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1 Abstract

Background. Glaucoma is a chronic progressive optic neuropathy with characteristic visual field defects and
corresponding structural changes, including nerve fiber layer thinning and optic nerve neuroretinal rim loss.
These changes are traditionally monitored by SD-OCT (Spectral Domain Optical Coherence Tomography),
which contains a large amount of 3D voxel information in a 6mm × 6mm × 2mm cube of data. However,
only a fixed 3.4 mm diameter circle (2D slice) centered over the optic nerve is currently extracted using
automated segmentation of the retinal nerve fiber layer thickness (RNFL). This RNFL thickness is reported
relative to a normative database to help detect thinning and neuroretinal rim loss, which does not use
the additional information in the optic nerve head cube. Clinicians rarely scroll through the entire cube.
Therefore we propose developing and validating a three-dimensional (3D) deep learning system using the
entire unprocessed OCT optic nerve volumes to distinguish true glaucoma from normals in order to discover
any additional imaging biomarkers within the cube through saliency mapping. The algorithm has been
validated against 4 additional distinct datasets from different countries using multimodal test results to
define glaucoma rather than just the OCT alone. We hypothesize that the output from this 3D model,
alongside a map of the regions where the model attends to make a prediction, can help identify novel
diagnostic information in the cube.
Methods. 2076 OCT (Cirrus SD-OCT, Carl Zeiss Meditec, Dublin, CA) 6 mm cubes centered over the
optic nerve, 200 × 200 × 1024 volumes of 879 eyes (390 healthy and 489 glaucoma) from 487 patients, age
18-84 years, were exported from the Glaucoma Clinic Imaging Database at the Byers Eye Institute, Stanford
University, from March 2010 to December 2017. This included bilateral eyes of 391 patients and unilateral
eyes of 97 patients with a right eye to left eye ratio of 1.05:1. A 3D deep neural network was trained and tested
on this unique OCT optic nerve head dataset from Stanford. 570 randomly selected optic nerve head cube
scans of eyes with a diagnosis of glaucoma (True Glaucoma) and 342 scans of eyes with a normal diagnosis
(True Normal) were used for training. A total of 81 scans of eyes with True Glaucoma and 32 scans of
eyes with True Normal annotations were included in the primary validation set. 58 scans of eyes with True
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Glaucoma annotation and 50 scans of eyes with a True Normal annotation were included in the test set. A
total of 3620 scans (all obtained using the Cirrus SD-OCT device) from 1458 eyes obtained from 4 different
institutions, from United States (943 scans), Hong Kong (1625 scans), India (672 scans), and Nepal (380
scans) were used for external evaluation. True Glaucoma for the training data was defined as glaucomatous
disc changes along with defects on SD-OCT RNFL and/or GCIPL (thickness and/or deviation) maps with
corresponding visual field defects as well as intraocular pressure lowering treatment upon chart review. The
range of glaucoma patients included mild to severe without excluding high myopes. True normal was defined
as cases with non-glaucomatous optic disc with no structural defects on OCT RNFL/GCIPL deviation or
sector maps and normal visual fields upon chart review.
Results. The 3D deep learning system achieved an area under the receiver operation characteristics curve
(AUROC) of 0.8883 in the primary Stanford test set identifying true normal from true glaucoma. The
system obtained AUROCs of 0.8571, 0.7695, 0.8706, and 0.7965 on OCT cubes from United States, Hong
Kong, India, and Nepal, respectively. We also analyzed the performance of the model separately for each
myopia severity level as defined by spherical equivalent and the model was able to achieve F1 scores of 0.9673,
0.9491, and 0.8528 on severe, moderate, and mild myopia cases, respectively. Saliency map visualizations
highlighted a significant association between the optic nerve lamina cribrosa region in the glaucoma group.
Conclusions. A 3D convolutional neural network using SD-OCT optic nerve head cubes can distinguish
true glaucoma from normal with good accuracy and this generalized to multiple diverse external SD-OCT
datasets. Highlighted areas from saliency mapping revealed new areas within the deep lamina cribrosa. This
deserves further investigation, as there is potential to monitor laminar changes even after RNFL has thinned.

2 Introduction

Glaucoma is a chronic degenerative disease that eventually leads to optic nerve damage and is one of the
leading causes of blindness worldwide[1, 2]. Currently, the main modifiable risk factor is elevated intraocular
pressure (IOP), which, in combination with structural and functioning longitudinal imaging, is used as one
of the main diagnostic parameters. Spectral Domain Optical Coherence Tomography (SD-OCT) provides
high-resolution cross-sectional imaging of the macula and optic nerve head, which is powerful for detecting
the presence of glaucoma as well as glaucoma progression. OCTs operate on the principle of laser constructive
and destructive interferometry, so they are similar to ultrasound reflectivity, except using light instead of
sound. Glaucomatous structural changes include RNFL and ganglion cell inner plexiform layer (GCIPL)
thinning, but norms need to be age adjusted and refractive error adjusted, and patients need to be compared
to themselves over time. It is also known that glaucoma damage extends deep into the optic nerve head at
the level of the lamina cribrosa (LC), a network of columns supporting the neuronal axon connections as
they traverse from the surface of the retina to the visual cortex of the brain (see Figure 1) [3]. However,
only qualitative enhanced depth imaging EDI SD-OCT protocols have been able to visualize these changes
in the past. Based on current understanding of high pressure induced glaucoma, biomechanical deformation
and remodeling of the ONH leads to posterior displacement of the lamina cribrosa relative to the sclera as
well as progressive loss of ganglion cell axons and cell bodies, resulting in RNFL thinning [3]. Thus it seems
reasonable to hypothesize that there is additional information in a standard SD-OCT optic nerve head cube
which currently is not being tracked, but could be discovered through deep learning pattern recognition as a
differentiator of true glaucoma from normal.

The current OCT ONH output is an RNFL map algorithm (Carl Zeiss Meditec, Inc., Dublin, CA, USA)
representing a 6mm × 6mm × 2mm cube of A-scan data centered over the optic nerve in which a 3.4 mm
diameter circle of RNFL data is extracted to create a TSNIT 2D map (temporal, superior, nasal, inferior,
temporal). Thickness data from the 2D map is displayed as a four color scale referenced to an age-adjusted
normative database. The RNFL and GCIPL parameters in the OCT summary reports are represented by a
white color for those in the hyper-normal range (95th to 100th percentiles), green backgrounds for those in
the normal range (5th to 95th percentiles), yellow backgrounds for those abnormal at the 1st to 5th percentile
level, and red backgrounds for those abnormal at the 1st percentile level [4]. The normative database for
the Cirrus SD-OCT consists of 284 healthy individuals with an age range between 18 and 84 years (mean
age of 46.5 years). Ethnically, 43% were Caucasian, 24% were Asian, 18% were African American, 12% were
Hispanic, 1% were Indian, and 6% were of mixed ethnicity. The refractive error ranged from −12.00 D to
+8.00 D [5]. Due to the relatively small normative database, there are a lot of false positive results from
high myopia disc changes, or thin RNFL due to other non-glaucomatous or artifactual reasons. One of the
difficulties in diagnosing glaucoma is that there is no single test with a high sensitivity and specificity to
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confirm the diagnosis. So, to improve upon the color code labeling of the OCT cubes, we decided to use
multimodal ground truth to provide a more accurate diagnosis, including fundus photo appearance, visual
fields, and clinical history (intraocular pressure and treatment information), to more accurately confirm
true glaucoma. In a typical glaucoma patient evaluation workflow, multiple tests are acquired, similar to
the diagram in Figure 2. This demonstrates the complexity of true glaucoma diagnosis and a lack of single
biomarker currently. In this work, we concentrate on training a 3D neural network which can predict whether
an optic nerve head cube scan belongs to the normal (True Normal) versus glaucoma (True Glaucoma) class
based on better ground truth and and hold out of glaucoma suspects.

3 Data

The study adhered to the tenets of the Declaration of Helsinki, and the protocols were approved by the
respective institutional review boards of Stanford School of Medicine (United States), Chinese University of
Hong Kong (Hong Kong), Narayana Nethralaya Foundation (India), and Tilganga Institute of Ophthalmology
(Nepal). Funding to extract data and store it in a de-identified, encrypted cloud storage was supported by
Santen, Inc and Stanford Global Health Seed Grant by Stanford Center for Innovation in Global Health
(CIGH). Informed consent was waived based on the study’s retrospective design, anonymized dataset of
OCT images and test data, minimal risk, and confidentiality protections.

3D OCT cube (volume) ONH images (Cirrus HD-OCT, Carl Zeiss Meditec, Dublin,CA) of 1741 eyes of
978 patients evaluated at the Byers Eye Institute, Stanford School of Medicine, from March 2010 to December
2017 were exported for the study. Prior to labeling as True Glaucoma versus True Normal, based on chart
review, 749 eyes were excluded due to the presence of other ocular pathologies and 93 eyes were excluded
due to the presence of OCT artifacts or due to signal strength being less than 3, as per exclusion criteria
mentioned below. 20 eyes were excluded after arbitration among 2 glaucoma specialists in which a consensus
of definite glaucoma could not be made from the chart. Finally 879 eyes of 487 patients (2076 scans) were
labelled and used for training, primary validation, primary testing, and external testing from Stanford.

The inclusion criteria were (1) age equal to or older than 18 years old; (2) reliable visual field (VF) tests
(acceptable results defined below); and (3) availability of SD-OCT Optic Disc scans (acceptable scans defined
below). A reliable visual field report is defined as (a) fixation losses less than 33%; (b) false positive rate
less than 25%; (c) false negative rate less than 25%; and (d) no appearance of lid or lens rim artifacts, and
no appearance cloverleaf patterns. SD-OCT scans with signal strength less than 3 or any artifact obscuring
imaging of the ONH, or any artifacts or missing data areas that prevented measuring the thickness of the
RNFL at 3.4 mm diameter, were excluded from the study. Artifacts included blink, motion, registration,
and mirror artifacts. The reason a signal strength of < 6 was included is because the entire cube of data was
being used and not the results from the machine’s segmentation algorithm (which often fails at low signal
strength).

True Glaucoma was defined as those eyes with glaucomatous disc changes [6] on fundus examination,
with localized defects on OCT RNFL/GCIPL deviation or sector maps, that correlated with the VF defect
which fulfilled the minimum definition of Hodapp-Anderson-Parrish (HAP) glaucomatous VF defect and are
on or had intraocular pressure lowering treatment as per chart review [7]. Thus no pre-perimetric glaucoma
were included. True Normal was defined as non-glaucomatous optic disc on fundus exam with no structural
defects on OCT RNFL/GCIPL deviation or sector map and normal visual fields, and normal intraocular
pressures.

Eyes with optic nerve head pathologies, such as non-glaucomatous optic neuropathy, optic nerve head
hypoplasia, or optic nerve pit, and other retinal pathologies such as retinal detachment, age-related macular
degeneration, myopic macular degeneration, macular hole, diabetic retinopathy, and arterial and venous
obstruction were carefully excluded.

3.1 Training, Primary Validation, and Test Sets

The initial dataset was randomly split into three sets for patients. In total, 570 optic nerve scans of 229
eyes from 121 patients with a diagnosis of glaucoma (True Glaucoma) (randomly chosen), and 342 scans of
200 eyes from 112 patients of definitive normal (True Normal) were included in the training set. A total
of 81 scans of 33 eyes from 17 patients with a True Glaucoma annotation, and 32 scans of 22 eyes from 14
patients with a True Normal annotation were included in the primary validation set. Similarly, 157 scans of
54 eyes from 29 patients with a True Glaucoma annotation, and 50 scans of 25 eyes from 14 patients with
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Figure 1: Primer on Optic Nerve Head (ONH) Morphology. (a) Color Fundus Image of the Optic Disc.
(b) Enface OCT image reconstruction of the Optic Nerve Head. Retinal Nerve Fibers converge at the ONH
(known as the optic disc boundary, marked in black in (b)) and then exit the eye as the optic nerve. The
ONH consists of retinal nerve fibers from the Retinal Ganglion Cell axons leading into a central depression
known as the optic cup (boundary marked in red in (b)) and a collagenous structure, known as the Lamina
Cribrosa, which provides physical support to the exiting axon fibers. Neuroretinal Rim is the retinal nerve
fiber tissue between the border of the cup and the disc. Optic disc cupping, characterized by progressive
neuroretinal rim thinning, is a result of an increased ratio between the optic cup and disc, called the vertical
cup-to-disc ratio (c), a classic feature in glaucoma. Lamina Cribrosa forms the bottom of the optic cup on
the inner surface of the ONH.

a True Normal annotation were included in the test set. The split was based on patients, so as to make
sure that scans belonging to each patient are included in only one of the splits. Each OCT scan over the
optic nerve head is a three-dimensional array of size 6mm × 6mm × 2mm divided into a cube of resolution
of 200 × 200 × 1024, with numbers representing the height, width, and depth of the array, respectively. A

4



Patient

Patient history, eye exam, and
multiple diagnostic tests

Most or all abnormal

True Glaucoma

Treatment

Surgery

Some abnormal

Suspect

Monitoring

High-Risk
Suspect

Low-Risk
Suspect

None abnormal

True Normal

P
ro

gr
es

si
on

N
o

p
ro

g
re

ss
io

n

Figure 2: Glaucoma screening procedure diagram.

downsampled version of this three-dimensional array (of size 100 × 100 × 128) is given to the deep neural
network as input and the probability of each of the True Normal or True Glaucoma classes is predicted.
For the dataset from Stanford, two Glaucoma fellowship trained Ophthalmologists (RC and SM) worked
separately to label all the eyes with SD-OCT scans. Images were labeled as per criteria (Table 1) into True
Glaucoma and True Normal. 36 disagreeable cases were reviewed again by both glaucoma specialists to make
the final decision and 20 cases out of the 36 were eliminated based on difficulty determining True Glaucoma.

3.2 External Test Sets

Four datasets were used for external evaluation of the model. The SD-OCTs of all the 4 external datasets
were acquired using Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA, USA) according to the optic disc
cube scanning protocol. Dataset A is composed of 943 additional OCT 3D cube images from the Glaucoma
Clinic at Stanford University that were annotated after the initial set was annotated and used for training,
validation, and primary testing. Of those, 297 OCT 3D cube volumes were from 143 eyes (of 85 patients)
that were labeled as True Normal, and 646 scans of 207 eyes (of 124 patients) were labeled as True Glaucoma.
Dataset B consists of 1625 OCT 3D cube images from Chinese University of Hong Kong, with 666 OCT
3D cubes of 196 eyes (of 99 patients) labeled as True Normal, and 959 OCT 3D cubes of 277 eyes (of 155
patients), labeled as True Glaucoma. Dataset C is composed of 672 OCT 3D cube images of ONH from
Narayana Nethralaya Foundation, India. 211 scans from 147 eyes of 98 patients were labeled as True Normal
and 461 OCT 3D cubes from 171 eyes of 101 patients had a True Glaucoma annotation. Finally, Dataset
D contained 380 OCT 3D cube images of ONH from the Tilganga Institute of Ophthalmology, Nepal. In
this dataset, 158 scans from 143 eyes of 89 patients were labeled as True Normal, and 222 scans from 174
eyes of 109 patients were labeled as True Glaucoma.

For SD-OCT data from Hong Kong (Dataset B), two trained medical students and a postgraduate oph-
thalmology trainee (with more than 3 years’ of experience in glaucoma) did the initial quality control and
then graded the SD-OCT scans into gradable or non-gradable SD-OCT scans, according to the aforemen-
tioned criteria. Two glaucoma specialists then worked separately to label all the eyes with gradable SD-OCT
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Table 1: Criteria used for labelling cases as True Glaucoma and True Normal.

Labels True Glaucoma True Normal

Criteria

• Clinical Glaucomatous Disc changes (as per
ISGEO classification [6]), and

• OCT Glaucomatous defects on deviation
maps and not all green on OCT RNFL
and/or OCT GCIPL maps, and

• 2 repeatable VF defects as per HAP crite-
ria [7]. Reliably measured data were used,
i.e. with a fixation loss < 20%, false posi-
tive errors < 15%, and false negative errors
< 33%, or total cupping of the optic nerve
and unable to perform VF evaluation, and

• On Treatment for Glaucoma or has under-
gone surgery/SLT-ALT.

• No disc changes for glaucoma (few cases
have high cup disc ratio > 0.6 but no other
glaucomatous disc changes), and

• No OCT glaucomatous defects on deviation
maps and all green OCT RNFL and OCT
GCIPL maps, and

• No visual field defects, and

• No treatment/review after a duration no
lesser than a year as per chart review.

Table 2: Demographic background of the training, primary validation, and primary test sets (from Stanford).

True Glaucoma True Normal

Age 69.41 (±14.70) 61.84 (±15.20)
Gender (F:M) 47%:53% 60%:40%
Asian 136 (n) 119 (n)
Caucasian 102 (n) 74 (n)
African American 14 (n) 16 (n)
Hispanic 21 (n) 24 (n)
Data of ethnicity unavailable 10 (n) 14 (n)
Average MD -9.75 (±7.50) -0.79 (±1.20)
Mean Refractive Error -3.57 (±3.37) -2.20 (±2.34)

Table 3: Demographic background of the external test set from Stanford (Dataset A).

True Glaucoma True Normal

Age 69.82 (±16.15) 63.00 (±16.93)
Gender (F:M) 41%:59% 60%:40%
Asian 85 (n) 78 (n)
Caucasian 87 (n) 50 (n)
African American 14 (n) 4 (n)
Hispanic 21 (n) 4 (n)
Data of ethnicity unavailable 0 (n) 0 (n)
Average MD -9.01 (±7.52) -0.79 (±0.98)
Mean Refractive Error -2.64 (±2.86) -1.92 (±2.03)
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Table 4: Demographic background of the external test set from Hong Kong (Dataset B), such as gender
and ethnicity distribution, and mean values (standard deviations) for visual field parameter mean deviation
(MD) and Mean Refractive error.

True Glaucoma True Normal

Age 65.90 (±9.30) 61.05 (±8.50)
Asian 277 (n) 196 (n)
Female:Male 70%:30% No Data
Average MD -8.005 (±6.81) -0.900 (±1.30)
Mean Refractive Error -0.85 (±2.57) -0.51 (±2.15)

Table 5: Demographic background of the external test set from India (Dataset C), such as gender and
ethnicity distribution, and mean values (standard deviations) for visual field parameter mean deviation
(MD) and Mean Refractive error.

True Glaucoma True Normal

Age 63.84 (±11.72) 54.76 (±14.95)
Asian 173 (n) 130 (n)
Female:Male 38%:62% 40%:60%
Average MD -12.74 (±9.22) -2.10 (±1.30)
Mean Refractive Error -0.483 (±2.25) -0.440 (±2.19)

Table 6: Demographic background of the external test set from Nepal (Dataset D), such as gender and
ethnicity distribution, and mean values (standard deviations) for visual field parameter mean deviation
(MD) and Mean Refractive error.

True Glaucoma True Normal

Age 45.34 (±17.08) 39.17 (±12.28)
Asian 184 (n) 173 (n)
Female:Male 44%:56% 31%:69%
Average MD -8.30 (±7.04) -2.32 (±1.47)
Mean Refractive Error -1.38 (±2.38) -1.17 (±1.36)

Table 7: Distribution of cases in terms of Glaucoma severity. Classification based on Mean Deviation (Severe:
MD ≤ −12, Moderate: −12 < MD ≤ −6, Mild: −6 < MD).

Primary (Stanford) Dataset A Dataset B Dataset C Dataset D

Severe Glaucoma 27.20% 28.40% 24.00% 44.80% 21.10%
Moderate Glaucoma 26.80% 18.93% 26.10% 17.20% 22.76%
Mild Glaucoma 45.50% 52.66% 49.70% 37.90% 56.10%
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Table 8: Comparison of myopia severity between the primary test set, and Datasets A, B, C, and D. TG
stands for True Glaucoma and TN stands for True Normal. Chi-squared test was used for severe myopia
distribution analysis (Myopia severity distribution: Severe: D ≤ −6, Moderate: −6 < D ≤ −3, Mild:
−3 < D, where D is diopter).

Subset Severe Myopia
Moderate
Myopia

Mild
Myopia

Emmetropia Hypermetropia

Primary (TG) 11.00% 14.21% 34.80% 8.50% 31.70%
Primary (TN) 4.09% 6.14% 31.57% 8.40% 49.70%
Dataset A (TG) 8.88% (p = 0.70) 8.10% 42.20% 11.11% 20.00%
Dataset A (TN) 4.20% (p = 0.98) 10.08% 31.09% 5.88% 47.89%
Dataset B (TG) 4.70% (p = 0.12) 12.50% 37.50% 5.90% 39.20%
Dataset B (TN) 0.0% (p < 0.001) 21.01% 15.70% 10.50% 47.30%
Dataset C (TG) 0.0% (p < 0.001) 3.94% 43.20% 22.30% 38.10%
Dataset C (TN) 0.0% (p < 0.001) 16.60% 30.30% 15.15% 37.87%
Dataset D (TG) 2.50% (p < 0.001) 14.28% 43.80% 10.70% 25.00%
Dataset D (TN) 0.0% (p < 0.001) 6.38% 53.00% 0.0% 40.40%

Table 9: Comparison of additional clinical data between the primary set and four external evaluation datasets.
The statistical analysis was performed with the Statistical Package for Social Sciences (SPSS) 10.1 (SPSS
Inc., Chicago, IL, USA). Results are expressed as mean (± standard deviation) and paired Student’s t-test
was used to evaluate the level of significance. A p-value of 0.001 or less was considered significant. Chi
square test was used for comparisons of categorical demographic data for proportions. TG stands for True
Glaucoma and TN stands for True Normal.

Subset Cup-Disc Ratio IOP
Gender

Distribution
PSD VFI

Primary (TG)
0.80 (±0.12)
p < 0.001

20.07 (±4.75)

55:45

7.71 (±6.66) 74.4% (p < 0.001)

Primary (TN)
0.46 (±0.16)
(p < 0.001)

15.67 (±2.72) 1.83 (±0.53) 98.46% (p < 0.001)

Dataset A (TG)
0.79 (±0.19)
p = 0.5262

19.56 (±5.47)
p = 0.2739

49:51 (p = 0.2194)

6.37 (±4.46)
p = 0.0413

77.01% (p = 0.6191)

Dataset A (TN)
0.45 (±0.16)
p = 0.4764

16.00 (±2.72)
p = 0.2475

2.12 (±1.07)
p = 0.0413

98.06% (p = 0.7678)

Dataset B (TG) No Data
16.19 (±4.17)
p < 0.001

67:33 (p = 0.0048)

6.44 (±4.21)
p = 0.0076

79.83% (p = 0.5239)

Dataset B (TN) No Data
13.44 (±2.72)
p < 0.0001

1.46 (±0.30)
p = 0.0076

99.61% (p = 0.2346)

Dataset C (TG) No Data No Data

40:60 (p = 0.0031)

7.68 (±3.81)
p = 0.9640

65.38% (p = 0.0331)

Dataset C (TN) No Data No Data
2.54 (±1.39)
p = 0.9640

93.17% (p = 0.0068)

Dataset D (TG) No Data
16.56 (±4.74)
p < 0.001

40:60 (p = 0.0031)

5.37 (±3.30)
p < 0.001

77.00% (p = 0.5791)

Dataset D (TN) No Data
15.68 (±2.90)
p = 0.9701

1.99 (±1.08)
p < 0.001

97.58% (p = 0.5362)
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scans into yes/no glaucoma combined with VF results. In this dataset glaucoma was defined as RNFL defects
on thickness or deviation maps that correlated in position with the VF defect which fulfilled the definition of
glaucomatous VF defects [7]. Most of the images were labelled as yes/no glaucoma when the two graders ar-
rived at the same categorization separately, but a few disagreeable cases were reviewed by a senior Glaucoma
specialist to make the final decision.

For external evaluation set from India (Dataset C) and Nepal (Dataset D), glaucoma specialists each
with experience of more than 10 years in Glaucoma labeled the cases into True Glaucoma and True Normal.
Definitions of True Glaucoma and True Normal in this dataset were similar to those used at Stanford
(Table 1).

4 Method

The deep neural network used in this work is based on the “End-to-End Classification Network” of De Fauw
et al. [8]. This network uses multiple layers of dense convolutional blocks [9] that is applied to 3D volumes
of OCT scans. Each dense convolutional block consists of one 3D spatial convolutional block (Figure 3a)
followed by a 3D depth-wise convolutional block (Figure 3b). Each convolutional block applies a convolutional
operation, followed by normalization and non-linearity to the input, and the output is concatenated to the
input of the convolutional block along the channel dimension.

Input

conv3d(1, 3, 3)

Group Norm

ReLU

;

Output

(B,D,H,W,Ci)

(B,D,H,W,Co)

(B,D,H,W,Ci+Co)

(a) Spatial 3D Convolutional block.

Input

conv3d(3, 1, 1)

Group Norm

ReLU

;

Output

(B,D,H,W,Ci)

(B,D,H,W,Co)

(B,D,H,W,Ci+Co)

(b) Depth-wise 3D convolutional block.

Figure 3: Building blocks of the dense convolutional blocks used in the convolutional neural network.

Different from De Fauw et al. [8], Group Normalization [10] is used instead of Batch Normalization [11].
This modification was necessary, due to the fact that the network could not be trained using Batch Normal-
ization. To increase the amount of effective training data, random flipping and dense elastic deformation was
used as data augmentation during training (see Figure 4). Adam optimizer with weight decay [12] was used
for training. After training, model checkpoint with the best results on the validation set was selected as the
final model.

For saliency visualization, the Grad-CAM method [13] was combined with the Guided Backpropagation
[14] to generate better and more clear visualizations. Gradients of the predicted class were obtained with
respect to the input and the middle layers.

Area under the curve (AUC) and F1 scores have been used to quantify the performance of machine
learning models. The F1 score is a measure of a model’s accuracy and is defined as the weighted harmonic
mean of the model’s precision and recall. In a binary classification model (like the proposed model in this
paper), different discrimination threshold values will result in different values of precision and recall, due to
changing values of true positive, true negative, false positive, and false negative. The Area under the (Receiver
Operating) Curve summarizes the performance of the binary classifier for different values of discrimination
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threshold. AUC is also a measure of the probability of the binary classifier giving a random positive sample
a higher probability of belonging to the positive class compared to a random negative data point [15].

(a) (b)

Figure 4: (a) Original OCT scans. (b) Elastic Deformation applied to the OCT scans. Darker regions are
tissues in the eye that are less transparent against the light beamed to the eye.

5 Results

Demographic background of the combined training, primary validation, primary test sets are presented in
Table 2. The demographic data includes age, gender, and ethnicity distribution, visual field mean deviation
(MD), and mean refractive error as these are parameters known to affect the OCT cube tissue thicknesses
independent of glaucoma. Note that for some patients, demographic data was incomplete and therefore,
aggregate numbers do not necessarily add up to the dataset size. Demographic information for the external
test sets from Stanford (Dataset A), Hong Kong (Dataset B), India (Dataset C), and Nepal (Dataset D) are
presented in Table 3, Table 4, Table 5, Table 6, respectively.
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Among the training, primary validation, and primary test set, and datasets A, B, and C, there was
no significant difference in the average age (p > 0.001), but the average age of patients in Dataset D was
significantly lower than the other datasets (p < 0.001). There was significant difference in the mean refractive
error between the True Glaucoma and True Normal subsets in the training/primary validation/primary test
set compared to Dataset B (Hong Kong), Dataset C (India), and Dataset D (p < 0.001), while there was
no significant difference with Dataset A (p > 0.001). The distribution of cases according to severity of
refractive error is shown in Table 8. There is significantly higher percentage of severe myopia cases in
the True Glaucoma subset in the training/primary validation/primary test set, Dataset A, and Dataset B,
compared to Dataset C and Dataset D. Also there is significantly higher number of severe myopia in the True
Normal subset of training/primary validation/primary test sets and Dataset A, compared to Datasets B, C,
and D (p < 0.001). There was no significant difference in severity of glaucoma between the training/primary
validation/primary test set, Dataset A (p = 0.2821), Dataset B (p = 0.004) and Dataset D (p = 0.0385)
while it was significant compared to the Dataset C (p < 0.001). The percentage of severe glaucoma cases in
Dataset C was significantly higher (p < 0.001) compared to training set/primary validation/primary test set,
Dataset A, Dataset B, and Dataset D (Table 7). Severity distribution of datasets from United States, Hong
Kong, India, and Nepal are shown in Table 7. Details of additional clinical information such as cup-to-disc
ratio, IOP, gender distribution, pattern standard deviation (PSD), and visual field index (VFI) are shown in
Table 9.

Our model achieved a peak test AUC of 0.8883 and F1 score of 0.8834 to differentiate between healthy
and normal eyes. The results of the model on the primary test set are shown in the “Primary Test” row of
Table 10. Additionally, the same model was also evaluated on SD-OCT data obtained from external test sets
and the results are shown in Table 10. The model was able to achieve an AUC value of 0.8571 and F1 score
of 0.8705 on Dataset A (Stanford), AUC value of 0.7695 and F1 score of 0.7449 on Dataset B (Hong Kong),
AUC value of 0.8706 and F1 score of 0.8860 on Dataset C (India), and AUC of 0.7965 and F1 score of 0.7736
on Dataset D (Nepal). Note that the deep neural network was not fine-tuned on the external data, hence
the difference in performance. Fine-tuning the model on the external data sources will result in increased
accuracy on the external test set.

False predictions were analysed on the external Dataset A (from Stanford), as can be seen in Table 12.
Among the 13 false positive cases identified, large cup-disc ratio with larger disc areas were identified as the
cause in 7 cases (53.8%) and in 6 cases (46.2%), older age (above 80) was an identifiable correlation. Among
the 41 cases identified as false negative by the model, 21 (51.2%) cases had total average RNFL falling in the
age matched normative range and had normal OCT RNFL thickness sector maps but had defects on GCIPL
deviation and/or sector maps with corresponding visual field defects, and in 16 cases (39.0%), small disc area
was the identifiable cause. Myopia was not associated with either false positive or false negative predictions.

We also analyzed the performance of the model separately for each myopia severity level. We defined
severity of myopia by slightly modifying the Blue Mountain Eye Study (BMES) [16]. We modified the BMES
category of moderate to severe myopia (> 3D) by further subdividing it into mild myopia (up to -3) moderate
myopia (3 up to −6D) and severe myopia (> 6D), using cutoffs established in the Beijing Eye Study [17].

As can be seen in Table 11, the model was able to achieve a maximum F1 score of 0.9673 on severe myopia
cases, and maximum accuracy of 0.9370 on severe myopia cases. Model was also able to achieve a F1 score
of 0.9491 and accuracy of 0.9035 on moderate myopia cases. Performance on the mild myopia cases were
lower than the severe and moderate myopia cases. The model achieved an F1 score of 0.8528, and accuracy
of 0.7437 on mild myopia cases.

Saliency visualizations show that in most of the cases in which the model makes a True Glaucoma
prediction, the Lamina Cribrosa is highlighted (see Figure 5a and Figure 5b). Out of the 182 cases predicted
as True Glaucoma by the model on the Dataset A, all the cases had Lamina Cribrosa highlighted on the
saliency visualizations, with or without retina highlighting. However, when the prediction is True Normal,
superficial retina is highlighted in a high number of cases (see Figure 5c and Figure 5d). Out of the 134
cases predicted as True Normal, 70 cases (52.24%) had highlighting of the superficial retina and 38 out of
134 (28.36%) cases had superficial retina highlighting along with LC highlighting. Of the latter 38 cases,
all had cup-to-disc ratio less than 0.4, which can indicate that the model utilizes low cup-to-disc ratio as a
feature to predict normals.

Saliency maps of 158 True Glaucoma cases predicted as True Glaucoma by the model from the external
Dataset A test set were evaluated. Out of the 158 aforementioned eyes, 76 eyes were moderate or severe
glaucoma (Mean Deviation worse than -6). Among 49 out of 76 moderate to severe glaucoma cases (64.5%)
had diffuse highlighting of the lamina cribrosa with minimal or no highlighting of the rest of the retina.

11



Out of the 81 cases identified as mild glaucoma, 49 cases (60.5%) had highlighting of the retina with focal
highlighting of the LC.

In Figure 6a and Figure 6b, where the prediction of the model was True Glaucoma while the ground truth
label was True Normal, the LC region is highlighted. In Figure 6c and Figure 6d, where the prediction of the
model was True Normal while the ground truth label was True Glaucoma, the retinal layer is highlighted.

Table 10: Results of the proposed model on the internal and external test sets. Bootstrapping with 1000
trials was used for computing the standard deviation of the metrics.

Dataset F1 Score AUC Accuracy

Primary Test 0.8834 (±0.0200) 0.8883 (±0.0188) 0.8410 (±0.0253)
Dataset A 0.8705 (±0.0104) 0.8571 (±0.0115) 0.8367 (±0.0121)
Dataset B 0.7449 (±0.0121) 0.7695 (±0.0096) 0.7447 (±0.0108)
Dataset C 0.8860 (±0.0115) 0.8706 (±0.0132) 0.8542 (±0.0137)
Dataset D 0.7736 (±0.0239) 0.7965 (±0.0188) 0.7740 (±0.0214)

Table 11: Results of the proposed model on the Dataset A (United States) external test set for each myopia
severity level. Bootstrapping with 1000 trials was used for computing the standard deviation of the metrics.

Myopia Severity Number of eyes F1 Score Accuracy

Mild 71 0.8528 (±0.0159) 0.7437 (±0.0240)
Moderate 29 0.9491 (±0.0161) 0.9035 (±0.0289)
Severe 38 0.9673 (±0.0135) 0.9370 (±0.0253)

Table 12: Observed causes of false predictions of True Glaucoma versus True Normal on the Dataset A
(United States) external test set.

False Predictions Number of eyes

False Positives 13
Large CD (> 0.5) with large disc area 7 (53.8%)
Age > 80 6 (46.2%)

False Negatives 41
Normal RNFL thickness maps with GCIPL deviation and/or sector map defects 21 (51.2%)
Small disc area 16 (39.0%)
Cause unidentifiable 4 (9.8%)

6 Discussion

In this study we developed and validated a 3D deep learning system using real world raw OCT optic nerve
head volumes to detect glaucomatous optic neuropathy from normals. The labeled ground truth of glaucoma
was assessed by reviewing fundus photos, OCT RNFL and macula results, visual field results, and IOP
and treatment data over several visits to make sure there was no question glaucoma was present. Since
the definition of glaucoma is very important when training an algorithm, we realized there is a limitation
in diagnosing glaucoma with just the OCT red/yellow/green printout, and thus the qualitative RNFL and
GCIPL thickness and deviation maps were reviewed (Table 1). While many of the recent studies (e.g. [18])
define structural changes in glaucoma based on OCT RNFL thickness and/or deviation maps alone, we think
the additional multimodal test results allow for training an algorithm on a wider variation in the population
instead of narrowing the inclusion criteria.

In our study, the machine learning system performed with an AUC of 0.8883 to differentiate between
healthy and definite glaucomatous eyes of all ranges from early perimetric to late perimetric glaucoma. Our
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Figure 5: Saliency visualizations for two cases from the Stanford Test set. (a) Top, and (b) Side side view
of saliency visualizations of a correctly classified glaucomatous eye. (c) Top, and (d) Side view of saliency
visualizations of a correctly classified normal eye. As can be seen, in most of the cases, a highlight in the
lamina cribrosa region is mostly correlated with True Glaucoma prediction, while for cases with True Normal
prediction, the retinal layer is mostly highlighted. Saliency visualization have been obtained with respect to
the predicted class. Regions with higher value are more salient for the model in making the final prediction.

performance with external testing generalized across multinational datasets where there are differing patient
populations with varying disease severities. The performance was also very good on the external test set
from India (Dataset C), which had an AUC value of 0.8706. We hypothesize that this is because there
was a significantly higher percentage of eyes with severe disease in this dataset compared to other external
datasets (Table 8). These cases would likely be easier to differentiate from normal cases. The performance
was reduced on the dataset from Hong Kong with an AUC of 0.7695 (Dataset B). This can be explained due
to the differences in their labeling criteria which defined structural changes in glaucoma based on the RNFL
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Figure 6: Saliency visualizations for two cases with wrong predictions. (a) Top, and (b) Side side view of
saliency visualizations of a false positive case from the Hong Kong dataset. (c) Top, and (d) Side view
of saliency visualizations of a false negative case from the India dataset. Saliency visualization have been
obtained with respect to the predicted class. Regions with higher value are more salient for the model in
making the final prediction.

thickness and/or deviation maps alone. Also there was significant differences in the refractive error between
the True Glaucoma and True Normal cases in the training/primary validation/test dataset and the Hong
Kong external test set. Mean refractive error in True Glaucoma cases in Dataset B (Hong Kong) was −0.85
(±2.57) versus −3.57 (±3.37) in the training, primary validation, and primary test sets. Mean refractive
error in the True Normal cases was −0.51 (±2.15) in Dataset B (Hong Kong) versus −2.2 (±2.34) in the
training, primary validation and test sets. Another reason for the difference in performance on the test set
from Hong Kong could be the inclusion of solely gradable images with signal strength ≥ 5. We included cases
with signal strength ≥ 3 and excluded images with artifacts which obscured imaging of ONH and the area
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Figure 7: Saliency visualizations for cases with different glaucoma severity from the Dataset A external
set. (a), (b) Saliency visualization of a correctly classified case with mild glaucoma. (c), (d) Saliency
visualization of a correctly classified case with moderate glaucoma. (e), (f) Saliency visualization of a
correctly classified case with severe glaucoma.

inside and including the RNFL measurement circle at 3.4 mm from the center of the ONH. This is because
many at times, clinicians are deprived of high quality OCT images for diagnosis and evaluation of glaucoma,
due to medial opacity, tear film issues, small pupils, or other limitations. Our aim was to train the algorithm
to be able to identify representations to detect glaucoma even on low quality images, hence replicating real
world presentations. Even though it is recommended to obtain scans of signal strength higher or equal to 6
to facilitate the longitudinal quantitative progression calculated parameters, qualitative patterns in thickness
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and deviation maps can still be seen at lower signal strength, and it is suggested that signal strength of > 3
is acceptable to obtain reproducible scanning images among patients with ocular media opacities [19].

With our fourth external dataset from Nepal (Dataset D), the model performed with an AUC of 0.7965.
Possible explanations for the difference in performance could be due to the differences in the dataset. The
mean age of the subjects were significantly lower in this dataset. The percentage of eyes with severe my-
opia in the True Glaucoma and True Normal subsets were lower compared to the training/primary vali-
dation/primary test sets from Stanford. The mean refractive error was significantly lower in this dataset.
Another possible reason for the differences in performance across the external datasets could be possible
inter- and intra-grader variability in labeling of cases based on the criteria.

A novel output of our model is its ability to detect glaucoma across different ranges of myopia (Table 11).
The model was able to achieve an accuracy of 0.9370 on severe myopia cases, accuracy of 0.9491 on moderate
myopia, and accuracy of 0.7437 on mild myopia cases. It is known that diagnosing glaucoma in the setting
of myopia is a common challenge due to alteration of the appearance of the optic nerve and OCT. Myopic
refractive error impacts RNFL and macular thickness measurements due to stretching and thinning of these
layers due increased axial length and optical projection artifact of the scanning area [20]. This often results
in many false positive diagnoses, also known as “Red Disease”. Using the entire cube and highlighting the
lamina cribrosa may help researchers study this LC region more closely in myopes when trying to differentiate
glaucoma from normal. The difference in the performance in the myopia subsets compared to the total dataset
could be due to the fewer number of cases in each subgroup (Table 11).

What was most interesting from our model were the saliency maps of the regions in the scan where the
model attends to make a prediction. Normally, we expected the RNFL to be a majority of the differentiation
of true glaucoma from normal, but in many cases, the lamina cribrosa was just as important, or sometimes
more important since the RNFL can be thinned for other reasons such as myopia. Given that clinicians do
not routinely review every single slice of the cube, and there is no OCT printout highlighting the lamina, we
were excited to discover that, by training a model on every single slice, saliency visualization highlighted the
lamina cribrosa region along with exiting nerve fibers posterior to LC, and in most cases are correlated with
True Glaucoma prediction. For cases with True Normal prediction, the areas on superficial retina were mostly
highlighted in saliency visualizations. This corresponds with clinical practice, whereby when an OCT RNFL is
all normal (all RNFL quadrants colored green or white), then likely it has a very high negative predictive value
for glaucoma. In a smaller subset of cases predicted as True Normal when lamina cribrosa was highlighted
along with retina, smaller cup-to-disc ratio (≤ 0.4) was noted as an association suggesting that the model
might have identified smaller cup-to-disc ratio as a feature to identify normals. Peripheral LC or regions
posterior to large blood vessels typically remain difficult for OCT image interpretation without enhanced
depth imaging. It was also observed that in moderate to severe glaucoma, there was diffuse highlighting of
the lamina cribrosa with minimal or absent highlighting of the retina, whereas in mild glaucoma, retina was
being highlighted with focal or diffuse highlighting of the lamina cribrosa (see Figure 7). This correlates with
the fact that in advanced disease, RNFL thickness levels off, falling below 50 µm and almost never below
40 µm for the Cirrus machine, due to the assumed presence of residual glial or non-neural tissue including
blood vessels and hence making RNFL measurement less clinically useful at this stage [21]. However, lamina
cribrosa may not be limited by this floor effect and if 3D information was used, a new method to monitor
structure progression in end stage glaucoma could be created. This needs more analysis with a larger
distribution of glaucoma severity based datasets.

Our assessment of false predictions by the 3D deep neural model showed no correlation with myopia,
despite the fact that myopia is one of the most common reason for misdiagnosis of glaucoma in clinical
presentations [20]. This suggests that by training the model on all scans including high myopes and low
signal strength ones as long as there were no data loss artifacts, could provide enough training examples
within the volumes of slices to avoid myopia affecting the result. An interesting observation was false
negative prediction of cases diagnosed as True Glaucoma based on structural defects on GCIPL maps alone.
This emphasizes the need for evaluation of optic nerve head and macula parameters in detecting glaucoma
[22].

Recently Maetschke et al. [23] employed 3D convolutional neural networks to classify eyes as healthy or
glaucomatous directly from raw, unsegmented OCT volumes (1110 scans) of the optic nerve head obtained
using Cirrus SD-OCT scanner (Carl Zeiss Meditec Inc., Dublin, CA, USA) and achieved a substantially high
AUC of 0.94 against logistic regression, which was found to be the best performing classical machine learning
technique with an AUC of 0.89. In their study, glaucomatous eyes were defined as those with glaucomatous
visual field defects alone and was not based on any structural parameters. This work used a convolutional
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neural network for the task of glaucoma classification, however, the architecture used for the neural network
was different from the architecture of the proposed model. Another difference from our study was that they
included scans with signal strength ≥ 7. Despite the differences in definition and inclusion criteria, it is
interesting to note that our saliency maps had similar findings. Similar to our study, for healthy eyes, the
network in [23] tends to focus on a section across all layers and ignores the optic cup/rim and the lamina
cribrosa. In contrast, for glaucomatous eyes, the optic disc cupping, neuroretinal rims, as well as the lamina
cribrosa and its surrounding regions were highlighted. The strength of our study compared to [23] is that we
included more information about our training population and had multiple external datatests for validation.

In the recent study by Ran et al. [18], the 3D deep learning system had an AUC of 0.969. The study
showed good performance with external test set from United States with an AUC of 0.893. Similar to our
study, the heatmaps generated in their study showed neuro-retinal rim and areas covering the lamina cribrosa
to be highlighted in detection of glaucomatous optic neuropathy. Apart from this, the retinal nerve layer and
choroid were also potentially found be related to detection of glaucomatous optic neuropathy in their study.
The difference in their study from ours was in the definitions used for glaucoma and inclusion of images
with signal strength ≥ 5. They defined glaucomatous structural defect based on OCT RNFL thickness and
deviation maps.

While it is unclear about the distribution or inclusion of different degrees of myopia in their study, our
cohort had 11 percentage of total eyes with severe myopia (≥ −6) in our True Glaucoma subset and 4.09
percentage of total eyes with severe myopia in the True Normal subset in training, primary validation, and
primary test sets. Another difference was the distribution of ethnicity in their training set which consisted
exclusively of Chinese Asian eyes, while our training, primary validation and, primary test sets included
subjects of Caucasian, Asian (which included Chinese Asians, Non-Chinese Asians, and Indians), African
American, and Hispanic origin.

The major differences between the recent studies [23, 18] and ours was the diversity in the ethnicity of
the datasets used for training of the model, inclusion of high refractive errors in both glaucoma and normal
cases for training, and inclusion of eyes with lower signal strength, hence representing the real world clinical
presentations. Our work used external datasets from United States, India, Hong Kong, and Nepal, while
similar works (e.g. [18]) did not have similar variety in the external tests sets used.

Our study has several strengths. Multiple international datasets provide diversity in our database for
evaluation purposes, which is rare to have for glaucoma datasets. We had images from patients of different
ethnicities, including Caucasian, Asian (including both Chinese Asian and Non-Chinese Asian), African
American, Hispanic, and of Indian origin. The performance of our model was promising across multiple
geographies and ethnicities to distinguish glaucoma from normal.

Another significant strength of our method was that our main training dataset was not cleaned for this
experiment to more closely follow the challenges that are faced in real world clinical settings. While strict
exclusion criteria such as axial length, small and large disc sizes, and high myopia are common, our cohort
included all ranges of myopia, disc sizes, and axial lengths, reflecting real world presentations. One other
major highlight of our study was the criteria used to classify cases as True Glaucoma versus True Normal in
the training and validation dataset, which included both multimodal longitudinal structural and functional
evaluations. This closely replicates real world clinical settings where multimodal longitudinal evaluation is
used to arrive at the diagnosis.

Our study has few drawbacks. We did not include “Suspect” cases in our datasets. This was mainly
because of the difficulty in obtaining consensus for glaucoma suspect definition among experts. We are now
working on a separate dataset and are trying to achieve consensus among multiple glaucoma experts to
classify high- and low-risk suspect cases or referral cases. Additionally, we have not included “Preperimetric”
glaucoma in the training due to the unavailability of adequate number of cases in the subset.

Even though we have not excluded any cases based on disc sizes or presence of myopic tilted discs in our
datasets, and have included cases with low signal strength, we have not looked into the performance of our
model across subsets.

Going forward, we plan to develop a 3D deep learning algorithm using a wider range of data including
high- and low-risk suspect cases that would help in identifying cases which require referral for management
by glaucoma specialists. Secondly, we also plan to evaluate the performance across severity of glaucoma
cases and look closely at the patterns in each severity subset by including larger number of cases in each
subset. Further, we plan to include raw OCT macula cube scans along with optic nerve head scans for better
algorithm correspondence. Finally, we intend to study cropped images including LC, regions adjacent, and
posterior to LC to further characterize the saliency mapping highlights of true glaucoma from normal.
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7 Conclusion

Our 3D deep learning model was trained and tested using the largest OCT glaucoma dataset so far from
multinational data sources, and has been able to detect glaucoma from raw SD-OCT volumes across severity
of myopia and severity of glaucoma. By using a multimodal definition of glaucoma, we could include more
scans from the real world. The saliency visualizations highlighted the lamina cribrosa as an important
component in the 3D optic nerve head cube in differentiating glaucoma.
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