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ABSTRACT Septation in filamentous fungi is a normal part of development, which
involves the formation of cross-hyphal bulkheads, typically containing pores, allowing
cytoplasmic streaming between compartments. Based on previous findings regarding
septa and cell wall stress, we hypothesized that septa are critical for survival during cell
wall stress. To test this hypothesis, we used known Aspergillus nidulans septation-deficient
mutants (DsepH, Dbud3, Dbud4, and Drho4) and six antifungal compounds. Three of these
compounds (micafungin, Congo red, and calcofluor white) are known cell wall stressors
which activate the cell wall integrity signaling pathway (CWIS), while the three others
(cycloheximide, miconazole, and 2,3-butanedione monoxime) perturb specific cellular
processes not explicitly related to the cell wall. Our results show that deficiencies in sep-
tation lead to fungi which are more susceptible to cell wall-perturbing compounds but
are no more susceptible to other antifungal compounds than a control. This implies
that septa play a critical role in surviving cell wall stress.

IMPORTANCE The ability to compartmentalize potentially lethal damage via septation
appears to provide filamentous fungi with a facile means to tolerate diverse forms of stress.
However, it remains unknown whether this mechanism is deployed in response to all forms
of stress or is limited to specific perturbations. Our results support the latter possibility by
showing that presence of septa promotes survival in response to cell wall damage but
plays no apparent role in coping with other unrelated forms of stress. Given that cell
wall damage is a primary effect caused by exposure to the echinocandin class of antifungal
agents, our results emphasize the important role that septa might play in enabling resist-
ance to these drugs. Accordingly, the inhibition of septum formation could conceivably
represent an attractive approach to potentiating the effects of echinocandins and mitigating
resistance in human fungal pathogens.

KEYWORDS Aspergillus nidulans, septation, fungal cell wall, antifungal

Septation in filamentous fungi involves the construction of cross-wall bulkheads along
the hyphae during normal growth (1), is analogous to animal cell cytokinesis (2), and

is closely coordinated with the completion of mitosis (2). Septa are composed of materials
similar to those found in the fungal cell wall (e.g., chitin, b-1,3-glucan, and a glucan-peptide-
galactosamine layer [3]) and typically have a central pore (allowing the exchange of mole-
cules/organelles between compartments) which can be plugged during stress to compart-
mentalize, and therefore mitigate, damage (4, 5). Previous studies in Aspergillus fumigatus (6)
and Candida albicans (7) show that the presence of septa increases cell viability during expo-
sure to cell wall-damaging compounds. Consistent with this, we and others have recently
found increased septation as a response to micafungin (a cell wall-damaging echinocandin)
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exposure (8–10). Specifically, we found that cells treated with micafungin formed more septa
per hyphal unit area compared to a control. In contrast, anecdotal observations in our lab
have not revealed a similar increase in septation when fungi are exposed to other stress
agents. These findings led us to hypothesize that septa are required for survival during var-
ious kinds of cell wall stress but may not be necessary for surviving other, non-wall-related,
stresses.

To test this hypothesis, we used four previously described septation-deficient deletion
mutants: DsepH, Dbud3, Dbud4, and Drho4. The Aspergillus nidulans SepH, Bud3, Bud4, and
Rho4 proteins have all previously been shown to be required for the formation of septa
through different cellular mechanisms (11–13). To elicit cellular stress, we used three antifun-
gal compounds known to activate the cell wall integrity signaling (CWIS) pathway by induc-
ing cell wall stress (14), including calcofluor white (15–17), Congo red (14, 15), and micafun-
gin (18). We also tested three non-cell wall stressors, including 2,3-butanedione monoxime
(19), cycloheximide (20), and miconazole (21).

We used the four septation-deficient deletion mutants effectively as “cellular sen-
sors” to examine the importance of septa for the survival of fungi exposed to cell wall-
related, and -unrelated, stressors. Our results imply that septa are required for survival
in the three cell wall stressors tested but are dispensable for survival in the three non-
cell wall stressors tested. These results support our hypothesis and demonstrate the
potential utility of antifungal therapies which target both septation and the cell wall
simultaneously.

To confirm that previously published deletion mutants demonstrated deficient septation
during unstressed growth, we captured 30 images of each strain after 16 h growth in a com-
plex medium (YGV, Fig. S1). While the control strain developed multiple septa, none of the de-
letion mutants contained any septa. This is consistent with previous findings (11, 12, 22) docu-
menting the absence of septa in these mutants.

To determine a suitable (i.e., “critical”) concentration of each stressor for testing septation-
deficient mutants, we developed a dose-response curve for the control strain with each of
the six stressors. Figure 1 shows the dose-response curve for calcofluor white; the others are
shown in the supplemental material. Data exceeding 100% at low concentrations of calco-
fluor white are not statistically significant. The critical concentration is defined as the stressor
concentration above which survival is ,80%. We found the critical concentrations of calco-
fluor white, Congo red, and micafungin to be 100 mg/mL, 500 mg/mL, and 0.007 mg/mL,
respectively, while the critical concentrations of cycloheximide, miconazole, and 2,3-butane-
dione monoxime were 200mg/mL, 4.2mg/mL, and 1.52 mg/mL, respectively.

We tested the control strain and each of the four septation-deficient strains (i.e., Dbud3,
Dbud4, Drho4, and DsepH) with each of the six stressors at the determined critical concentra-
tions. Figure 2 shows the results. For non-cell wall stressors (Fig. 2A to C), only two cases (i.e.,
Dbud4 and DsepH with miconazole) showed a significant decrease in survival. In contrast,
with cell wall stressors (Fig. 2D to F), the septation-deficient mutants grew significantly less

FIG 1 Dose-response curve for calcofluor white. One hundred fresh spores of the control strain were
grown on (MAGV1UU) plates with increasing concentrations of calcofluor white. The critical
concentration (dotted line) was determined to be 100 mg/mL; below this level, there was little impact on
the cell survival (i.e., .80% survival). Three biological replicates were conducted at each concentration.
The error bars represent the standard error.
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than the control in nearly all cases. The only exception was growth of the DsepH mutant in
the presence of Congo red. While it is unclear why this mutant grew under these conditions,
a possible explanation is that Congo red induced the activation of an alternate stress path-
way able to compensate for the absence of SepH. Overall, however, our results are generally
similar for all four mutants, implying that septa are required for survival of various wall
stresses but dispensable for the three alternate stressors tested.

Our results agree with previous studies regarding stress from echinocandins (6, 8) but
broaden the scope of previous findings in three important ways: First, we used four, unique,
septation-deficient mutants, suggesting the general importance of septa as key factors in
cellular response to wall stress. Second, we used three wall stressors, each with a different
mechanism of action, broadening the scope of previous findings beyond echinocandins.
Finally, using two different categories of stressors (i.e., cell wall and non-cell wall related) sug-
gests a critical role for septa in responding to wall stress and the relative dispensability of
septa in responding to the non-cell wall stresses.

Echinocandin resistance is a growing problem in the treatment of fungal infections,
resulting in increased MICs (23). This work implies that antifungal therapies which simultane-
ously target septation and cell wall synthesis have the potential to be more effective than
therapies targeting cell wall synthesis alone. While the current septation-inhibiting com-
pounds are toxic at the required doses in humans (6), there is an opportunity to explore
novel ways to inhibit septation, thus allowing us to combine septation inhibition with cell
wall perturbation to create highly effective combination therapies.

To carry out the work described above, the control (A1405) and DsepH (22) strains
were obtained from the FGSC (Fungal Genetics Stock Center). The deletion strains
Dbud3, Drho4, and Dbud4 have been described previously (11–13). To make the
plates and liquid medium, stressors were added to MAGV and YGV, respectively (8),
with 0.122% uridine and 0.122% uracil added (i.e., MAGV+UU; YGV+UU). The stressors
included calcofluor white (Millipore Sigma), miconazole (Toronto Research Chemicals),
Congo red (Millipore Sigma), micafungin (Myonex), 2,3-butanedione monoxime (Millipore
Sigma), and cycloheximide (Fisher Scientific).

FIG 2 Susceptibility of A. nidulans to stressors. One hundred fresh spores of the control and septation-
deficient mutants (Dbud3, Dbud4, Drho4, and DsepH) were grown on plates with, and without, a critical
concentration of the indicated stress compounds. The number of colonies was counted on all plates, for
three biological replicates. In the presence of non-cell wall stressors (A–C), nearly all septation-deficient
mutants grew similarly to the control (*, P , 0.05). In contrast, cell wall-related stressors (D–F) led to a
significant reduction in the growth of the septation-deficient mutants (**, P , 0.01).

A. nidulans Septa Critical for Surviving Wall Stress

Volume 10 Issue 1 e02063-21 MicrobiolSpectrum.asm.org 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

07
 M

ar
ch

 2
02

2 
by

 1
30

.8
5.

19
4.

15
0.

https://www.MicrobiolSpectrum.asm.org


To assess the degree of septation, all strains were grown on coverslips at 28°C (24).
After growing for 16 h, the slides were removed. At least 30 images were captured, with at
least one mycelium per picture, with three biological replicates per strain.

The “critical concentration” is defined as the stressor dose above which ,80% viability
was observed in the control strain; at higher doses, there was a visible decrease in survival.
This is the highest dose that does not meaningfully affect the control; therefore, the impact
on the deletion mutants at the same dose would be maximized. Deletions in a gene that is
likely important in mediating the response to a stressor should show significantly decreased
growth at this concentration. Critical concentrations were determined by creating dose-
response curves for the control strain with each stressor.

To test the mutant susceptibility to stress, all strains were grown on agar plates with the
stressors listed above at the determined critical concentrations. Fresh spores were harvested
fromMAGV1UU plates, diluted in sterile water to 1 spore/mL, and 100mL of the spore suspen-
sion was spread onto both the control (MAGV1UU) and experimental (MAGV1UU1stressor)
plates, with 3 biological replicates of each. The plates were grown at 28°C, and the number of
colonies was counted after 3 days. The average number of colonies on the experimental plates
was normalized to the average number of colonies on the control plates for each deletion mu-
tant. Furthermore, the percent survival was calculated by dividing the average number of colo-
nies on the experimental plates by the average number of colonies on the control plates. The
statistical significance was determined using a Student’s t test to compare the average percent
survival of each deletion mutant to the average percent survival of the control strain (n = 3).
The results were considered significant when P, 0.05 or P, 0.01.
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Figure S1. Representative fluorescent images of strains used in this work. All hyphae grown 
adhered to cover slips, in complex growth medium (YGV+UU), for 16h, and stained with 
Calcofluor white. Black arrows indicate septa, white arrows indicate spore centers. For each 
strain, 30 images were captured and hyphae shown are representative. Control strain shows 
normal A. nidulans septation. In contrast, none of the deletion strains contain any septa. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
Figure S2. Dose response curve for congo red. One hundred fresh spores of the control strain 
were plated on MAGV+UU plates with increasing concentrations of congo red (0-3000 µg/mL) 
in order to find the “critical concentration” below which there is no impact on cell survival. 
Error bars represent standard error. 
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Figure S3. Dose response curve for micafungin. One hundred fresh spores of the control strain 
were plated on MAGV+UU plates with increasing concentrations of micafungin (0-0.1 µg/mL) in 
order to find the “critical concentration” below which there is no impact on cell survival. Error 
bars represent standard error. 
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Figure S4. Dose response curve for 2,3-butanedione Monoxime. One hundred fresh spores of 
the control strain were plated on MAGV+UU plates with increasing concentrations of 2,3-
butanedione monoxime (0-15 mM) in order to find the “critical concentration” below which 
there is no impact on cell survival. Error bars represent standard error. 
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Figure S5. Dose response curve for miconazole. One hundred fresh spores of the control strain 
were plated on MAGV+UU plates with increasing concentrations of miconazole (0-10µM) in 
order to find the “critical concentration” below which there is no impact on cell survival. Error 
bars represent standard error. 
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Figure S6. Dose response curve for cycloheximide. One hundred fresh spores of the control 
strain were plated on MAGV+UU plates with increasing concentrations of cycloheximide (0-
300µg/mL) in order to find the “critical concentration” below which there is no impact on cell 
survival. Error bars represent standard error. 
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