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Abstract
The detection of malware is a critical task for the
protection of computing environments. This task
often requires extremely low false positive rates
(FPR) of 0.01% or even lower, for which modern
machine learning has no readily available tools. We
introduce the first broad investigation of the use
of uncertainty for malware detection across multi-
ple datasets, models, and feature types. We show
how ensembling and Bayesian treatments of ma-
chine learning methods for static malware detection
allow for improved identification of model errors,
uncovering of new malware families, and predic-
tive performance under extreme false positive con-
straints. In particular, we improve the true positive
rate (TPR) at an actual realized FPR of 1e-5 from
an expected 0.69 for previous methods to 0.80 on
the best performing model class on the Sophos in-
dustry scale dataset. We additionally demonstrate
how previous works have used an evaluation proto-
col that can lead to misleading results.

1 Introduction
Classifying a new file as benign (safe to run) or malicious
(not safe, termed “malware”) is a current and growing issue.
Malware already causes billions in damages [Anderson et al.,
2019; Hyman, 2013], and with healthcare systems increas-
ingly targeted has directly led to deaths [Eddy and Perlroth,
2021]. For years most anti-virus (AV) vendors have been see-
ing at least 2 million malicious new files per month [Spaf-
ford, 2014], and benign files on a network tend to outnumber
malicious files at a ratio of 80:1 [Li et al., 2017]. This cre-
ates a common need for malware detection systems to oper-
ate with extremely low false positive rates. If false positives
are too frequent, then analysts, IT, and support staff have to
spend too much work on non-threats while simultaneously in-
terrupting normal workflow. Even with this focus, Computer
Incident Response Teams (CIRT) are often dealing with over
50% false positive rates and cite it as the main issue with cur-
rent tooling [NISC, 2020].

The natural goal for AV style deployments of a malware
detector is to maximize the true positive rate (TPR) for some
maximally acceptable false positive rate (FPR). Production
deployments are often concerned with FPRs of 0.1% at most,
and preferably ≤0.001%. The issue of low FPR has been
recognized since the very first research on machine learning
based malware detection [Kephart et al., 1995], yet surpris-
ingly little work has been done to study how to maximize
TPR@FPR. We present the first work addressing this gap by
applying ideas from ensembling and Bayesian uncertainty es-
timation to a variety of common malware detection methods
in use today on the two largest public corpora. We develop a
number of contributions and previously unrealized insights:

1) All prior malware detection work we are aware of have
evaluated TPR@FPR incorrectly or or did not specify their
approach. The common error is to measure the TPR at the
desired FPR on the test set, but this presupposes knowledge
of the exact threshold to achieve the desired FPR. By instead
estimating the threshold on a validation set, we show prior
results have often misidentified their true TPR rates.

2) While the benefits of ensembling have long been known,
it is often presumed that significant model diversity is re-
quired to obtain meaningful benefit. We show even moder-
ately diverse or Bayesian approaches can significantly im-
prove the TPR, especially for the low-FPR regimes needed
for malware detection.

3) By using a Bayesian approach to estimate the epistemic
and aleatoric uncertainty of a model on a given sample, we
develop a new approach to thresholding a model’s decision
that can improve TPR and better approximate the desired FPR
on unseen data.

4) Malware detection deployment requires detecting novel
malware families, an intrinsically out-of-distribution task.
We show how epistemic and aleatoric uncertainty relates to
errors and novel malware families, allowing for faster detec-
tion of new threats.

The rest of this work is organized as follows. First we will
review the related research to our work in section 2. Next we
will detail the data, algorithms, and metrics used in all of our
experiments in section 3. We present extensive experimen-
tal results organized by our major contributions in section 4,
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which show that prior TPR estimates could be off by ≥ 35%
relative error, that ensembles of limited diversity can raise
TPR rates by≥ 11%. Then we leverage uncertainty estimates
to show a statistically significant improvement over the naive
approach of thresholding models for TPR/FPR trade-offs, and
that our uncertainty estimates are useful to malware analysts
in identifying mispredicted files. Our conclusions are pre-
sented in section 5.

2 Related Work
The need for low FP rates has been paramount since the in-
ception of machine learning malware detection research by
Kephart et al. [1995]. Much of the history in this domain is
focused on “signature” like tasks, where the goal was to rec-
ognize the set of already known malware, smaller than the
total population of malware. This led to works that used the
training data as part of the final evaluation data [Gavrilut
et al., 2012; Fukushima et al., 2010]. This approach is not
meaningful for determining TPR at any FPR due to over-
fitting, and is not tenable due to the now large and growing
population of malware with more sophisticated obfuscation
techniques. There is no agreed-upon threshold for exactly
how low FPs should be, with most published work rang-
ing from 0.1% down to ≤0.00002% [Rafique and Caballero,
2013; Smutz and Stavrou, 2012; Pitsillidis et al., 2010; An-
derson et al., 2016; Perdisci et al., 2008; Kolbitsch et al.,
2009; Saxe and Berlin, 2015; Raff et al., 2019]. Beyond some
works using training data at test time, all of these works eval-
uate their false positive rates on the test set, selecting the
threshold from the test set that gives them the desired FPR,
and then report the associated TPR. This is an understand-
able but incorrect approach, because the threshold is selected
explicitly from the test set, when our goal is to test the abil-
ity of the model to achieve an FPR on unseen data. As far
as we are aware, our work is the first in the malware detec-
tion space to identify this and propose selecting the threshold
from a validation set, and then evaluate the precision of the
FPR estimate in conjunction with the obtained TPR.

It is also worth noting that these cited prior works attempt
to minimize FPR primarily by feature selection, engineering,
or ML process pipeline choices that they believe will result
in a more accurate model or be biased towards low FPR. Our
approach is instead model agnostic, and seeks to better under-
stand the nature of selecting thresholds to achieve TPR@FPR
targets and improving it with uncertainty estimates. The only
other work we are aware of that has this goal is from the re-
lated domain of spam detection by Yih et al. [2006] who pro-
pose two dataset re-weighting approaches, but also determine
their success using the test set. Because they focus on data re-
weighting their approach is orthogonal to our own, and both
could be used simultaneously. The closest other work we are
aware of is [Eban et al., 2017] that develop differentiable ap-
proximations to AUC and Precision at a minimum Recall, but
their approach does not apply to our situation because we in-
stead need a maximum FP rate and specific points on the AUC
curve. Further, our need for very low FPR is problematic for
their setting as a mini-batch of data will be insufficient for
estimating low FPR.

A number of prior works have investigated diverse en-
sembles of different kinds of algorithms to improve mal-
ware detection accuracy [Ye et al., 2010; Liu and Wang,
2016; Kang et al., 2016; Menahem et al., 2009; Khasawneh
et al., 2015], following the common wisdom that averag-
ing over diverse and uncorrelated predictors improves accu-
racy [Wolpert, 1992; Breiman, 1996; Jacobs et al., 1991]. As
far as we are aware, we are the first to study the performance
of small ensembles of low-diversity (i.e, different runs of the
same algorithm) and identify their especially large impact on
TPR when needing extremely low FPR. This is important for
malware detection as a diverse ensemble often necessitates al-
gorithms that are too slow for deployment, and high compute
throughput is critical to practical utility in this domain.

Building upon the use of ensembles, the modeling of un-
certainty for decision making is notably missing from the cur-
rent machine learning for malware literature. An exception is
the approach of Backes and Nauman [2017] which introduces
new classes for uncertain decisions in the context of a simple
Bayesian logistic regression model applied to the Drebin An-
droid malware dataset [Arp et al., 2013; Spreitzenbarth et al.,
2013]. Understanding when a machine learning model is un-
certain about its prediction is critical in high risk applications
such as malware detection. When an automated malware de-
tection algorithm is uncertain about a sample, the uncertainty
estimate could be used to flag the sample for analysis by a
more computationally expensive algorithm or for review by a
human. Our work is the first we are aware to study how mod-
eling uncertainty can be used to improve TPR@FPR scores,
and to aid analysts by showing new samples with high uncer-
tainty are more likely to be novel malware families.

3 Methods
We provide details about the data and machine learning mod-
els used in our experiments. The majority of the existing re-
search in machine learning applied to malware detection has
focused on the automation of static malware analysis, where
a file is analyzed without being run. We will also focus on the
static analysis problem.

3.1 Data
Due to the need to estimate low FPR rates, we use the two
largest available corpora for malware detection. These are
the EMBER2018 and Sophos AI SOREL-20M datasets. We
note that both of these datasets focus on low FPR evaluation,
but make the same error in evaluation. Our first results in
section 3 will show the relative magnitudes of the errors.

We use the EMBER2018 dataset which consists of portable
executable files (PE files) scanned by VirusTotal in or be-
fore 2018 [Anderson and Roth, 2018]. The dataset contains
600,000 labeled training samples and 200,000 labeled test-
ing samples, with an equal number of malicious and benign
samples in both sets. The malicious samples are also labeled
by malware family using AVClass [Sebastián et al.]. All of
the testing samples were first observed after all of the train-
ing samples. EMBER2018 includes vectorized features for
each sample encoding general file information, header infor-
mation, imported functions, exported functions, section infor-
mation, byte histograms, byte-entropy histograms, and string



information [Anderson and Roth, 2018]. While the 1.1TB of
raw PE files are not available as part of EMBER2018, they
can be downloaded via VirusTotal. We note that the EM-
BER2018 dataset was designed to be more challenging for
machine learning algorithms to classify than the original EM-
BER2017 dataset.

We also use the recent Sophos AI SOREL-20M dataset,
consisting of 20 million files [Harang and Rudd, 2020]. The
much larger number of data points in the Sophos dataset is ad-
vertised as “industry scale” and allows for the exploration of
FPR constraints much smaller than allowed by EMBER2018.
In particular, the test set size for Sophos consists of 1,360,622
malicious samples and 2,834,441 benign samples. As part
of the Sophos dataset release, two baseline models are pro-
vided, including a feed-forward neural network (FFNN) and
a LightGBM (LGBM) gradient-boosed decision tree model.
Five versions of each of the models are pre-trained using dif-
ferent random seeds on the Sophos data using the same fea-
turization as EMBER2018.

3.2 Models
EMBER2018: We apply three models to the EMBER2018
dataset that each rely on different types of features. The first
model we apply is a Bayesian deep learning model based on
the MalConv model of Raff et al. [2017], a convolutional
neural network for malware detection that operates on the
raw byte sequences of files. We will refer to this model as
Bayesian MalConv (BMC). As exact Bayesian inference can-
not be done for deep neural networks such as MalConv, ap-
proximate inference methods need to be used.

Gal and Ghahramani [2016] introduced an easy to imple-
ment approach to variational inference in Bayesian neural
networks. In particular, they showed that a neural network
with dropout, a technique commonly used to reduce overfit-
ting in neural networks by randomly dropping units during
training [Hinton et al., 2012; Srivastava et al., 2014], applied
before every weight layer is equivalent to an approximation
of a deep Gaussian process [Damianou and Lawrence, 2013],
and that training with dropout effectively performs variational
inference for the deep Gaussian process model. The posterior
distribution can be sampled from by leaving dropout on at
test time. For Bayesian MalConv, we follow this approach
and apply dropout before each fully connected layer of the
MalConv model, with a dropout probability of p = 0.1. We
use the Adam optimizer [Kingma and Ba, 2014] to train the
model, and we produce 16 samples at evaluation time using
multiple forward passes on the trained model with dropout
left on.

The second model we apply is a Bayesian logistic regres-
sion (BLR) model which takes as input the binary presence of
94,225 byte 8-grams [Raff et al., 2019, 2018] selected using
LASSO from the one million most common byte 8-grams.
Dropout is used in a similar manner to Bayesian MalConv,
with a dropout probability of p = 0.1 and 16 samples at eval-
uation time.

The third model we apply is an ensemble of 16 Light Gra-
dient Boosting Machine (LGBM) models [Ke et al.] trained
with different random seeds on the EMBER features as de-
scribed in Anderson and Roth [2018].

Sophos: We apply two models to the Sophos dataset that
both rely on the EMBER2018 featurization. The first is an
ensemble of 5 feed-forward neural network (FFNN) models
as described in Harang and Rudd [2020], a simplified version
of the model from Rudd et al., trained using different random
seeds. The second is an ensemble of 5 LGBM models trained
using different random seeds. We use the publicly available
pre-trained models provided with the Sophos dataset as our
ensemble members for both models. While 5 ensemble mem-
bers may seem small, Ovadia et al. [2019] found that increas-
ing ensemble sizes beyond 5 has diminishing returns with re-
spect to the quality of the uncertainty estimates, so an ensem-
ble size of 5 may be sufficient. Our results will show that
not only are they sufficient, but for our goal of low FPR they
can be significantly more effective than has been previously
reported.

3.3 Uncertainty Estimation
The Bayesian framework allows for the principled model-
ing of uncertainty in machine learning and decision mak-
ing. Within this framework, probabilities represent degrees
of belief as opposed to the frequentist interpretation of prob-
abilities as long run frequencies [Liu and Wasserman, 2014].
Bayesian inference uses Bayes’ Theorem to update beliefs
(that are represented in the form of probability distributions)
when new data is observed.

In the context of machine learning, a Bayesian update
takes the following form where θ represents model param-
eters, D represents the data, and M represents the model
class: P(θ|D,M) = P(D|θ,M)P(θ|M)

P(D|M) , where P(θ|D,M) is
the posterior belief about the model parameters given the
data, P(D|θ,M) is the likelihood of the data given the model
parameters, P(θ|M) is the prior belief about model param-
eters, and P(D|M) is the marginal likelihood or evidence.
Bayesian inference is usually intractable due to the integrals
involved, unless the prior distribution is conjugate to the like-
lihood distribution. Unfortunately, conjugate priors exist for
only exponential family distributions [Murphy, 2012] and so
can’t be directly applied to complex models like Bayesian
deep neural networks.

As exact Bayesian inference cannot be done for Bayesian
deep learning models, approximate inference methods need
to be used. Given sufficient compute time, Markov Chain
Monte Carlo (MCMC) methods can be used to sample from
the posterior [Neal, 1995]. Unfortunately, common sampling
based approaches are difficult to scale to problems in the mal-
ware space where practical dataset sizes are measured in ter-
abytes because they require gradient computations over the
entire dataset. As MCMC is hard to scale in practice, varia-
tional inference is often used instead which converts the inte-
gration problem into an optimization problem where the pos-
terior is approximated using a simpler variational distribution
[Blei et al., 2017]. Variational inference for neural networks
was first introduced in the early nineteen nineties [Hinton and
van Camp, 1993], and Graves [2011] revived interest in varia-
tional inference for neural networks by introducing a stochas-
tic variational method for inference in neural networks.

We note that complicated Bayesian inference is not neces-
sarily needed to provide useful uncertainty estimates. Laksh-



minarayanan et al. [2017] introduce an alternative that trains
an ensemble of randomly initialized models. These deep
ensembles have been shown to produce competitive uncer-
tainty estimates [Ovadia et al., 2019; Ashukha et al., 2020]
because they are able to explore different modes in func-
tion space [Fort et al., 2019]. Wilson and Izmailov [2020]
argue that deep ensembles are not a competing approach to
Bayesian deep learning but rather are an effective approach
for Bayesian model averaging.

Two kinds of uncertainty can be distinguished [Gal, 2016].
Aleatoric uncertainty is caused by inherent noise and stochas-
ticity in the data. More training data will not help to reduce
this kind of uncertainty. Epistemic uncertainty on the other
hand is caused by a lack of similar training data. In regions
lacking training data, different model parameter settings that
produce diverse or potentially conflicting predictions can be
comparably likely under the posterior.

For classification tasks where epistemic and aleatoric un-
certainty don’t need to be differentiated, uncertainty can be
measured using the predictive distribution entropy:

H[P(y|x,D)] = −
∑
y∈C

P(y|x,D) logP(y|x,D)

Aleatoric uncertainty is measured using expected entropy:

ualea = EP(θ|D)H[P(y|x, θ)]

Mutual information is used to measure epistemic uncertainty:

uepis = I(θ, y|D,x) = H[P(y|x,D)]−EP(θ|D)H[P(y|x, θ)]

Monte Carlo estimates obtained by sampling from the pos-
terior can be used to approximate the terms of these equations
for our Bayesian models [Smith and Gal, 2018]. In particular,
P(y|x,D) ≈ 1

T

∑T
i=1 P(y|x, θi) and EP(θ|D)H[P(y|x, θ)] ≈

1
T

∑T
i=1H[P(y|x, θi)] where the θi are samples from the pos-

terior over models and T is the number of samples.
For our ensemble based models which are not explicitly

Bayesian (because each ensemble member receives the same
weight) but Bayesian inspired, uncertainties can be computed
in a similar way where the θi are no longer samples from
a posterior, but instead multiple independent trainings of a
model with T different random seeds.

3.4 Classification Metrics
We use multiple metrics to evaluate and compare approaches.

Accuracy is defined as the percent of correct predictions
made. Area under the receiver operating characteristic curve
(AUC) is the probability that the classifier will rank a ran-
domly selected malicious file higher in probability to be ma-
licious than a randomly selected benign file. The true positive
rate (TPR) is defined as the number of true positives over the
sum of true positives and false negatives. The false positive
rate (FPR) is defined as the number of false positives over the
sum of false positives and true negatives.

An important contribution of our work is to recognize that
the TPR obtained at any given FPR on the test set is not the
actual measure of interest in malware detection, but an over-
fit measure due to the implicit assumption that the correct de-
cision threshold is known at test time. The threshold must

be estimated during training or validation, and then applied
to the test set. This means we have a target maximum FPR
TFPR that we wish to obtain, and a separate actualized FPR
that is obtained on the test set. In order to capture the trade-
off between TPR and actualized FPR constraint satisfaction,
we define the following combined metric Equation 1 where
TFPR is the desired maximum FPR.

C = TPR− max(actualized FPR− TFPR, 0)

TFPR
(1)

This metric captures that we have a desired TPR, but pe-
nalizes the score based on the degree of violation of the FPR.
This is done by a division so that the magnitude of the viola-
tion’s impact grows in proportion to the target FPR shrinking.
This matches the nature of desiring low FPR itself. For ex-
ample, 90% TPR at a target FPR of 0.1% is still quite good if
the actualized FPR is 0.11% (C = 0.8), but is unacceptably
bad if the target FPR was 0.01% (C = −9.1).

4 Experiments and Discussion
Now that we have discussed the methods of our work and the
metrics by which they will be examined, we will show empir-
ical results demonstrating our primary contributions: 1) Eval-
uating test-set performance thresholds from the test set leads
to misleading results at lower FPR, 2) Simple non-diverse en-
sembles can dramatically improve TPR at any given FPR rate,
3) we can further improve TPR@FPR by explicitly modeling
Bayesian uncertainty estimates into our decision process, and
4) these uncertainty estimates have practical benefits to appli-
cation by showing that errors and previously unseen malware
families have uncertainty distributions that place more weight
on higher uncertainties. For each of these we will include the
empirical results on the EMBER2018 and the Sophos 2020
corpora, and include additional discussion and nuance to how
these relate to practical deployment.

4.1 Misleading Evaluation
A currently accepted practice for evaluating malware detec-
tion models under FPR constraints is to report the test set
ROC curve. Once the test set ROC curve is produced, the
desired FPR rates from the curve are selected to show their
associated TPR. This is misleading as in practice the test set
is not available when choosing the decision threshold, caus-
ing this evaluation procedure to be invalid. Instead, we must
recognize that there are a priori target FPRs that are the FP
rates that we desire from the model, and the actualized FPRs
which are what is obtained on the test (read, “production”)
data. Selecting the threshold from the test set hides that the
target and actualized FPRs are different, especially for low
FPRs that require large amounts of data to estimate. The valid
approach to this scenario when evaluating a classifier at dif-
ferent FPRs is to select the thresholds using a validation set.
Once the thresholds are selected that obtain the target FPRs,
they can be applied to the test set to obtain the actualized
FPRs and their associated TPRs. We show the impact this
has on the entire TPR/FPR curve in Figure 1 which shows the
absolute relative error in TPR for a given actualized FPR. De-
pending on the model and dataset, the resulting TPR for any
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Figure 1: Absolute relative error in TPR when using the invalid eval-
uation protocol, for three different model and dataset combinations.
A valid evaluation protocol will use a validation set ROC curve to
select a threshold given a desired FPR. The evaluation protocol that
is currently the norm in the malware detection literature is invalid
because it uses the test set ROC curve, which is never available in
practice, to select a threshold. The use of the invalid evaluation pro-
tocol can lead to over a 30 percent relative error in TPR.

actualized FPR can change by over 30%, and the relative er-
ror generally increases as the FPR decreases. This is expected
because low FPRs naturally require more data to estimate: if
you want an FPR of 1:1,000 and you want 1,000 FPRs to esti-
mate the threshold from you would expect to need 1, 0002 =
1 million examples.

We note that the Sophos FFNN model seems to be partic-
ularly robust with the lowest error in Figure 1. This is in part
a testament to the FFNN approach, but more broadly a func-
tion on the magnitude of the Sophos dataset. With 2.5 million
samples in the validation set and 4.2 million in the test set, the
corpus is large enough to mitigate the impact of some inap-
propriate practices. To demonstrate the impact the validation
set can have, we show the same results in Figure 2 when only
the validation set used to select the threshold is reduced by
various orders of magnitude.

One can clearly see that as the validation set size decreases,
the ability to estimate the FPR decreases. This causes more
errors and a “shortening” of the curves as it becomes impos-
sible to estimate lower desired FPR rates. This last point is
important as some prior works have reported FPRs lower than
what their dataset could accurately estimate. If the test set
size times the desired FPR is less than 100 samples, it is un-
likely the TPR@FPR reported will be an accurate estimate
(e.g., as done in [Anderson et al., 2016]).

We note that this distinction between invalid vs. valid ap-
proaches is not a critique on the evaluation of entire ROC
curves. The fundamental distinction is whether we care about
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Figure 2: Absolute relative error in TPR when using the invalid eval-
uation protocol at various levels of subsampling of the validation set.

the entire ROC curve, or only specific points from the ROC
curve. If you care about the entire ROC curve, evaluating
the ROC on the test set is valid and appropriate. But because
malware detection is concerned with particular points from
the ROC curve, it becomes necessary to evaluate if the ap-
proach can hit its desired location on the curve (i.e., a specific
FPR in production). There are also valid scenarios to con-
sider just the ROC curve as a whole for malware analysis and
its associated AUC, as it represents a metric of ability to rank
that is applicable to other scenarios within malware detection
and analysis. Our critique is for just those concerned with
AV-like deployments that aim for low FPRs specifically.

4.2 Ensembles
We have now shown that the correct approach to developing
a ROC curve when one wishes to evaluate specific points on
the curve is to select the threshold from a validation set rather
than the test set. We will apply this to the results of this sec-
tion to show that creating an ensemble of randomly seeded
models can improve the obtained TPR at almost any actual-
ized FPR, especially under extreme FPR constraints. Figure 3
shows the ROC curves for individual models as well as for the
ensemble consisting of those individual models. The Sophos
trained FFNN ensemble notably performs significantly better
than any individual member of the ensemble, with the gap in
performance widening as FPR becomes smaller.

The fact that these are all the same type of model, but with
different random seeds at initialization, is an important and
not previously recognized phenomena. Classical wisdom is
that ensembles should maximize diversity to reduce corre-
lation of predictions, and thus maximize accuracy. But in
our scenario malware detection models are designed to be
lightweight in model size, low latency, and high through-
put, so that the AV system does not interrupt the users of a
computing system. A classically diverse model with differ-
ent types of algorithms or features, as done in prior work in
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Figure 3: Sophos ensembles that take the average of predictions
from randomly seeded models can lead to significant TPR gains un-
der extreme FPR constraints, compared to individual models.

this space, ends up including approaches that are many or-
ders of magnitude larger and slower than the lighter weight
approaches we study in this work. Because we can use multi-
ple versions of the same type of model with the same features,
we can maintain the high throughput, low latency & size re-
quirements while obtaining these large gains in TPR.

Table 1 compares the accuracy, AUC, and AUC @ ≤ 0.1%
FPR achieved by ensembles to the average of those achieved
by individual ensemble members. In all cases, the ensem-
ble has better performance than the expected performance
of individual ensemble members, even though they are us-
ing an ensemble of low diversity. Of particular importance is
the performance of each model in the low FPR domain has
a greater relative improvement (median 11% improvement)
than one may have anticipated looking at more standard met-
rics like Accuracy and AUC (median improvements of 0.6%
and 0.4% respectively). The only exception to this is the Lo-
gistic Regression approaches which have difficulty operating
at the extremely low FPR ranges, which we will see repeated.

4.3 Uncertainty Based Threshold Adjustments

While ensembling predictions by taking an average leads to
improved results, there is more information within ensembles
that can be leveraged to further ameliorate performance un-
der extreme FPR constraints. In particular, estimates can be
computed for epistemic (uepis ) and aleatoric (ualea ) uncer-
tainty. We introduce a simple threshold adjustment approach
that leverages data point specific uncertainty to locally adjust
the threshold based on the uncertainty. We explore three un-
certainty aware local threshold adjustments:

Table 1: Accuracy and AUC for each model and dataset combina-
tion. Ensembles are compared to the expected performance of their
components. Best results are shown in bold.

Dataset Model Accuracy AUC AUC≤0.1%FPR

EMBER

Bayesian MalConv 91.64 97.47 0.04079
MalConv 90.88 97.05 0.03288
Bayesian Log. Reg. 94.72 98.15 0.0
Log. Reg. 94.15 97.32 0.0
LightGBM Ensemble 93.98 98.62 0.06054
LightGBM 93.88 98.55 0.05433

Sophos

FFNN Ensemble 98.81 99.83 0.09274
FFNN 98.56 99.75 0.08990
LightGBM Ensemble 86.10 98.41 0.04459
LightGBM 85.47 98.05 0.03637

ŷadj = ŷ + α1 · uepis + α2 · ualea (2)
ŷadj = ŷ + α1 · exp(α3 · uepis) + α2 · exp(α4 · ualea) (3)
ŷadj = ŷ + 1[ŷ > α0](α1 · uepis + α2 · ualea)+

1[ŷ ≤ α0](α3 · uepis + α4 · ualea)
(4)

where 1[·] is the indicator function, ŷ is the original ensemble
prediction for a data point, uepis is the epistemic uncertainty
(mutual information) for a data point’s prediction, ualea is
the aleatoric uncertainty (expected entropy) for a data point’s
prediction, the αi are learned scaling factors, and ŷadj is the
uncertainty adjusted prediction for a data point. The scal-
ing factors are learned by iteratively optimizing each αi to
maximize TPR given a desired FPR, where after each scaling
factor adjustment a new global adjustment is computed.

Because TPR@FPR is not a differentiable metric, we use
a gradient free approach to altering the weights α. In par-
ticular, we use a coordinate descent style approach where we
take turns optimizing the individual αi values while holding
all others fixed, repeating the process until convergence. This
is feasible thanks to the convex behavior that occurs with re-
spect to the TPR scores. If αi is set too large, then the asso-
ciated feature (e.g, uepis or ualea ) becomes the only effective
factor by overshadowing all other components, but is not suf-
ficient on its own to make meaningful predictions, resulting
in a low TPR when selecting the target FPR. If the weight is
too small then the associated feature has no impact, and the
result is unchanged. This creates the two “low points,” and
a weight that results in a higher score (hopefully) exists be-
tween the two extrema. This can then be selected with high
precision by using a golden search by treating the extrema as
brackets on a solution. We use Brent’s method to solve this
because it allows faster searches by approximating the prob-
lem with a parabola when possible, and switching to golden
search in the worst case, allowing it to solve the optimization
quickly.1

This gives us an approach to directly optimize our target
metric even though it is non-differentiable, and to do so with
high precision in just a few minutes of computation. All op-
timization occurs on the validation set. While the Sophos

1In our experience each call to Brent’s method takes less than
100 optimization steps.



Table 2: Sophos comparison of the standard global adjustment (la-
beled as (g)) to the uncertainty aware local adjustments from Equa-
tion 2 (labeled as (g+l)) and Equation 3 (labeled as (g+lv2)) and
Equation 4 (labeled as (g+lv3)). Best combined score (TPR penal-
ized for over-runs on target FPR) shown in bold.

Target
FPR

Test
Perf.

LGBM FFNN

(g) (g+l) (g+lv2) (g+lv3) (g) (g+l) (g+lv2) (g+lv3)

1%
TPR 8.060E-01 8.125E-01 8.150E-01 8.137E-01 9.779E-01 9.779E-01 9.779E-01 9.779E-01
FPR 1.175E-02 1.123E-02 1.125E-02 1.129E-02 8.664E-03 8.663E-03 8.666E-03 8.665E-03

Comb. 6.315E-01 6.899E-01 6.904E-01 6.845E-01 9.779E-01 9.779E-01 9.779E-01 9.779E-01

0.1%
TPR 5.264E-01 5.318E-01 5.343E-01 5.342E-01 9.440E-01 9.471E-01 9.450E-01 9.450E-01
FPR 1.493E-03 1.088E-03 9.699E-04 9.681E-04 9.695E-04 9.473E-04 1.024E-03 1.022E-03

Comb. 3.338E-02 4.434E-01 5.343E-01 5.342E-01 9.440E-01 9.471E-01 9.208E-01 9.233E-01

0.01%
TPR 2.296E-01 2.352E-01 2.371E-01 2.278E-01 9.017E-01 9.037E-01 9.086E-01 9.086E-01
FPR 4.339E-05 5.751E-05 5.786E-05 4.375E-05 8.855E-05 9.032E-05 8.961E-05 9.102E-05

Comb. 2.296E-01 2.352E-01 2.371E-01 2.278E-01 9.017E-01 9.037E-01 9.086E-01 9.086E-01

0.001%
TPR 9.940E-02 1.007E-01 1.075E-01 1.007E-01 8.022E-01 8.046E-01 8.043E-01 8.041E-01
FPR 3.881E-06 4.586E-06 4.939E-06 4.586E-06 4.234E-06 5.292E-06 5.998E-06 4.586E-06

Comb. 9.940E-02 1.007E-01 1.075E-01 1.007E-01 8.022E-01 8.046E-01 8.043E-01 8.041E-01

dataset comes with a validation set, EMBER2018 does not,
so we create a validation set for EMBER2018 using five fold
cross-validation. The αi are optimized in an alternating man-
ner for Equation 2 and in a randomized sequential manner
for Equation 3 and Equation 4. Brent’s method is used as
the optimizer [Brent, 1972], with a bracketing interval of
[−100, 100] for Equation 2, of [−10, 10] for Equation 3, and
of [0, 1] for Equation 4 with [−0.1, 0.1] for α0. A ROC curve
is then computed using the locally adjusted ŷadj to obtain the
final global threshold. For all methods, when fitting the global
and local threshold adjustments using the validation set, a tar-
get FPR of 0.9 times the actual desired FPR is used in order to
conservatively satisfy the constraint given differences in the
test set data.

We briefly note that we had also tried optimizing the un-
certainty scaling factors and thresholds jointly using a CMA-
ES gradient-free optimization approach [Hansen and Oster-
meier]. Unfortunately, the obtained solutions were not pre-
cise enough given the extremely small FPR constraints, lead-
ing us to use the iterative optimization of each variable using
Brent’s method.

The results comparing our new uncertainty augmented lo-
cal adjustments Equation 2 (g+l) and Equation 3 (g+lv2) and
Equation 4 (g+lv3) against the naive approach (g) are pro-
vided in Table 2 for the Sophos dataset. Additional results for
EMBER2018 are provided in Appendix Table 3. Bolded are
the methods that performed best by the combined score Equa-
tion 1 which penalizes going over the target FPR. We note
that across datasets, models, and target constraints, the inclu-
sion of uncertainty based local adjustments (g+l and g+lv2
and g+lv3) improves over the standard use of only a global
threshold adjustment (g). All three approaches are statisti-
cally significant in their improvement (Wilcoxon-signed rank
test p-values of 0.02, 0.01, and 0.025 respectively). In almost
all cases if (g+lv2) is the best performer, (g+l) and (g+lv3)
are the second and third best. Similarly, when (g+lv2) is not
the best, it is usually still better than (g).

4.4 Uncertainty on Errors and New AV Classes
Our local threshold adjustments using epistemic and aleatoric
uncertainty estimates show improved TPR for extremely low
target FPRs. We further investigate how this is possible, and
in doing so show that these uncertainty estimates provide an
additional benefit to practical application. We observe that
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Figure 4: A comparison of uncertainty distributions for the EM-
BER2018 models at test time between malware families seen and
unseen during training.

the errors of our models are correlated with both uncertainty
measures. This means we can use the uncertainty measures
not just as a means of adjusting the threshold, but as a sourc-
ing tool for analysts. The data with the highest uncertainty
scores are the most likely to be mispredicted, and thus guide
the analysts to the samples where their time is best spent. Ad-
ditional details can be found in the Appendix, and next we fo-
cus on an extended version of this result, in that uncertainties
are also correlated with a sample being novel malware or not.

Of the 200,000 files in the EMBER2018 test set, 363 be-
long to new malware families that were not present in the train
set (we note that all the test set are new files that did not exist
prior, as the train/test split is a split in time). Figure 4a and
Figure 4b show that the Bayesian MalConv and LightGBM
ensemble uncertainty distributions for test samples from mal-
ware families seen during training place most of their weight
on lower uncertainty values, whereas the uncertainty distribu-
tions for novel families not seen during training place most of
their weight on higher uncertainty values. We however found
that the Bayesian logistic regression model mostly does not
exhibit this behavior, likely due to the simplicity of the model
class which limits the extent to which predictions can dis-
agree. Overall, these results suggest that for some models,
uncertainties can be leveraged for the detection of new, out of
training distribution, malware families.

5 Conclusions
We have provided evidence that uncertainty estimation us-
ing ensembling and Bayesian methods can lead to significant
improvements in machine learning based malware detection
systems. In particular, improvements were especially large
under extreme false positive rate constraints which are com-
mon in deployed, production scenarios. Local uncertainty



based threshold adjustments were shown to lead to higher
TPRs while satisfying desired FPR maximums. We addition-
ally demonstrated how previous works have used an evalu-
ation protocol that can lead to misleading results, and how
uncertainty can be used to better detect model errors and new
malware families.

Obtaining uncertainties has an inherent additional compu-
tational cost at prediction time which may limit use in re-
source limited deployed contexts. However, recent advances
such as BatchEnsemble [Wen et al., 2020] have introduced
new methods to avoid the computational and memory costs
of naive ensembles.

We are currently working with professional malware ana-
lysts and teams that believe this approach may benefit them in
production environments based on the evidence this work has
provided. Future work includes leveraging uncertainty esti-
mates to decide when to run more expensive malware analysis
algorithms and techniques such as dynamic analysis, explor-
ing and explaining malware specific drivers of uncertainty,
and evaluating these methods over a long period of time in
production.
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A Reproducibility
The Sophos dataset and pre-trained models can be found here:
https://github.com/sophos-ai/SOREL-20M

The EMBER2018 dataset and a description of the EM-
BER2018 featurization method can be found here: https:
//github.com/elastic/ember

B Additional Results and Figures
Results comparing our new uncertainty augmented local ad-
justments Equation 2 (g+l) and Equation 3 (g+lv2) and Equa-
tion 4 (g+lv3) against the naive approach (g) are provided in
Table 3 for the EMBER2018 dataset.

The only case where (g) performed best is when using
the Bayesian Logistic Regression (BLR) model on the EM-
BER2018 corpus at a target FPR of 0.01%. In this one
case we have pushed the model beyond what it is capable of
achieving, and all three methods perform poorly - by happen-
stance the global threshold’s degenerate solution of claiming
that there is no malware receives a better score due to our
uncertainty approaches failing to meet the FPR goal, which
has a high penalty. However, we would argue our uncertainty
based approaches are still preferable in this scenario because
the degenerate model (g) is equivalent to having no anti-virus
installed.

Figure 5a, Figure 5b, and Figure 5c on the EMBER2018
dataset and Figure 6a and Figure 6b on the Sophos data show
that the uncertainty distributions for test samples that the
models ultimately got wrong place most of their weight on
higher uncertainties. Consistently, the uncertainty distribu-
tion for test samples that a model ultimately got right places
most of its weight on lower uncertainties. This suggests that
overall system performance can be improved by leveraging
uncertainty and flagging high uncertainty predictions for fur-
ther processing and review. This explains the success of our
approach, which can learn to use the uncertainty terms as a
kind of additional offset. The more we want to lower the FPR
rate, the less we should trust the model’s outputs if uncer-
tainty is high.
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Figure 5: A comparison of uncertainty distributions for all three EM-
BER2018 models at test time between samples predicted correctly
and incorrectly.
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Table 3: EMBER2018 comparison of the standard global adjustment (labeled as (g)) to the uncertainty aware local adjustments from Equa-
tion 2 (labeled as (g+l)) and Equation 3 (labeled as (g+lv2)) and Equation 4 (labeled as (g+lv3)). Best combined score (TPR penalized for
over-runs on target FPR) shown in bold.

Target FPR=1% Target FPR=0.1% Target FPR=0.01%

Method TPR FPR Comb. TPR FPR Comb. TPR FPR Comb.

BMC (g) 7.602E-01 1.177E-02 5.832E-01 4.998E-01 8.100E-04 4.998E-01 2.422E-01 8.000E-05 2.422E-01
BMC (g+l) 7.617E-01 1.217E-02 5.447E-01 4.998E-01 8.300E-04 4.998E-01 2.431E-01 9.000E-05 2.431E-01
BMC (g+lv2) 7.594E-01 1.166E-02 5.934E-01 5.016E-01 8.200E-04 5.016E-01 2.434E-01 9.000E-05 2.434E-01
BMC (g+lv3) 7.605E-01 1.173E-02 5.875E-01 5.023E-01 8.200E-04 5.023E-01 2.434E-01 9.000E-05 2.434E-01
BLR (g) 7.778E-01 9.550E-03 7.778E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
BLR (g+l) 7.781E-01 9.560E-03 7.781E-01 5.977E-02 7.500E-04 5.977E-02 1.000E-04 8.600E-04 -7.600E+00
BLR (g+lv2) 7.781E-01 9.560E-03 7.781E-01 5.248E-02 7.800E-04 5.248E-02 9.000E-05 7.900E-04 -6.900E+00
BLR (g+lv3) 7.779E-01 9.290E-03 7.779E-01 5.261E-02 8.200E-04 5.261E-02 5.840E-03 1.200E-04 -1.942E-01

LGBM (g) 8.805E-01 1.805E-02 7.547E-02 6.954E-01 1.550E-03 1.454E-01 4.888E-01 8.000E-05 4.888E-01
LGBM (g+l) 8.680E-01 1.494E-02 3.740E-01 6.892E-01 1.390E-03 2.992E-01 5.142E-01 9.000E-05 5.142E-01
LGBM (g+lv2) 8.693E-01 1.488E-02 3.813E-01 6.917E-01 1.430E-03 2.617E-01 5.142E-01 9.000E-05 5.142E-01
LGBM (g+lv3) 8.727E-01 1.512E-02 3.607E-01 6.890E-01 1.380E-03 3.090E-01 5.136E-01 9.000E-05 5.136E-01
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Figure 6: A comparison of uncertainty distributions for an ensem-
ble of Sophos models at test time on Sophos data between samples
predicted correctly and incorrectly.


	sheet1
	2108.04081
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Data
	3.2 Models
	3.3 Uncertainty Estimation
	3.4 Classification Metrics

	4 Experiments and Discussion
	4.1 Misleading Evaluation
	4.2 Ensembles
	4.3 Uncertainty Based Threshold Adjustments
	4.4 Uncertainty on Errors and New AV Classes

	5 Conclusions
	A Reproducibility
	B Additional Results and Figures


