

normalized root-mean-square deviation between τo from 30m and lower-resolution reflectances

(nRMSD) is given. (c) PDFs of the difference between τo from 30-m data and 240-m (blue), as

well as 480-m overcast reflectance (black), respectively. The 1st, 50th and 99th percentiles are

given. (d)-(f) Same as (a)-(c), but for the effective droplet radius (reff,o).
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Figure 6. (a) Comparison between the actually observed subpixel cloud cover (Csub; based

on the extensive cloud masking scheme described in section 2) derived from 240-m data and

the estimated results (C∗
sub; based on Eq. (2)). The pixel-level scale is 960m. The number of

observations (n), correlation coefficient r and normalized root-mean-square deviation between

the Csub and C∗
sub (nRMSD) is given. (b) Same as (a) but Csub is derived from observations at a

horizontal resolution of 30m.
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Figure 7. (a) Example lookup table to illustrate the Oversampled SWIR Reflectance Approach.

The red triangle indicates the mean R0.86 and R2.1 of a pixel, while the black dots illustrate R0.86

of four subpixels and the respective R2.1 based on the Oversampled SWIR Reflectance approach.

Grey vertical and horizontal lines are visual aids. (b)-(c) Same as (a), but illustrating the

Constant Reflectance Ratio- and Constant reff Approach, respectively. (d) PDF of the subpixel

variability of R2.1 (Hσ,2.1). The subpixel and pixel-level scale is 240m and 960m, respectively.

(e) Same as (d) but for the difference of the ratio of R0.86 to R2.1. (f) Same as (d) but for the

subpixel variability of the effective droplet radius (Hσ,reff).
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Figure 8. (a) Joint PDF of actually observed 240-m SWIR reflectance (R2.1) and estimated

R2.1 based on the Oversampled SWIR Reflectance Approach. The estimation is facilitated by

observed R2.1 at a horizontal resolution of 960m. Only cloudy 960-m pixels are considered in

the analysis. The number of observations (n), correlation coefficient r and normalized root-

mean-square deviation between observed and estimated R2.1 (nRMSD) is given. (b)-(c) Same as

(a), but the estimation is based on the Constant Reflectance Ratio- and Constant r eff Approach,

respectively. (d)-(f) Same as (a)-(c), but the estimation is based on observed R2.1 at a horizontal

resolution of 480m.
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Figure 9. (a) Comparison between retrieved cloud optical thickness based on the average 30m

reflectance of the overcast part of a pixel (τo) and the cloud optical thickness based on estimations

for C∗
sub and R∗

2.1 from the Constant Reflectance Ratio Approach (τ ∗o ). Colors indicate the subpixel

cloud cover (Csub; based on the extensive cloud masking scheme described in section 2); the gray

diagonal line indicates the identity line. The correlation coefficient r and normalized root-mean-

square deviation between τo and τ ∗o (nRMSD) is given. (b) Same as Fig. 4(b), but also including

a PDF of τ ∗o (orange). (c) PDF of the difference between τ ∗o and τo for all PCL pixels (black), as

well as between τ ∗o and τo based on the average 240m reflectance of the overcast part of a pixel

(blue). The respective 1st, 50th and 99th percentiles are given. (d)-(f) Same as (a)-(c) but for the

effective droplet radius reff,o, r
∗
eff,o and reff .
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Figure 10. (a) Comparison between derived liquid water path based on the average 30-m

reflectance of the overcast part of a pixel (LWPo) and the one derived from the total reflectance

(LWP ). Colors indicate the subpixel cloud cover (Csub; based on the extensive cloud masking

scheme described in section 2); the gray diagonal line indicates the identity line. The number

of observations (n), correlation coefficient r and normalized root-mean-square deviation between

LWPo and LWP (nRMSD) is given. (b) PDF of the difference between LWP and LWPo,

normalized by LWPo, for all PCL pixels. The 1st, 50th and 99th percentiles are given. (c) PDF of

the difference between derived liquid water path based on R∗
2.1,o at 30m (black), as well as 240m

(blue), from the Constant Reflectance Ratio Approach (LWP ∗
o ) and LWPo, normalized by LWPo,

for all PCL pixels. (d)-(f) Same as (a)-(c), but for the cloud droplet number concentrations N ,

No and N∗
o .
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Figure 11. (a) PDFs of the cloud optical thickness derived from the standard retrieval

approach (τ ; black), only from cloudy subpixel reflectances based on Eq. (1) (τo; blue), and the

estimated overcast reflectances based on the assumptions detailed in sections 4.1 and 4.2 (τ ∗o ;

red). Data is from cloudy PCL pixels, which were observed over marine broken cumulus scenes

[Zhao et al., 2009]. The pixel-level and subpixel horizontal resolutions are 960m and 240m,

respectively. (b)-(d) Same as (a), but for the effective droplet radius (reff , reff,o and r∗eff,o), liquid

water path (LWP , LWPo and LWP ∗
o ), and cloud droplet number concentration (N , No and

N∗
o ), respectively.
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Figure 12. (a) Comparison between retrieved cloud optical thickness based on estimations

for C∗
sub and R∗

2.1 from the Constant Reflectance Ratio Approach (τ ∗o ) and the one retrieved from

aggregated reflectance (τ). Data is from all (estimated) MODIS PCL pixels, which were observed

over the 48 marine altocumulus and broken cumulus scenes over the Pacific Ocean off the Coast

of California (see section 2). Colors indicate the estimated subpixel cloud cover (C∗
sub; based

on Eq. (2) and 250-m MODIS VNIR reflectances); the gray diagonal line indicates the identity

line. The number of observations (n), correlation coefficient r and normalized root-mean-square

deviation between τ ∗o and τ (nRMSD) is given. (b) PDF of the difference between τ and τ ∗o .

(c) Same as (b), but for the cloud droplet number concentration (N and N∗
o ). (d) Same as (a),

but for the effective droplet radius (reff and r∗eff,o). (e)-(f) Same as (b), but for liquid water path

(LWP and LWP ∗
o ).
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