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Abstract

As robots become more ubiquitous, it is increasingly
important for untrained users to be able to interact with
them intuitively. In this work, we investigate how peo-
ple refer to objects in the world during relatively un-
structured communication with robots. We collect a cor-
pus of deictic interactions from users describing objects,
which we use to train language and gesture models that
allow our robot to determine what objects are being
indicated. We introduce a temporal extension to state-
of-the-art hierarchical matching pursuit features to sup-
port gesture understanding, and demonstrate that com-
bining multiple communication modalities more effec-
tively capture user intent than relying on a single type
of input. Finally, we present initial interactions with a
robot that uses the learned models to follow commands.

1 Introduction
As robots move into the world, the importance of enabling
untrained users to interact with them in a natural way in-
creases. While it is possible to teach someone how to use
a robot for specified tasks (e.g., with a lexicon of prede-
fined gestures), a more intuitive robot would learn how users
naturally use speech and gesture. In turn, having access to
the physical world allows for learning to understand natu-
ral language pertaining to that world, such as descriptions
of visual percepts; this is the grounded language acquisition
problem (Mooney 2008).

This work demonstrates progress towards a robot that can
learn to understand unscripted directives from end-users,
and perform operations based on that understanding. We in-
troduce a system that learns to interpret user intent in a phys-
ical workspace. Particularly, the goal is to learn to under-
stand the subset of deictic interactions called directing-to,
which are attention-focusing: language and gesture in which
the user is drawing attention to specific objects. We have col-
lected an RGB-D corpus of interactions from users identify-
ing objects in a space, which was then used to train models
of language, deictic gesture, and visual attributes.

The language and gesture in this corpus are unscripted,
i.e., not predefined by us; people did what came naturally
during training and in our evaluation. This goal – training a
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classifier intended to interpret any arbitrary deictic gesture
in a tabletop manipulation setting – is qualitatively differ-
ent from gesture recognition, in which a set of known ges-
tures must be disambiguated. In order to successfully inter-
pret gestures in this (sometimes quite complex) time-series
data, we introduce a novel temporal extension to state-of-
the-art hierarchical matching pursuit (HMP) features (Bo,
Ren, and Fox 2011). Finally, we demonstrate the applica-
tion of those models to the task of interacting with indicated
objects. (Fig. 1).

Figure 1: The integrated system. (a) and (b): the Gambit platform
picking up a toy and placing it in the bin; (c) examples of the target
objects in test scenes, with language used by our test participants
(including speech recognition errors).

In the remainder of this paper, we demonstrate that our ap-
proach learns from examples provided by untutored users,
and that this combination of modalities performs well at cap-
turing users’ intent. In order to determine whether the prob-
lem area is well-formed, we also evaluate how well humans
are able to perform the task, and report on the accuracy of
our initial system in a small trial. Our contributions include:
A recognition model that combines language, gestures, and
visual attributes; a dataset with 364 annotated videos of peo-
ple describing objects; a prototype implementation that can
be instructed using voice and gesture; and a novel technique
for unsupervised learning of features rich enough to enable
accurate recognition of deictic human gesture.



2 Related Work
Both gesture and language have been studied extensively as
possible elements of human-robot interaction (Goodrich and
Schultz 2007; Mitra and Acharya 2007). Gesture has been
found to be a comfortable, effective modality for teaching
robots (Rouanet, Danieau, and Oudeyer 2011), and there is
substantial work on gesture recognition in robotics (Wachs
et al. 2011), including those using low-cost RGB-D sen-
sors (Ramey, González-Pacheco, and Salichs 2011) and
those using temporal or trajectory-based recognition (Nickel
and Stiefelhagen 2007; Yang, Park, and Lee 2007). How-
ever, rather than performing recognition of a gesture, our
system is trained to do gesture understanding – that is, inter-
pretation of any indicative gesture a user wishes to make.

Teaching robots about objects and attributes of objects
in the world is an active target in human-robot interaction
(HRI) research. While the specific task we target in this pa-
per uses a limited set of objects and attributes, understanding
how people refer to objects in the world is an important ele-
ment of natural HRI (Sandygulova et al. 2012), and has been
studied from the perspective of both human dialogue (Pelta-
son et al. 2012) and vision (Farhadi et al. 2009).

We focus on deictic language and gesture – specifically,
those that (Clark 2003) call directing-to, which are attention-
focusing. There exists work on generating understandable,
appropriate gestures, (Liu et al. 2013) integrating very con-
strained natural language with deictic gesture (Perzanowski
et al. 2001), and on how robots may be controlled using ges-
ture (Suay and Chernova 2011). Our work is similar to that
of (Obaid et al. 2012), but rather than trying to design a bet-
ter lexicon of control gestures, our aim is to understand any
such indicative gesture.

The language learning component of this work fits into the
general category of grounded language acquisition (Mooney
2008): The interpretation of human language into semanti-
cally informed structures in the context of perception and ac-
tuation. This has shown successes in tasks such as robot nav-
igation (Matuszek et al. 2012b) and forklift operation (Tellex
et al. 2013). Our learning of attributes is most similar to that
of Matuszek and FitzGerald et al. (Matuszek et al. 2012a);
however, we collect spoken, rather than typed, language.

Another approach to embodied language learning is to
learn situated meanings for symbols from a more emergent,
cognitive approach. One way to study embodied acquisi-
tion of language is to consider how infants (McGregor et al.
2009; Vollmer et al. 2009) learn symbols and the meanings
of gestures; another is to apply the same evolutionary con-
cepts of language to a robotics platform and study the result-
ing behavior (Steels 2001; Steels and Loetzsch 2012). While
these approaches offer the potential of eventually reaching
human-level language learning and understanding, to the
best of our knowledge, they do not address the question of
building a more special-purpose, explicitly robotic learner.

For RGB-D video collection, we use the widely-available
Microsoft Kinect sensor. We take advantage of work in the
computer vision community on the study of object identi-
fication and grounded understanding. In particular, our ap-
proach to analyzing gestures is an expansion of Hierarchical
Matching Pursuit features, which have shown state of the

art performance on static problems such as image classifica-
tion (Bo, Ren, and Fox 2011) and object identification (Sun,
Bo, and Fox 2013; Lai et al. 2013).

3 Problem Statement and Data Collection
The goal of our work is to build a robot that understands the
intentions of users without requiring specialized user train-
ing. We recorded examples of people describing objects; that
data set was used to train models of interactions, which are
then used to implement a proof of concept system in which
a robot interacts with objects according to user instructions.

3.1 Data Collection and Corpus
Our task is to build a system that understands someone who
is indicating objects in a workspace, by verbally describing
any combination of object attributes, by gesturing, or both.
For each scenario – consisting of RGB-D video and speech –
we want to identify positive (indicated) objects in the scene.
In order to collect information about how people refer to
objects when given few constraints, we used the Kinect sen-
sor (mounted on either a tripod, or the Gambit manipulation
platform) to record people describing objects.

Figure 2: A data collection participant indicating objects. The ex-
perimenter shows an iPad with target objects circled in order to
avoid linguistic or gestural priming.

Participants were instructed to distinguish objects from a
scene, using language and gesture “as if they were describ-
ing those objects to a robot”, but not given a predefined set
of gestures or instructions to use. Experimenters specified
what objects to indicate (see Fig. 2) in both training and
testing. The data set contained 234 scenes in which two or
more objects were to be indicated. Language from the cor-
pus collected was hand-transcribed, although in our robot
experiments we use speech recognition. We do not tempo-
rally align language with gesture, instead analyzing the en-
tire time-series for deictic motions; this approach presents
a noisier learning problem, but is consistent with our data,
in which gestures do not always correspond temporally to
language.

Scenes were designed to collect data for objects with dif-
ferent spatial relations and combinations of attributes. The
length of responses from participants ranged from very brief
(around three seconds) to more than a minute. Thirteen par-
ticipants described each scene. The resulting data set con-
tains examples of language used without gesture, gesture



paired with non-descriptive language (e.g., “These objects”),
and gesture and language used together (examples can be
seen at: http://tiny.cc/Gambit14).

4 Approach
To accomplish the goal of identifying objects from whatever
interactions a user offers, we first train individual compo-
nents of the system on our training corpus. We assume users
might refer to objects by verbally describing any combina-
tion of color and shape attributes, by gesturing, or both. Ac-
cordingly, for each object, we combine whether it is gestured
to and whether it is referred to verbally into a final per-object
score, which is used to determine what objects in a scene a
person wishes to indicate. The pipeline is as follows:

1. Raw sensor input is processed to identify the workspace,
objects, and hands, and language is processed into text.

2. If hands are present, a gesture classifier is used to obtain
a probability that each object was gestured to.

3. Vision classifiers return probabilities for the color and
shape of each object.

4. Language is combined with the output of the visual at-
tribute classifiers to determine whether each object is re-
ferred to in speech.

5. The results of gesture and language analysis are com-
bined into a final object score for each object, representing
whether the system believes it is a positive object (that is,
was somehow indicated by the user).

We describe the individual classifiers used, then discuss how
their outputs are synthesized into an evaluation of user in-
tent. Finally, we describe applying the combined system on
a robotic manipulation platform.

4.1 Point-Cloud Processing
In this first step, our system extracts the user’s hands and the
objects from each frame of the RGB-D video. To automat-
ically segment individual objects o ∈ O from each scene,
RANSAC plane fitting is used to remove the table plane,
then connected components (segments) of points above that
plane are extracted. Remaining points are segmented into
clusters (Fig. 5 shows an example of a segmented object).

Figure 3: A frame from the data corpus, cropped to the workspace
(left), then x,y axis-aligned to the table (right). Moving clusters of
points that extend beyond the workspace are hands (boundaries in
orange). The leading-edge point on each hand (yellow) is used to
calculate gesture features.

We identify gestures using spatial relationships between the
user’s hands and the objects over time. For each frame in a

scene, we identify the leading edge of a hand (the point on
the hand that is furthest from the user’s body, from the view-
point of the interlocutor, see Fig. 3). We then compute the
distances between this point and an object. These distances
are computed along each of the three coordinate axes and as
a single Euclidean distance, resulting in a four-dimensional
distance vector at each timestep.

For this work, we use the hierarchical matching pursuit
(HMP) approach of (Bo, Ren, and Fox 2011), which uses
the matching pursuit encoder to build a feature hierarchy
layer by layer, rather than relying on hand-crafted features.
HMP has proven to be on par with state of the art for object
recognition, scene recognition, and static event recognition.
In this work, we explore whether it can be extended to dy-
namic classification problems.

4.2 Gesture Classification
Once the user’s hands and the objects on the table are ex-
tracted for the complete video sequence, we try to determine
for each object whether the user is gesturing to that object
in a way meant to indicate it. This task turns out to be quite
complex, due to the substantial variability in how people use
deictic gesture (Clark 2005); Fig. 4 shows some examples.

Figure 4: Examples of unscripted gesture and language. (a) A cir-
cular pointing motion looping around the objects; (b) pointing with
multiple fingers and both hands; (c) an open-handed sweep above
objects. (d) gives examples of collected language for the two sce-
narios shown. The grammatical errors are typical of speech.

For temporal reasoning, we adapt the HMP architecture,
which performs pooling over the temporal sequence of the
gesture, rather than the 2D grid of an image as in (Bo, Ren,
and Fox 2011). The key novelty is in introducing a binary
encoding that maintains important scale information. As de-
scribed above, for each object, we extract a sequence of spa-
tial features from the video: the distance of the hand’s lead-
ing edge from that object, and the hand’s direction relative
to the centers of objects in x, y, and z, giving a four dimen-
sional vector at each timestep. Rather than applying a clas-
sifier directly to this sequence, we use sparse coding, which
has become a popular tool in several fields, including sig-
nal processing and object recognition (Yang et al. 2009) – to



learn rich features that are more suitable for the classifica-
tion task.

Sparse coding is an approach to finding rich representa-
tions of an input signal Y ; from unlabeled input data, func-
tions are discovered that capture higher-level features in the
data, making it unnecessary to manually model those fea-
tures. More specifically, sparse coding models data as sparse
linear combinations of codewords selected from a codebook
D, which is trained using the efficient dictionary learning al-
gorithm K-SVD. The key idea is to learn the codebook: a set
of vectors, or codewords. Data can then be represented by a
sparse, linear combination of these codebook entries.

Since our gesture recognition task entails time-series data
of no fixed length, we operate over the collection of four-
dimensional vectors from the entire time-series T , the se-
quence of frames in which a person was gesturing. Here, we
use the efficient dictionary learning algorithm K-SVD and
orthogonal matching pursuit to build high-level features.

K-SVD finds the codebook D = [d1, · · · , dM ] ∈ RH×M

and the associated sparse codes X = [x1, · · · , xN ] ∈
RM×N from a matrix Y = [y1, · · · , yN ] ∈ RH×N of ob-
served data by minimizing the reconstruction error:

min
D,X
‖Y −DX‖2F (1)

s.t. ∀m, ‖dm‖2 = 1 and ∀n, ‖xn‖0 ≤ K

where H , M , and N are the dimensionality of codewords,
the size of codebook, and the number of training samples,
respectively. ‖ · ‖F denotes the Frobenius norm, while the
zero-norm ‖ · ‖0 counts non-zero entries in the sparse codes
xn. K is the sparsity level controlling the number of non-
zero entries.

Classic K-SVD normalizes theL2 norm of each codeword
to be 1, so learned codebooks don’t capture magnitude in-
formation of input data. This is a useful property for im-
age recognition, as spatial pooling and contrast normaliza-
tion over sparse codes can generate features robust to light-
ing condition changes (Bo, Ren, and Fox 2011). However,
magnitude information is critical for gesture recognition. To
allow codewords to encode magnitude information, we re-
move normalization constraints and limit sparse codes to be
binary values:

min
D,X
‖Y −DX‖2F (2)

s.t. ∀n, xn ∈ {0, 1}M and ‖xn‖0 ≤ K

We design a K-SVD-like algorithm to decompose the above
optimization problem into two subproblems, encoding and
codebook updating, which are solved in an alternating man-
ner. ENCODING: At each iteration, the current codebook D
is used to encode the data input Y by computing the sparse
code matrix X , using matching pursuit (Mallat and Zhang
1993). UPDATE: Then, the codewords of the codebook are
updated one at a time by gradient descent optimization, giv-
ing a new codebook. The new codebook is used in the next
iteration to recompute the sparse code matrix followed by
another round of codebook updating, repeated to maximum
iterations.

With the learned codebook, we are able to generate fea-
tures representing the whole gesture sequence. Since a ges-
ture that points to a specific object could occur in any
timestep, we perform temporal max-pooling by maximizing
each component of binary sparse codes of the four dimen-
sional vectors over all timesteps, thereby generating features
robust to temporal changes:

fG =

[
max
j∈T
|xj1|, · · · ,max

j∈T
|xjM |

]
(3)

We run logistic regression over these features to train a clas-
sifier, which can be run over a new video sequence of ges-
tures and objects. For each object o, this classifier gives ho,
the probability that object o is being gestured to:

P (ho|ΘP ) =
eΘ

P
g

1 + eΘ
P
g

(4)

where ΘP
g are the parameters in ΘP for the gesture classifier.

4.3 Color and Shape Classification
Our goal is to determine what attributes each object in a
scene has. More formally, for each color and shape present in
our corpus, we want to return a probability that each object
has that attribute. We let C and S be sets of discrete symbols
which denote known colors and shapes, respectively:
C = {blue,green,red,yellow}
S = {arch,ball,cube,cylinder,rectangle,triangle,other}
Because the focus of this work is on how gesture can be

interpreted and used with language, we use a simple set of
attributes; however, note that we are using a lower resolu-
tion RGB-D camera and trying to learn classifiers that cor-
respond to noisy language (for example, an apple, a potato,
and a pepper all referred to as “round”). Any classifier could
be used in the same framework, and we intend to incorpo-
rate additional classifiers. We also make the assumption that
the objects we are working with are separated on a planar
surface detectable using RANSAC.

To perform attribute classification, we use a similar
method to the work described in classifying gestures, with-
out temporal extensions. At a high level, the goal is to find
a set of higher-level features from the raw camera inputs,
which give good predictive power for our attributes. This
means training a binary classifier for each attribute. On each
object, we extract HMP features, and the training inputs Y
are tiled sub-squares of the images.

Here, spatial max pooling instead of our temporal max
pooling is applied with the learned codebooks to aggregate
the sparse codes. These features, drawn from the training
scenes in our corpus, are used to train binary classifiers for
each attribute. Fig. 5 gives example inputs and outputs.

We apply K-SVD as described in Sec. 4.2 to learn fea-
tures for RGB-D images. Input data are now collections
of 8×8×3 image patches and 8×8×1 depth patches, rather
than four-dimensional distance vectors.

An object image is tiled into into cells, and the features of
each cellE are the max pooled sparse codes, the component-
wise maxima over all sparse codes within a cell:

fI(E) =

[
max
j∈E
|xj1|, · · · ,max

j∈E
|xjM |

]
(5)



Figure 5: Data for one object in a scene. (a) and (b) show the RGB
and depth signal from the camera; (c) is the spoken description. (d)
gives the output of the visual shape and color classifiers.

Here, j ranges over all entries in the cell, and xjm is the
m-th component of the sparse code vector xj of entry j.
The feature fI describing an image I is the concatenation of
aggregated sparse codes in each spatial cell:

fI =
[
F (E1), · · · , F (EP )

]
(6)

whereEp is a spatial cell generated by spatial partitions, and
P is the total number of spatial cells.

Once these features are calculated, they are again used
to train standard logistic regression classifiers for each at-
tribute, which give probabilities for whether an object pos-
sesses each attribute. The outputs of individual classifiers are
denoted V ∈ R, where vo,c, c ∈ C and vo,s, s ∈ S are the
outputs of appropriate color or shape classifiers for object o.

4.4 Language Model
At a high level, the goal of the language analysis step is to
determine, for each object in a scene, whether the user is in-
dicating that object. Intuitively, the likelihood ro of an object
o having been “referred to” depends on whether it has at-
tributes the user mentions. The inputs for the language clas-
sifier are the language L, containing the user’s description of
the scene, plus the output of the attribute classifiers (for ex-
ample, if L = “The blue one” and vo1,blue has a high value,
ro1 should be high).

ro = P (o|vi∈{C,S},o, L) (7)

In keeping with the goal of allowing free-form user input,
the system does not use a priori information about what
words correspond to what attributes; instead, such corre-
spondences are learned from training data. This allows the
system to learn interpretations of unexpected words, such as
the use of “parcel” to describe cube-shaped blocks (Fig. 6).
From the language L for all training scenes, we first extract
a bag-of-words feature vector from W , the set of all words
found in the corpus. (While this relatively simple language
model introduces some errors, in general it works well for
this data set, per the failure analysis in Sec. 5; in future we
will extend it to a more complex model.) Each word w ∈W
is a boolean feature lw ∈ {1, 0}, whose value is its pres-
ence or absence in L; these features are analogous to the
unordered codewords used for visual analysis. The scene de-
scription L can then be represented as a vector of these fea-
tures. These word features are then combined with the out-
put of the visual classifiers for each object (in practice, this

Figure 6: An image taken during data collection with examples of
language used to describe the scene. We learn to connect words
such as “cuboid” with appropriate classifiers.

is performed by training the language model using logistic
regression with a polynomial kernel), to produce features for
the pairwise co-occurrence of words and attributes:

γo =
[
lw1 × vo,i1, . . . , lw|W | × vo,i|{C,S}|

]
,

w ∈W, i ∈ {C, S}
(8)

Intuitively, this means that features encoding “good” corre-
spondences will have high values when found with positive
examples in the training data (e.g., 〈l“bridge” × vo,arch〉 in
Fig. 5), and can be weighted up accordingly.

We take the language L from each scene as a positive ex-
amplar for attributes of all positive objects. This introduces
noise into the training data (for example, the first description
in Fig. 6 might cause the classifier to learn a low value for
the feature 〈l“cuboid” × vo,cube〉, since there are no words
describing shape), but avoids hand-labeling of the spoken
language, in line with the long-term goal of having users
train a robot without expert assistance.

4.5 Integration
Given a combination of language, visual attributes, and ges-
ture, the object selection task is to automatically map a natu-
ral language scene description L, a (possible) gesture h, and
a set of scene objects to the subset of objects G indicated
by L and h, that is, P (G | L, h). Rather than considering
object subsets explicitly, we have factored this directly into
individual classifications over objects.

A user may choose to use only gesture or only language;
to avoid penalizing single-mode interactions, we use a small
minimum value when the language or gesture signal is be-
low some threshold ε, yielding the modified language and
gesture scores of r′o and h′o. If there’s no gesture present,
ε may be interpreted as some kind of prior probability over
whether an arbitrary object is being referred to or not. Exper-
imentally, ε = 0.2 worked well. The final score is then read-
ily obtained by summing language and gesture to produce a
final score ko, the probability that object o is being indicated.
This approach works well for our data; the fact that the addi-
tive combination of language and gesture causes the higher
value to dominate is desirable. People can use language or
gesture alone, so “not pointing at something” does not imply
excluding it from the indicated set. It is likely that other in-
tegration approaches will improve performance further, and
it is an important direction for our future work.



5 Evaluation
Our corpus consists of data collected with 13 participants,
each describing 28 scenes, yielding 364 language/video
pairs. Testing was performed on a held-out set of 20% of
these pairs, containing a total of 520 objects. Additional test-
ing was performed by asking 5 new participants to each in-
struct the robot to perform tasks on 5 scenes (Sec. 5.5). In
these trials, we use the participants’ speech and gesture to
label objects, and no additional training of the robot is per-
formed.

5.1 Per-Object Accuracy

In this evaluation, objects are evaluated independently. To
determine whether an object is being indicated, a cutoff is
applied to the object score ko, gesture score h′o, or lan-
guage+attribute score ro; an object is positive (indicated) if
its score is above the cutoff. This allows us to produce a
precision/recall curve for the task (Fig. 7). As expected, the
combination of gesture and language outperforms either.

Figure 7: Precision (y-axis) and recall (x-axis), obtained from vary-
ing the cutoff above which object o is positive. The cutoff is ap-
plied to r′o (for language+vision, red), h′

o (gesture only, blue), or
ko, which combines language and gesture (purple).

The system achieves a peak F1 score of 80.7%. As the cut-
off increases, the system increasingly returns only correct
objects, but misses more objects as well; depending on the
context, different trade-offs of such false positives vs. false
negatives might be appropriate.

5.2 Scene-Based Accuracy

In scene-based accuracy analysis, we again use object scores
to determine whether objects are indicated, but treat a trial as
a success only if all objects in the scene are correctly clas-
sified as positive or negative. This metric is strictly more
difficult than the per-object analysis. At a naı̈ve score cutoff
of 0.5, our system performs perfectly on 53.9% of scenes;
when the cutoff is tuned to best performance, which can be
done using training data, the success rate rises to 57.9%. (For
comparison, if the robot randomly selected some number of
blocks, success would average 2.2%.)

5.3 Evaluation of Feasibility
Human evaluators were asked to perform the same task in or-
der to test how well our corpus supports the task. Evaluators
were asked to decide what objects are being indicated from a
(silent) video, the transcribed language, or both. Each scene
was shown to three evaluators; a successful trial is one in
which all objects in a scene were identified correctly (scene-
based). In cases of disagreement, we also calculate consen-
sus majority-vote agreement (2 of 3) and test success of the
consensus opinion. Results are shown in Table 1.

Inter-annotator Success
agreement Rate

Vision+Language 0.799 0.866
Individual Gesture Only 0.780 0.803

Given Both 0.747 0.873
Vision+Language 0.961 0.888

Consensus Gesture Only 0.964 0.830
Given Both 0.967 0.926

Table 1: A trial is a “success” when all objects in a scene are la-
beled accurately. “Inter-annotator agreement” is percentage of tri-
als where at least 2 testers agreed; in the “consensus” case, we test
using these agreed-upon values. (top) Accuracy and inter-evaluator
agreement across all evaluators; (bottom) accuracy of majority-
voting results. When all three evaluators disagree, there is no con-
sensus test.

5.4 Gesture Classification and Novel Features
We evaluated different approaches to determining which ob-
jects a person is gesturing to. As a baseline, we use simple
closest-approach and closest leading-edge approach (as de-
scribed in Sec. 4.1), and consider any object below a cer-
tain distance threshold to be “indicated”. For a slightly less
naı̈ve baseline, we trained a logistic regression classifier over
the minimum of the 4D leading-edge distances, computed
over an entire interaction, for each object. This leading-edge
distance performs better than simple distance-to-object, as
when someone points to a block on the far edge of an ar-
rangement, some part of the hand may be quite close to
blocks nearer the speaker (see Fig. 9).

Figure 8: Orange lines show closest-approach distance to each ob-
ject, while blue lines give leading-edge distance, demonstrating a
common failure case; the green cylinder is the target.

We compare our novel hierarchical matching pursuit fea-
tures against these baselines, using a logistic regression clas-
sifier. Fig. 9 shows precision/recall for all approaches.
Our high-dimensional hierarchical matching pursuit features
provide significantly better results than the simple leading-
edge vector. The difference is particularly striking in areas
with high recall. For instance, our approach achieves 91%
and 65% precision at 80% and 90% recall, whereas logistic



Figure 9: Precision (y-axis) and recall (x-axis) showing perfor-
mance of different baselines. Yellow and green use the closest-
approach distance and closest leading-edge distance, respectively.
The red line shows the performance of a logistic regression clas-
sifier trained using traditional sparse codewords learned from the
collection of four-dimensional vectors from the series, and the blue
line uses our novel binary-value sparse codes.

regression over the closest approach only reaches 63% and
34% precision for the same recall values, respectively. This
is due to the fact that people tend to move their hands in
complex patterns, often moving closely over objects they do
not want to indicate. While minimal distance is not able to
capture such complex relationships, our HMP features are
rich enough to provide good classification results.

5.5 Evaluation of Prototype System
We have implemented a prototype of a system on the Gam-
bit manipulator platform (Matuszek et al. 2012a), using the
models of language and gesture described above to iden-
tify and interact with objects being indicated by a user. Au-
tomatic speech recognition is performed using the Google
Speech API. We conducted an initial, small evaluation of the
system by asking five new participants to describe objects
they would like the robot to put away in a bin. Even though
many elements of the system (camera placement, specific
objects, user) are different from the training data, the system
does reasonably well. We report on the per-object accuracy
of our results in Table 2.

Lang+attr Gesture Combined
user P R F P R F P R F

1 0.91 0.71 0.8 0.91 0.83 0.87 0.83 1.0 0.91
2 0.91 0.91 0.91 1.0 0.91 0.95 0.91 1.0 0.91
3 0.83 0.71 0.77 0.91 0.77 0.83 0.71 1.0 0.83
4 0.71 0.91 0.8 0.91 0.91 0.91 0.67 0.91 0.77
5 0.77 0.59 0.67 1.0 0.5 0.67 0.71 0.59 0.64

mean 0.83 0.77 0.8 0.95 0.75 0.84 0.79 0.9 0.84

Table 2: We report on performance for each participant across 5
scenes, containing 22 objects. Precision and recall are reported for
each source of instruction and for the combined results.

The overall precision and recall of the combined system are
79% and 90%, overall consistent with results from testing

our classification models. Results vary substantially by par-
ticipant, reinforcing the belief that additional training by in-
dividual end users may be beneficial. In this trial, the combi-
nation of modalities is competitive, but not a clear improve-
ment, which we believe to be a result of the weak language
signal. The largest sources of errors in language interpreta-
tion were failures of voice recognition (46%), followed by
overfitting to the training data resulting in poor shape classi-
fication (25%). The largest source of error in gesture (43%)
was gestures made too far back from the robot, outside the
expected workspace, which we will address by widening the
robot’s field of view and providing more transparency to the
user regarding the robot’s perceptions and state.

6 Discussion & Future Work
We have described steps towards a robotic system that
can learn, from examples, how users indicate objects using
speech and gesture. Using a corpus of gesture and speech
collected from untutored users, we train models that perform
well, and we demonstrate that combining modalities of in-
teraction results in more robust interpretation of human in-
tent than either approach alone. We have constructed a pro-
totype system which demonstrates the feasibility of apply-
ing the learned models to a system which performs simple
tasks. In addition, we present results on several different ap-
proaches to identifying the target of unconstrained gesture,
and demonstrate that our novel temporal HMP features can
handle this complex problem.

In future, we intend to perform larger scale user studies
on this system in order to quantify both how successfully the
system can understand object indications and how well it can
learn new concepts from on-the-fly interaction. Additionally,
we intend to incorporate the more complex language model
of (FitzGerald, Artzi, and Zettlemoyer 2013), which will im-
prove our performance on understanding language, and the
HMP-based object-recognition classifiers of (Sun, Bo, and
Fox 2013), allowing us to extend our work to a richer set of
objects in the world.
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