
 Creating Contextual Help for GUIs Using Screenshots
Tom Yeh, Tsung-Hsiang Chang§, Bo Xie†, Greg Walsh†, Ivan Watkins†, Krist Wongsuphasawat,

Man Huang†, Larry S. Davis, and Ben Bederson
Department of Computer Science College of Information Studies† MIT CSAIL§

University of Maryland, College Park
College Park, MD

{tomyeh,boxie,gwalsh,iwatkins,kristw,manhuang,lsd,bederson}@umd.edu

Cambridge, MA
vgod@mit.edu

traditional help’s two usability problems—split attention
and delayed practice [21] that could be avoided simply by
presenting help contextually.
However, for help designers, it is difficult to create GUI
help for other users that can be presented contextually. For
instance, to add a contextual highlight to a button, one may
need to identify the source code responsible for that button
and modify the code to draw highlight on the button
[16,17]. Yet, many GUIs are proprietary. Third-party help
designers are prevented from making contextual help to
support these GUIs. Alternatively, help designers can use
the accessibility API to determine that button’s screen loca-
tion and write an external program to draw highlight direct-
ly at that location on the screen [3,4]. Yet, for many GUIs,
such API is either unavailable or unsupported [15]. Moreo-
ver, even if both the source code and the accessibility API
are available, using them still requires high-level program-
ming skills, a requirement that alienates many users from
creating contextual help to assist other users.
In this work, we aimed to democratize contextual help.
Specifically, we developed a tool to empower help design-

ABSTRACT
Contextual help is effective for learning how to use GUIs
by showing instructions and highlights on the actual inter-
face rather than in a separate viewer. However, end-users
and third-party tech support typically cannot create contex-
tual help to assist other users because it requires program-
ming skill and source code access. We present a creation
tool for contextual help that allows users to apply common
computer skills—taking screenshots and writing simple
scripts. We perform pixel analysis on screenshots to make
this tool applicable to a wide range of applications and plat-
forms without source code access. We evaluated the tool’s
usability with three groups of participants: developers, in-
structors, and tech support. We further validated the ap-
plicability of our tool with 60 real tasks supported by the
tech support of a university campus.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Human Factors; Design
Keywords: Help; Contextual Help; Pixel Analysis
INTRODUCTION
Contextual help has been shown effective for learning
graphical user interfaces [3,4,13,16,17,18,25]. Unlike tradi-
tional help based on screenshots or screencasts, contextual
help allows users to receive help in the actual interface they
are interacting with, rather than in another help interface
such as in a web browser or a video player. For example,
with contextual help, users can see a dropdown box high-
lighted in the live interface and an instruction such as “se-
lect the WEP key” displayed next to it. Users can immedi-
ately practice the step as instructed. In contrast, with tradi-
tional help, users may see a captured screenshot of that
dropdown box on a webpage. In order to practice the step,
users need to switch to the live interface and try to locate
the dropdown box that matches the screenshot. Also, they
need to remember the instruction they read on the webpage
regarding which option to select. This process illustrates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’11, October 16–19, 2011, Santa Barbara, CA, USA.

Figure 1. Creating contextual help for a GUI. The win-
dow in the far back is the interface of the International
Childrenʼs Digital Library. A separate window in the
front displays existing help content for this interface.
Our tool enables help designers to create help content
that can be presented contextually in the actual inter-
face (i.e., yellow callout and red circle) by writing a sim-
ple script and taking screenshots, as shown in the edi-
tor below. (www.childrenslibrary.org)

ers in the general public (e.g., advanced users, computer
instructors, third-party tech support) to create contextual
help. Rather than requiring advanced programming skills,
our tool allows a help designer to apply basic computer
skills including taking screenshots and writing simple
markup similar to HTML or Wiki. At design time, a help
designer can select an interface component by capturing the
component’s screenshot (e.g.,) and then specify the
type of contextual help to add to that component using a
simple visual markup (e.g., highlight()). When the help
is presented to a user, the pixels on the user’s screen are
visually searched to locate the component that matches the
screenshot. Once the component is found, contextual help
can be drawn near the component. This visual search is
performed using the Sikuli library [32], an open-source
library for search and automation based on pixel analysis.
The generalizability of screen pixels across all applications
and platforms, a property already demonstrated by various
applications [1,2,7,15,19,20,24,33], allows our method to
be applicable to any GUI regardless whether the source
code or accessibility APIs are available.
RELATED WORK
Contextual Help
Most GUI help is presented to users outside the GUI in a
separate context such as in a web browser for seeing anno-
tated screenshots or in a video player for watching screen-
casts. This out-of-context poses major usability problems
such as split-attention and the lack of support of practice
[21]. Contextual help solves these two problems [13] and
allows hands-on practice and exploration at the same time,
which has been shown to be key ingredients of successful
learning of an interface [30].
The most prevalent form of contextual help is the tooltip
[9]. Several efforts aimed to improve upon tooltips, such as
Side Views that allow users to contextually preview the
effect of a command [29], ToolClips that present to users
short video clips and other rich help content next to toolbar
buttons contextually [13]. In HCI research, contextual help
has been applied to initial guidance to new features in the
context of a map interface [16], to stencil-based tutorials
for young school children in the context of Alice [17], to
programming tasks in the context of an Eclipse editor [3],
and to practical tasks such as booking flights in the context
of a web browser [4]. In the commercial world, contextual
help can also be spotted in interfaces that evolve quickly.
For example, Google Docs periodically introduces new
features and greets returning users with text bubbles to
draw their attention to these features. However, in each
instance cited above, content creation requires either ad-
vanced programming skill or privileged access to the
source code, requirements that rule out a large population
of help designers such as expert users, computer instruc-
tors, and third-party tech support.
Creating GUI Help
The majority of GUI help online today is created manually.
Help designers use software such as Camtasia to make

screencasts or MWSnap to take screenshots and annotate
them with highlights and instructions. Guidelines have
been provided for creating effective screencasts [23]. But
meeting these guidelines requires significant manual effort.
To reduce human effort, automatic methods have been pro-
posed that aim to create tutorials based on knowledge of a
UI derived from a UI model [27], UI specification [22] or a
UI event log [5]. However, automatic methods have not
been reliable enough to be used in practice.
A more practical approach to help creation that seeks to
balance convenience and reliability has been the semi-
automatic approach based on the notion of Programming by
Demonstration (PBD) [3, 11,14]. To create help for a task,
help designers simply perform that task. The interaction
involved is captured and a descriptive summary of this in-
teraction is automatically generated. Then, designers can
manually review this summary and make necessary chang-
es before publishing it as help. Taking this approach,
Graphstrack [14] records designers’ click actions and cap-
tures regional screenshots around each click location to
generate minimalist help showing only images of relevant
interface targets rather than the entire interface. The tool
developed by Grabler et al. seeks to create succinct step-by-
step help for a photo manipulation task while an expert
demonstrates the task [11]. However, content generated by
these two creation tools is intended to be viewed in a tradi-
tional manner in a context separate from the actual inter-
face. DocWizard is most closely related to our work in that
it also aims to simply the creation process of contextual
help [3]. It allows help designers to record an interaction
sequence that can be played back in the real interface,
drawing a red circle on the relevant interface target in each
step of the sequence. However, DocWizard is limited to the
Eclipse editor or other interfaces based on the same plat-
form (i.e., Java SWT).
Generalizability of Pixels
Pixels offer a possibility to make interaction techniques
generally applicable to a wide range of interfaces [1] by
providing interfaces with a general attachment point for
these techniques [19]. Early effort exploring this possibility
includes Triggers [24], IBOTS [33], and Segman [2]. Re-
cent effort has seen successful applications of pixels to
provide general solutions to many practical problems such
as note taking [20], GUI automation [32], click target iden-
tification [15], and advanced behaviors [7]. In the current
work, we seek to leverage the universality of pixels to
make the creation of contextual help generally accessible.
This idea has been previously suggested [32,8], but it has
not been fully explored and only limited proof-of-concept
examples have been presented.
CONTEXTUAL HELP USING SCREENSHOTS
We present a tool for creating and presenting contextual
help for GUIs using screenshots. At creation time, this tool
provides help designers with a set of visual scripting com-
mands to specify which GUI components to provide help
for and what help content to present. At presentation time,

it uses computer vision to visually track GUI components
on users’ screen and display help near these components,
allowing users to receive help in context.
Scripted Slideshow Metaphor
We surveyed existing GUI help based on screenshots or
screencasts (e.g., eHow) and tools for creating them (e.g.,
MWSnap, Camtasia). We observed four important content
characteristics of such help:
1. Script: Help tends to follow a particular script.
2. Length: Some help was as short as a single step while

others were a dozen steps or more.
3. Visuals: Help can include a wide combination of text,

screen capture, annotated screens and video.
4. Pacing: Some help was completely automated along a

strict timeline while others may require user action to
continue at each step.

Informed by this observation, we chose scripted slideshow
as the metaphor to conceptualize contextual help. This met-
aphor adequately captures the characteristics above while
remaining simple to promote learnability. First, a script can
have steps that map naturally to slides in a slideshow. Se-
cond, a slideshow can be of arbitrary length. Third, each
slide can include multiple graphics and/or text objects.
Fourth, a slideshow can be advanced automatically or by
user actions.
Visual Commands
Our tool provides help designers with a rich set of visual
commands for creating a scripted slideshow. The Sikuli
IDE [32] provides a convenient way for editing these visual
commands. These commands include graphics, text, posi-
tioning, steps, animated effects, pacing, and support for
ambiguity, each of which is described below:
Graphics: To draw a user’s attention to an interface target,
help designers can write a simple command based on an
image of the target. For example, circle() paints a circle
around the icon in the actual interface. We support five
types of graphical highlights: circle, rectangle, bracket,
arrow, and spotlight, as shown in Figure 2.
Text: After drawing the user’s attention to a target, it is also
important to explain to the user what the target does. This is
typically achieved by adding text objects near the target.

We support three types of simple text objects: text, callout,
and flag and one type of mouse-over text object: hotspot.
Designers can add a new text object to a step by writing a
simple function call that takes two arguments. The first
argument specifies the target this text object is associated
with and the second argument specifies the content to be
displayed. Examples of these text objects can be seen in
Figure 3.
Positioning: By default, graphics and text objects are au-
tomatically placed in the best position relative to the target.
For instance, a callout is normally displayed to the left of a
target but will be positioned to the right if there is not
screen space to the left. Also, a bracket is placed according
to the target’s aspect ratio; it is placed above if the target is
landscape and to the left if it is portrait. Alternatively, de-
signers can position graphics and text objects themselves
using a set of optional positioning parameters. Using posi-
tioning parameters designers can place objects in an empty
area of the interface without occluding existing interface
components. These parameters include the side parameter
that specifies which side of a target to place contents (e.g.,
top, left, bottom, right), the alignment parameter that speci-
fies how objects should be vertically or horizontally aligned
with a target, and the offset, margin, and spacing parame-
ters to further fine-tune the positions.
Step: Help designers can group graphics and text objects
into steps using two methods. The simpler method is to
express each step as a sequence of function calls for adding
content objects followed by an explicit call to show() to
mark the end of the step. Below is an example of a two-step
contextual help expressed in this way:
Each call to show() displays the content objects added since
the previous call to show(). It also clears the content before
advancing to the next step.

Figure 2. Graphics objects (top: circle, rectangle, brack-
et, bottom: spotlight, arrow) can be contextually ren-
dered on GUIs to draw usersʼ attention.

Figure 3. Text objects (top, from left to right: callout,
text, flag, bottom: hotspot) can be contextually rendered
on GUIs to provide helpful information.

Another method is to represent steps as individual func-
tions. At the end of the script, these functions can be passed
as an array to a single call to show() to present these steps
contextually in the users’ interface. Below is the same con-
textual help as above re-written using this method:

The former method offers simplicity, whereas the latter
offers more power such as the ability to reorder and reuse
content. These two methods can also be mixed to allow
even greater flexibility.
Animated Effects: Appropriate uses of animation can en-
hance contextual help [28] as they help grab users’ atten-
tion. We enable help designers to add common animated
effects such as fly-in, fade, blink, and circling, by supply-
ing an optional animation parameter. For example,
rectangle(, animation = “flyin”) allows rectangle to
enter the scene from the edge of the screen and fly to the
target, and flag(, “Here”, animation = “circling”)
makes the flag object moving in a circular motion next to
the target.
Pacing: Help designers specify how the presentation of
contextual help should be paced in two ways similar to the
presentation of a slideshow. The typical way is to give the
control to users. Users can decide when to advance to the
next step by clicking the Next button. This behavior can be
achieved by adding a dialog box to the current step. For
example, dialog(“Enter Password Here”) displays a dialog
box like below. This pacing option is preferable for prob-
lem-oriented and training-oriented contextual help, since
users may spend an arbitrary amount of time to perform the
operations related to a step.

Another way to control pacing is to specify a timeout peri-
od explicitly (e.g., show(3)). This method is more suitable
for demoing new features when fewer actions are required.
Ambiguity: Ambiguity arises when multiple instances of
the same or similar-looking targets are visible on the screen
(e.g., multiple sliders). Help designers can disambiguate
using other distinctive objects nearby (e.g., the slider under
the label “Double-Click Speed”) using Sikuli Script’s built-
in spatial operators. For example, a flag can be placed next
to a specific slider as shown in the figure below by
flag(find().below().find(),“Drag this”).

Evaluation of Prototype
We built a prototype and publicly released it in early 2011
as an extension to Sikuli. Based on an earlier survey on
traditional GUI help, we identified three distinct scenarios
GUI help is often administered:
• New Features: Introduces new capabilities to users to

aid in future discovery.
• One-time Solution: Helps user solve specific problems

(e.g., installing a printer). The problem often needs to
be solved only once, which implies retention is less
important.

• Training: Teaches users how to do important and re-
curring tasks. Retention is important and the training is
sometimes scenario based, involving fictional data that
can differ significantly from that of the user's real task.

Participants
Informed by the scenarios above, we recruited three distinct
groups of help designers to participate in the evaluation of
the prototype.
The first group is developers of novel GUI applications. It
is crucial for this group to introduce new features to would-
be users. We worked with selected members in Sikuli’s
user community and the researchers of the LifeFlow project
[31] as representative users in this group.
The second group is tech support for large institutions. A
large body of help content created by this group is to help
users with one-time solutions. Participants representing this
group were the members of the Office of Information
Technology at the University of Maryland. We conducted
an hour-long focus group with seven manager-level mem-
bers overseeing matters related to user support.
The third group is computer instructors for novice comput-
er users. Help created by this group tends to be training
oriented. The representative participants we recruited for
this group were three researchers who study how older
adults learn and use computer technology. They regularly
create computer tutorials based on screenshots and screen-
casts for older adults to learn how to find health infor-
mation on the Web. Initially, we met with these researchers
and demonstrated to them how to write simple scripts to
create contextual versions of the same tutorials they previ-
ously created. After understanding the basic premise of our
contextual help framework, these researchers worked with
us to design and run two participatory design sessions
(March 4 and 11) with older adults to further understand
the framework’s potential and limitations.
Findings and Discussion
All participants were impressed by the prototype and were
able to create contextual help using our tool to benefit the
respective user population they serve. However, they also
identified several limitations discussed below:
Lack of robust startup. Before contextual help can begin,
the target GUI is assumed to be visible so that the relevant
component in the first step can be found on the screen and
highlighted. For example, to present contextual help on

Facebook’s login page, the page must be visible in order to
highlight the relevant input fields. However, our partici-
pants reported that this assumption is often violated; users
may launch a contextual help script before switching to the
target GUI. Since the target GUI is not visible, the script
simply fails immediately. This finding motivated us to de-
velop features to improve the robustness of contextual help
during startup.
Lack of flexible pacing options. Our participants found the
two pacing options provided by the prototype too limiting.
The time-based pacing option is impractical when it is not
possible to predict how much time the user might need for
the current step. The dialog-based pacing option is labori-
ous, since it requires users to always make an extra click on
the Next button to advance. These limitations motivated us
to develop additional pacing options that are more flexible.
Lack of conditional help. A strict slideshow model follows a
predetermined sequence of steps. While this is acceptable
for many simple procedural tasks, our participants found it
restrictive in certain scenarios where subsequent steps may
be conditioned on what users have done and/or what the
GUI looks like in the current step. The need to support the-
se scenarios motivated us to develop features to allow con-
textual help to react to user actions and GUI states.
Lack of area-based selection. Our participants in the devel-
oper group informed us that when the purpose of contextual
help is to give a feature overview of a GUI, it is often nec-
essary to point at a general area in the GUI rather than indi-
vidual components, for example, to introduce the toolbar
area and the content area. In traditional screenshot help, an
area is often marked and explained by a rectangle drawn
around it and some text placed in the middle. In screen-
casts, a commonly used (but not necessarily effective)
technique is to move the mouse cursor in a circular motion
around an area while talking about it. However, it is often
not possible to select an area by a single screenshot, as the
size and the location the area can vary widely. For example,
the toolbar area often changes as the size of the container
window changes. This finding motivated us to develop an
area selection method based on multiple visual landmarks.
Lack of cursor support. Our participants in the computer
instructor group reported that in addition to receiving the
cognitive knowledge of which interface target to interact
with and how, some older adult learners would also like to
receive assistance to perform the motor movement required
to interact with the target. While it is possible to automate
this interaction, doing so would deny these learners the
chance of hands-on practice, which is crucial for learning
[30]. This observation motivated us to implement a number
of cursor enhancement techniques help designers can in-
corporate in contextual help to simplify motor movement.
Lack of tracking. In pixel-based GUI automation, a target’s
screen location needs to be found only once. As soon as the
location is found, interaction commands such as click is
delivered immediately to that location to simulate the effect
of a human user clicking on that target. Similarly, in con-

textual help, drawing commands such as circle() can be
applied to the target’s location immediately after the loca-
tion is determined. While the effect of an interaction com-
mand (e.g., click) ends as soon as that interaction is carried
out, the effect of a drawing command needs to last for as
long as users are still viewing the current step. Users may
operate the GUI in a way that causes the target to move
(e.g., scrolling) or disappear (e.g., switching to another
window). However, the prototype did not re-compute the
target’s location; contextual help remained visible in the
old location even though it was no longer relevant to any
target nearby. Our participants found this behavior confus-
ing. This observation motivated us to implement a visual
tracker to continuously monitor the visual states of targets.
Lack of a WYSIWYG editor. While our participants in the
tech support group and GUI developer group found the
syntax for writing contextual help scripts easy to learn, our
participants in the computer instructor group still preferred
a visual editor supporting WYSIWYG. They were more
familiar with GUI tools such as PowerPoint and Camtasia.
This finding motivated us to develop a visual editor to fur-
ther simplify the creation of contextual help.
Lack of an effective deployment strategy. To deploy a con-
textual help script, help designers can saved the script as a
Sikuli executable (i.e., a runnable jar) and publish it on a
website. Users can download this executable and run it on
their own machines to receive contextual help. Our partici-
pants in the tech support group informed us that a more
desirable deployment strategy would be to publish contex-
tual help scripts alongside the traditional help already host-
ed on the official support website. The reason is that this
website is the default place these users have learned to visit
and look for help and the place they would trust. This find-
ing motivated us to consider how contextual help can be
seamlessly integrated with existing traditional help for
more effective deployment.
ADVANCED FEATURES
We further present eight advanced features developed as a
direct response to the limitations identified by our partici-
pants during the evaluation of the prototype.
Switching to the Target GUI
We provide two methods for help designers to assist users
to switch to the target GUI when contextual help begins.
First, help designers can automate the steps to switch to the
target GUI by composing a simple Sikuli automation script,
for example, opening the System Preferences window by
click(); click().

Second, help designers can explicitly instruct users how to
switch to the target GUI when the GUI is not already visi-
ble. This instruction can also be provided in the form of
contextual help. For example, many configuration tasks on
Mac share a common starting point at the System Prefer-
ences window. A help designer can create a common help
script for switching to this window. When needed, any oth-

er contextual help that begins from this window can invoke
this script to help users start in the right place.
Pacing by Visual Triggers and User Clicks
We developed two additional pacing options based on visu-
al triggers and user clicks. To pace by visual triggers, help
designers can give a list of visual patterns expected to be
visible only in the next step. For example, the statement
next() means the Empty Trash button will be
seen next and can be interpreted as a signal that the current
step is over. To pace by user clicks, help designers can
write a simple statement like clickable(). This
statement places a mouse click detector on top the button.
When the user clicks on that button, help automatically
proceeds to the next step. We implemented this detector in
pure Java using an almost transparent window on top of the
button to intercept clicks. Once a click is detected, the win-
dow is hidden and the click is immediately delivered to the
interface underneath the window.
Supporting Conditional Contextual Help
To address the lack of conditional help, we augmented the
scripted slideshow model with the ability to present help
conditionally. There are two scenarios when conditional
contextual help naturally arises. The first scenario is when
users need to make a choice in a particular step and the
choice may take the users on a different path in subsequent
steps. For example, at some point during printer installation
it may be necessary to choose whether the printer is shared
or not. Subsequent help depends on this choice. If users
need to click on one of two buttons to make the choice,
help designers can place a clickable object on each button.
This clickable object can detect users’ click on the button.
Each clickable object is associated with a unique ID. The
ID is returned by show() and can be used in a conditional
statement to decide which help path to take next. The script
below gives an example:

Alternatively, if the actual GUI does not offer the choices
explicitly, help designers can place virtual buttons on the
GUI and assign unique ID’s to them to offer conditional
contextual help, e.g., button(“Do it”). The example shown
next combines all of these mechanisms giving the choices
to return to the previous step, advance to the next step, quit,
or let the computer perform the step automatically.

The second scenario conditional contextual help is useful is
when help designers want to account for the different states
the system may be in at run time and choose a help path
accordingly. For example, a printer installer GUI may dis-
play different messages depending on whether or not the
printer’s driver can be found. Designers can use Sikuli
Script’s exists() function to check whether certain indica-
tive visual pattern exists and choose the appropriate next
step, using a conditional statement like below.

Assisting Target Selection
To address the lack of cursor support, we implemented
three cursor enhancement techniques inspired by the state-
of-the-art [10, 12] that can be invoked by help designers
with simple visual commands. First, the beam cursor paints
a lighted path from the current cursor location to the target
and accelerates the movement toward the target if the user
begins to move the cursor in that direction. This technique
is suitable for problem-oriented help where each step tends
to involve a single target. For example, beam() produc-
es the following effect at presentation time:

Second, the magnet cursor acts like a magnet that attracts
targets to the cursor’s vicinity as virtual targets. Users can
interact with these virtual targets as if interacting with the
real targets. Since these virtual targets are closer, less effort
is needed to operate the cursor. When users move the cur-
sor over a virtual target, the corresponding real target is
highlighted, allowing the users to learn where the target
actually is. This cursor technique is especially useful when
relevant targets are scattered across the GUI. For example,
magnet([,]) achieves the effect shown below. It
brings the two targets from opposite sides of the GUI to
where the mouse cursor is; users do not need to move the
cursor far across the screen to choose.

Third, the clickcross cursor [10] spreads a group of targets
along a large orbit. This technique is useful when the tar-
gets are closely situated and making precise selection

among them is hard for certain users without fine-motor
control due to aging or disabilities. By spreading the targets
apart, this technique has been shown to significantly reduce
the physical demand on fine-motor control. For example,

clickcross(

, [, , , ,])

spreads a group of targets (2nd argument) when the user
clicks on the target area (1st argument), as shown next:

The theoretical capability of pixels to implement cursor
enhancement techniques on a wide range of interfaces has
been previously demonstrated by Prefab [7]. In this work,
we further contribute by enabling designers to deploy these
techniques in practice. Also, rather than system-wide appli-
cation to every interface widget as was done in Prefab, we
allow designers to apply these techniques judicially only to
the parts of an interface where users need help the most.
Tracking Targets
When changes in a target’s location or visibility are detect-
ed, the contextual help associated with that target must be
repositioned or hidden/shown accordingly, maintaining the
relevance of the help content, as exemplified in Figure 4.
To detect location changes efficiently, we devised heuris-
tics informed by several observations regarding how targets
typically change their location:
1. In practice, users tend not to move interface targets

when they try to follow contextual help. This implies
that the tracker should always look at the target’s last
location to see if it remains before looking elsewhere
to find where it might have moved.

2. When users did move interface targets, one common
reason is scrolling such as scrolling a web interface.
This implies that when a target is no longer seen in its
last location, the first logical place to look for the tar-
get again is along the vertical strip and the horizontal
strip extending from the target’s last location.

3. Another common reason interface targets might move
is that the user drags their container window to a dif-
ferent location. This implies that the next logical place
to look should be around the same relative location
from the target’s last location as the relative location of
the cursor from where it was dragged.

4. Interface targets in the same interface tend to move in
the same way. This implies that after finding the first
target’s new location relative to its previous location,
the search for the other targets should begin from the
same relative locations from their previous locations.

5. Lastly, if none of these heuristics worked, the tracker
will fall back to full-screen search to relocate a moved
interface target.

To detect visibility changes, we also rely on heuristics in-
formed by how targets typically disappear and re-appear:
1. Common reasons a target may disappear are that the

user minimizes the window or switches to another
window. After a while, the user may restore the win-
dow or bring the window to the front, making that tar-
get visible again in its last location. This implies that
once a target is no longer found and relevant content
hidden, it is necessary to check the target’s last loca-
tion periodically so that the content can be redisplayed
as soon as the target reappears there.

2. In some less common scenarios, a temporarily occlud-
ed target may reappear in a completely different loca-
tion from its last location. The only way to detect reap-
pearance of this kind is to conduct full-screen search.
Since such scenarios are less common, we can perform
full-screen search at lower frequency.

Defining Resizable Areas
To address the lack of area-based selection, we implement-
ed a new visual command area() to allow designers to de-
scribe an area by a set of salient landmarks. For example,
spotlight(area([, ,])) defines a rectan-
gular area containing three visual landmarks and paints a
spotlight on it, like below:

These landmarks will be found and tracked on the user’s
screen at run time to dynamically update the area.
Another way to specify an area is to describe the landmarks
that form the vertical and horizontal bounds. Moreover, an
area can also be derived from other areas through set opera-
tions such as union and intersection. For example, the script
below defines the area shown on the next page,

Figure 4. Tracking targets and updating contextual help.

Note that using this method, it is possible to describe an
area using landmarks outside the area.
An alternative pixel-based approach would be to analyze
the structure of an interface and derive a structural path
(e.g., XPath) from the root window to the desired area [8].
But this approach cannot be applied to arbitrary areas that
do not correspond to any container widget.
Supporting WYSIWYG
To further lower the skill requirement, we developed a vis-
ual editor to complement the script editor. To promote
learnability, we borrowed familiar design elements from
popular presentation software such as PowerPoint and
Keynote. As a result, the editor has a layout that consists of
the main editing area, an overview panel, and a toolbar, as
shown in Figure 5.
Using the visual editor to create contextual help for a par-
ticular interface, a designer first captures the screenshot of
the entire interface and imports it into the editor. The
screenshot is placed on a slide in the editing area. The de-
signer then can choose from the toolbar a type of content
object (e.g., callout), select a location on the slide to insert
the object (e.g., 20 pixels to the left of the OK button), and
edit the properties of the object (e.g., set the text to Click
Here). The above process is similar to annotating a screen-
shot using typical presentation software. The only differ-
ence is that the designer needs to explicitly mark the target
(e.g., the OK button) and link relevant content objects to
the target. This marking is achieved by placing a special
anchor object on the target. An anchor object is a rectangle
that can be resized by the designer to fit the target. At
presentation time, pixels within this rectangle will be used
to form a template to search the screen for the target’s actu-
al location. Once the target is found, content objects linked
to the target will be displayed on the screen in the same
relative locations to the target as indicated in the slide.
As in typical presentation software, our visual editor allows
the designer to preview the content while they are develop-
ing it. In the preview mode, the editor is hidden temporarily
so that the screenshot in the editing area would not be mis-
taken for the real interface. The designer can then bring the
real interface to view, see whether content objects are ren-
dered correctly with respect to the targets, and return to the
editor to continue editing. Once the content is ready, it can
be converted to equivalent script commands and exported
to an executable to be distributed to users.

Integrating with Existing Screenshot Help
To integrate contextual help more seamlessly with tradi-
tional screenshot-based help, we introduced the Popout &
Connect feature to provide a clear transition from static
screenshots in a web browser to contextual help on a live
interface. When users click on an interface screenshot with
some components annotated, they will see these compo-
nents popping out from the screenshot along with the anno-
tations. Once users switch to the live interface, these
popped out virtual components then fly across the screen
and land on top of the corresponding components on the
live interface, carrying with them the annotations. This
animated effect helps users visualize the connection be-
tween the static screenshot and the live interface. For ex-
ample, in Figure 6, a screenshot in a web browser contains
two annotated components. They popped out and flew
across to the live interface on the right side of the screen.
Given a contextual help script and a static screenshot on a
webpage, the Popout & Connect feature is implemented by
first running the script only on that screenshot to locate the
annotated elements so that we know where to render the
popout effect. Since the screenshot may have been resized,

Figure 5. Visual editor for creating contextual help.

Figure 6. Popout & Connect for visualizing the mapping
from static annotations on a screenshot to contextual
help in a live interface.

pattern matching needs to be performed across multiple
scales in order to find the right scale. Afterward, the same
script is run on the whole screen on regular intervals until
the live interface becomes visible. Once the locations of
relevant components are known on the live interface, it is
possible to render the animation of these components flying
across the screen to achieve the connect effect.
VALIDATION THROUGH APPLICATIONS
Our primary goal for this research is to enable a large popu-
lation of help designers to generate contextual help for a
broad range of interfaces and interactive tasks. As valida-
tion, Figure 7 shows a set of four representative examples
of real-world applications of our tool.
To more systematically understand how broadly our tech-
nique can work, we attempted to create contextual help for
a real life set of static help currently offered by University
of Maryland’s help desk website. We picked what we were
told by our participants was one of the most visited topics:
configuring Exchange Calendars. We sampled 60 of the
110 topics currently available related to this task on the
site. There are a total of 376 steps in this sample. The aver-
age length of each topic is 6.26 step-long. We found 173 of
376 steps (46%) were already illustrated by screenshots.
Out of these, 167 (96.5%) can be converted to contextual
help using our tool. The problems we did find were due to
three reasons:

1. The content is specific to time and date, for exam-
ple, a dropdown menu prepopulated with dates
corresponding to the day before and after.

2. The content is specific to the user, for example, a
profile screen showing personal information.

3. The content is specific to a particular example,
such as the name of a fictional meeting entered in
a text box.

IMPLEMENTATION
The ability to locate widgets based on screenshots is pro-
vided by the Sikuli Library, an open-source cross-platform
library for automating graphical user interfaces based on
screenshots [32]. Rendering of contextual help on an inter-
face is achieved by painting on a full screen transparent
window that always stays on top. This transparent window
is implemented based on Java Swing’s JWindow class. The
algorithm for tracking the movement of a target and reposi-
tioning relevant help content dynamically is implemented
in Java. The WISIWYG editor is implemented in Java.
LIMITATIONS AND FUTURE WORK
By taking the pixel approach to generalizability, our tool
inevitably suffers from the same limitations faced by any
pixel-based technique such as scale changes and theme
variations. In our particular case, the severity of these limi-
tations varies depending on the user population. According
to our participants in the tech support group, many institu-

Figure 7. Examples of contextual help created by our tool. These examples demonstrate our toolʼs wide applicability to
many applications (Skype, Flash), platforms (Windows, Mac, Web browser), and tasks (setup, chat, game, filing tax).

tional users they support share a standard issued computing
environment and thus less susceptible to these limitations.
On the other hand, older adult computer users often enlarge
the font sizes for better readability, making scale invariance
an important issue. A possible solution worth pursing in the
future is to include multiple versions of the same pattern at
different scales.
ACKNOWLEDGEMENT
This research is supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Interior National
Business Center contract number D11PC200711. We thank the
HCIL, Raimund Hocke, Chip Denman, Linda Rossi, and our older
adult participants for their ideas, feedback and support.

REFERENCES
1. St. Amant, R., Lieberman, H., Potter, R., and Zettlemoyer, L.

Programming by example: visual generalization in program-
ming by example. Communications of the ACM 43, 3 (2000),
107-114.

2. St. Amant, R., Rey, M., Riedl, M.O., Ritter, F.E., and Rei-
fers, A. Image Processing in Cognitive Models with SegMan
Image processing in SegMan. In Proc. of HCI, 2001.

3. Bergman, L., Castelli, V., Lau, T., and Oblinger, D.
DocWizards: A System for Authoring Follow-me Documen-
tation Wizards. In Proc. of UIST, 2005.

4. Bigham, J.P., Lau, T., and Nichols, J. TrailBlazer: Enabling
Blind Users to Blaze Trails Through the Web. In Proc. of
IUI, 2009.

5. Chakravarthi, Y.A., Lutteroth, C., and Weber, G. AIMHelp:
Generating Help for GUI Applications Automatically. In
Proc. of CHINZ, 2009.

6. Chapuis, O. and Roussel, N. UIMarks: Quick Graphical In-
teraction with Specific Targets. In Proc. of UIST, 2010.

7. Dixon, M. and Fogarty, J. Prefab: Implementing Advanced
Behaviors Using Pixel-Based Reverse Engineering of Inter-
face Structure. In Proc. of CHI, 2010.

8. Dixon, M., Leventhal, D. and Fogarty, J. Content and Hier-
archy in Pixel-Based Methods for Reverse Engineering Inter-
face Structure. In Proc. of CHI 2011.

9. Farkas, D.K. The role of balloon help. ACM SIGDOC Aster-
isk Journal of Computer Documentation 17, 2 (1993), 3-19.

10. Findlater, L., Jansen, A., Shinohara, K., et al. Enhanced Area
Cursors: Reducing Fine Pointing Demands for People with
Motor Impairments. In Proc. of UIST, 2010.

11. Grabler, F., Agrawala, M., Li, W., Dontcheva, M., and Iga-
rashi, T. Generating photo manipulation tutorials by demon-
stration. ACM Transactions on Graphics 28, 3 (2009), 1.

12. Grossman, T. and Balakrishnan, R. The Bubble Cursor: En-
hancing Target Acquisition by Dynamic Resizing of the Cur-
sor’s Activation Area. In Proc. of CHI, 2005.

13. Grossman, T. and Fitzmaurice, G. ToolClips: An Investiga-
tion of Contextual Video Assistance for Functionality Under-
standing. In Proc. of CHI, 2010.

1 The U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or im-
plied, of IARPA, DoI/NBC, or the U.S. Government.

14. Huang, J. and B. Twidale, M.B. Graphstract: Minimal
Graphical Help for Computers. In Proc. of UIST, 2007.

15. Hurst, A., Hudson, S.E., and Mankoff, J. Automatically iden-
tifying targets users interact with during real world tasks. In
Proc. of IUI, 2010.

16. Kang, H. and Plaisant, C. New approaches to help users get
started with visual interfaces: multi-layered interfaces and in-
tegrated initial guidance. In Proc. of the 2003 annual nation-
al conference on Digital government research, (2003).

17. Kelleher, C. and Pausch, R. Stencils-Based Tutorials: Design
and Evaluation. In Proc. of CHI, 2005.

18. Lau, T., Bergman, L., Castelli, V., and Oblinger, D. Sheep-
dog: Learning Procedures for Technical Support. In Proc. of
IUI, 2004.

19. Olsen, D.R., Hudson, S.E., Verratti, T., Heiner, J.M., and
Phelps, M. Implementing interface attachments based on sur-
face representations. In Proc. of CHI, 1999.

20. Olsen, D.R., Taufer, T., and Fails, J.A. ScreenCrayons: An-
notating Anything. In Proc. of UIST, 2004.

21. Palaigeorgiou, G. and Despotakis, T. Known and Unknown
Weaknesses in Software Animated Demonstrations (Screen-
casts): A Study in Self-Paced Learning Settings. Journal of
Information Technology Education 9, (2010).

22. Pangoli, S. and Paternó, F. Automatic generation of task-
oriented help. ACM Press, 1995.

23. Plaisant, C. and Shneiderman, B. Show Me! Guidelines for
Producing Recorded Demonstrations. In Proc. of VL/HCC,
2005.

24. Potter, R.L.-S. Pixel data access: interprocess communication
in the user interface for end-user programming and graphical
macros. (1999).

25. Prabaker, M., Bergman, L., and Castelli, V. An evaluation of
using programming by demonstration and guided
walkthrough techniques for authoring and utilizing docu-
mentation. ACM Press, New York, New York, USA, 2006.

26. Riedl, M.O. and St. Amant, R. Toward automated explora-
tion of interactive systems. Proceedings of the 7th interna-
tional conference on Intelligent user interfaces - IUI ’02,
ACM Press (2002), 135.

27. Sukaviriya, P. and Foley, J.D. Coupling a UI framework with
automatic generation of context-sensitive animated help.
ACM Press, New York, New York, USA, 1990.

28. Sukaviriya, P. Dynamic construction of animated help from
application context. ACM Press.

29. Terry, M. and Mynatt, E.D. Side Views: Persistent, On-
Demand Previews for Open-Ended Tasks. In Proc. of UIST,
2002.

30. Wiedenbeck, S. and Zila, P.L. Hands-on practice in learning
to use software: a comparison of exercise, exploration, and
combined formats. ACM Transactions on Computer-Human
Interaction 4, 2 (1997), 169-196.

31. Wongsuphasawat, K., Guerra Gómez, J., Plaisant, C., Wang,
T., Taieb-Maimon, M., Shneiderman, B. LifeFlow: Visualiz-
ing an Overview of Event Sequences. In Proc. of CHI 2011.

32. Yeh, T., Chang, T.-H., and Miller, R.C. Sikuli: Using GUI
Screenshots for Search and Automation. In Proc. of UIST,
2009.

33. Zettlemoyer, L.S., St. Amant, R., and Dulberg, M.S. IBOTS:
Agent Control Through the User Interface. In Proc. of IUI,
1999.

View publication statsView publication stats

