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Abstract9

Lidar backscatter and wind retrievals of the planetary boundary layer height (PBLH)10

are assimilated into 22 hourly forecasts from the NASA Unified - Weather and Research11

Forecast (NU-WRF) model during the Plains Elevated Convection Convection at Night12

(PECAN) campaign on July 11, 2015 in Greensburg, Kansas, using error statistics col-13

lected from the model profiles to compute the necessary covariance matrices. Two sep-14

arate forecast runs using different PBL physics schemes were employed, and comparisons15

with 5 independent sonde profiles were made for each run. Both of the forecast runs ac-16

curately predicted the PBLH and the state variable profiles within the planetary bound-17

ary layer during the early morning, and the assimilation had little impact during this18

time. In the late afternoon, the forecast runs showed decreased accuracy as the convec-19

tive boundary layer developed. However, assimilation of the doppler lidar PBLH obser-20

vations were found to improve the temperature, water vapor and velocity profiles rela-21

tive to independent sonde profiles. The computed forecast error covariances between the22

PBLH and state variables were found to rise in the late afternoon, leading to the larger23

improvements in the afternoon. This work represents the first effort to assimilate PBLH24

into forecast states using ensemble methods.25

1 Introduction26

The planetary boundary layer (PBL) plays an important role in both weather and27

climate. This layer is where the Earth’s surface interacts with the atmosphere, exchang-28

ing heat, moisture and pollutants. The PBL height (PBLH) is central to these interac-29

tions and is controlled by the energy flux from the surface. Under certain conditions dur-30

ing daytime it defines the convective boundary layer (CBL) and during nighttime it is31

the stable (non-convective) boundary layer (SBL). Trace gases and aerosols emitted from32

the surface are rapidly transported within this layer by turbulent atmospheric motion,33

and transfer of energy and mass into the free troposphere occurs across an interfacial layer34

at the top of the PBL. The PBLH is fundamental to weather, climate, atmospheric tur-35

bulence and pollution through its role in land-atmosphere interactions and mediation36

of Earth’s water and energy cycles (Santanello et al. 2018) and its impact on convection37

in the troposphere, which is generally initiated within the boundary layer and then pen-38

etrates the top (Hong and Pan, 1998; Browning, et al. 2007). Thus, accurate knowledge39

of the PBLH is essential for both weather and climate forecasting.40
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The PBLH is defined by thermodynamic properties such as a temperature inver-41

sion or hydrolapse which can be measured by radiosonde. Alternatively the drop off in42

aerosol concentration that occurs across the top of the PBL is used, since aerosols are43

well mixed throughout the PBL (Hicks, et al., 2019). Atmospheric models rely on pa-44

rameterization schemes to define the structure of the PBL and compute PBLH. These45

are generally either local mixing schemes that use local turbulent kinetic energy (TKE,46

Janjic, 1994) or flux schemes (Hong and Pan, 1996). Generally, these PBL parameter-47

izations have systematically higher PBLH relative to observed values (Hegarty et al., 2018),48

and also have difficulties modeling the growth of the convective layer during the morn-49

ing. These varying and distinct definitions of PBLH across models and observations re-50

main a challenge in terms of utilizing both for process understanding or model evalua-51

tion/development.52

Observations of PBLH are traditionally made by radiosonde measurements, which53

have high vertical resolution but are expensive to launch frequently and are thus lim-54

ited to special experiments and/or ill-timed launches (e.g. 00/12Z National Weather Ser-55

vice launches) with respect to the convective and stable PBL development. Likewise, space-56

borne measurements of the lower troposphere from passive and active instruments (with57

the exception of Global Positioning System Radio Occultation (GPSRO), Ao, et al. 2008)58

are severely limited in vertical, spatial, and/or temporal resolution (Wulfmeyer et al. 2015).59

Ground based measurement of PBLH has been proposed for an extensive network of ceilome-60

ters by adding to the functionality of instruments that were designed for measuring cloud61

heights [Hicks et al., 2016]. The ceilometer measures the time required for a laser pulse62

to return to a receiver, from which the height of the scattering is determined. The in-63

tensity of the backscatter is correlated with the density of aerosols at a given height and64

the PBLH is inferred from the location of the maximum negative gradient of the backscat-65

ter intensity. Several algorithms employ wavelet transforms to identify the location of66

the negative gradient (e.g. Brooks, 2003; Knepp, et al., 2017), which relies on finding the67

wavelet dilation that is large enough to be distinct from noise and small-scale gradients68

in the backscatter profile. This existing network of ceilometers could be used to create69

a relatively dense network of frequent PBLH observations, as was recommended by the70

2009 study from the National Research Council (NRC, 2009) and the Thermodynamic71

Profiling Technologies Workshop (NCAR, 2012).72
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The lidar observations used in this study were taken at the PECAN site in Greens-73

burg, Kansas. The data is from a commercial Doppler lidar owned and operated by the74

University of Maryland, Baltimore County (Delgado et al., 2016). This lidar operates75

at an infrared wavelength, and hence receives its strongest backscattered signal within76

the aerosol-laden PBL and is often below the noise floor above the PBL. The Doppler77

shift of the backscattered signal is used to calculate wind speed as a function of range,78

which can then be used to produce a multitude of wind and turbulence variables use-79

ful for PBL characterization (e.g. vertical velocity variance and signal-to-noise ratio vari-80

ance). The PBLH algorithm applied for this study combines several such aerosol and wind81

variables for PBLH measurement and was described at length in Bonin et al. (2018). Ad-82

ditional lidar parameters and the application of the algorithm to PECAN data were pre-83

sented in Carroll et al. (2019). Each PBLH measurement was made from a repeating84

25-minute lidar scan cycle.85

The question remaining is how to assimilate these observations into a numerical86

weather prediction (NWP) model. PBLH is a diagnostic variable in NWP parameter-87

ized physics models. This means any correction to PBLH will be lost during the model88

forecast unless the PBLH height observation is used to correct state variables such as89

temperature and moisture. This could be done either by creating an adjoint of the PBL90

parameterization scheme, or through the use of an ensemble Kalman filter which would91

determine the error covariances between PBLH and state variables in the model. The92

structure of the covariance, and how the state variables are changed by assimilating PBLH,93

will depend on which PBL scheme is used. We will show how such a system could work94

by conducting a posteriori lidar PBLH observation impact experiments using forecast95

fields from a NASA Unified - Weather and Research Forecast (NU-WRF, Lidard-Peters,96

2015) model runs for one day during the Plains Elevated Convection at Night (PECAN)97

campaign on July 11, 2015. The assimilation is done on 22 hourly WRF forecast fields98

throughout the day without cycling the analysis fields back into the model with two dif-99

ferent PBL parameterizations. In this paper, we demonstrate a new and promising method100

that uses the relative lidar-based aerosol backscatter and wind derived PBLH to correct101

model forecasted state variables. The purpose here is to show how ensemble computed102

error covariance can transfer observational information from PBLH to the state variable103

profiles.104
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2 Methodology105

The assimilation methodology is based on the ensemble Kalman filter (EnKF)(Evensen,106

2009), where the analysis state is the estimate with the minimum estimated errors, rel-107

ative to the given error statistics. It differs from the EnKF in that the analysis is not108

used as an initial state for the next model forecast. Rather, two existing one day NU-109

WRF forecasts, with different PBL physics schemes, are used when lidar measurements110

are available at a single location. These forecasts were produced as a part of the PECAN111

campaign in 2015, and we resuse them here to demonstrate the assimilation algorithm112

that we have developed. These were not ensemble forecasts so we cannot build a stan-113

dard ensemble Kalman filter from them. Instead we use Ensemble Optimal Interpola-114

tion (EnOI), we use profiles from neighboring model gridpoints to obtain and estimate115

of error statistics (Oke, et al., 2010; Keppenne, et al., 2014). This approach will allow116

for the construction of the vertical component of covariance, which is needed in order117

to understand how PBLH can be used to correct atmospheric profiles through the use118

of profile and PBLH statistics. We use profiles from nearby model grid points and have119

tested the system with varying numbers of grid points in the ensemble. An ensemble Kalman120

filter would likely give different covariance information, but the basic relationship be-121

tween the state variable profiles and the PBLH are determined by the model in the same122

manner here.123

The two NU-WRF simulations use the Mellor–Yamada–Janjic (MYJ)[Mellor and124

Yamada, 1974, 1982; Janjic, 2002] and Mellor-Yamada-Nakanishi-Niino level 2.5 (MYNN)125

[Nakanishi and Niino, 2009] which are local 1.5 and 2.5 order turbulence closure schemes126

respectively. The PBLH in each of these models is estimated using the total kinetic en-127

ergy (TKE) method. The NU-WRF forecast state variables are temperature (T), mois-128

ture (Q) and velocity (U,V), and we define the forecast vector xf = [T f Qf Uf V f (PBLH)fW f ],129

where we have combined PBLH with the state variables to enable the covariance calcu-130

lation between them. The forecast runs are initiated from a global reanalysis interpo-131

lated to the local domain of 30-48N and 84-110 W, with 220×220 lat/lon and 54 ver-132

tical levels. Therefore the state at the initial time has assimilated all of the convential133

and satellite observations globally. This means that our experiments are all less than 24134

hours from the most recent global analysis. We use an ensemble of the 20 × 20 near-135

est gridpoints, so that all of the ensemble members are within about 30 km of the lidar136

observations (since the grid spacing is about 3 km). Generally, larger ensembles using137
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gridpoints farther away will result in larger forecast error covariance because the geo-138

graphic variability. So this ensemble size was chosen as a balance between ensemble size139

and geographic localization. The forecast standard deviation for PBLH on the chosen140

ensemble was around 27 m at 22 UTC.141

The forecast error covariance, Pf is defined as142

Pf =
〈
(xf − xt)(xf − xt)T

〉
(1)

where the summation is over the grid points i = 1, Nlon, j = 1, Nlat and xt is the (un-143

known) true state, on the discrete model grid. We only assimilate the observation yo =144

PBLH = H (xf ) where H is the non-linear observation operator. The analysis equa-145

tion is146

xa = xf + K(yo −H (xf )) (2)

where the gain matrix, K is defined by:147

K = PfHT (HPfHT + (σo)2)−1, (3)

σo is the observation error standard deviation supplied with the lidar retrievals, and H148

is the linearized observation operator for PBLH. Because the PBLH is related to the state149

variables via the two PBL physics schemes, determining H would require linearizing the150

PBL physics at every analysis time. Instead of this approach, we use the ensemble of pro-151

files from the forecast field locations xf and the boundary layer heights PBLHf to ob-152

tain the ensemble estimates:153

PfHT ≈
〈
(xf − µx

f ) (H (xf − µx
f ))T

〉
(4)

and154

HPfHT ≈
〈
H (xf − µx

f ) (H (xf − µx
f ))T

〉
(5)

where µx
f is the mean forecast state of the ensemble of profiles.155

We expect the correlation between the airmass within the PBL and the free tro-156

posphere to drop away rapidly, because of limited intereactions between them. We found157

that this can cause errors in the analysis profiles if error covariance and PBLH is allowed158

to continue into the troposphere. To reduce these errors we have added an exponential159

decay starting at the model level closest to the PBLH (kPBLH) to define a vertical lo-160

calization factor:161

Cloc = exp

[
−α(

k − kPBLH

kPBLH
)2
]

(6)
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where k is the model level and α is an experimentally determined factor. This ensures162

that the covariance between the PBLH and the state variables becomes small within a163

couple of model levels into the free troposphere.164

This system is solved at each hour using the nearest lidar profile observations in165

time, and the resulting analysis fields are compared to sonde profiles when the latter are166

also available. There are 22 analyses (for each forecast run), and 5 times where compar-167

ison with sonde profiles are made. We focus on the impact of the assimilation on the state168

variables T, Q, U and V rather than the PBLH because only the state variables would169

be retained by a forecast.170

3 Results171

The NU-WRF simulations, taken from existing forecast runs used for the PECAN172

campaign (Santanello et al., 2019) are initialized using a National Center for Environ-173

mental Prediction (NCEP) Global Forecast System (GFS) reanalysis interpolated to the174

domain 30-48N and 84-110 W, with 54 vertical levels. The two forecast runs were con-175

ducted using MYJ PBL physics (2-22 UTC) and MYNN (2-23 UTC) on July 11, 2015.176

Lidar PBLH observations were made every 25 minutes on that day in Greensburg, KS177

(37.6 N, 99.3 W), while balloon soundings were launched from that location 6 times as178

part of the Plains Elevated Convection At Night (PECAN; Gerts et al. 2017). Figure179

1 shows the PBLH during that day and derived from the two NU-WRF forecasts, lidar180

observations and soundings. We have determined the sounding PBLH using the parcel181

method, which defines the top as the height where the potential temperature first ex-182

ceeds the ground temperature. The lidar PBLH (black *, derived using the method re-183

ported in Bonin, 2018) closely matches the sonde estimates (green triangles) in the late184

evening to early morning (2-7 UTC), while it is somewhat lower in the afternoon. The185

two NU-WRF forecasts differ from the observations depending on the time of day. In186

the early morning and early afternoon the MYJ forecasts (red triangles) are slightly higher187

than the observations, then fall behind the rise seen in the lidar observations (there are188

no sonde measurements to compare to here) before rising much higher than the obser-189

vations in the late afternoon. The MYNN forecasts (blue squares) are lower than the ob-190

servations from early morning until early afternoon before rising higher (but not as high191

as MYJ).192
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Figure 1. PBLH vs UTC time for July 11, 2015 for lidar backscatter (black *), WRF model -

MYJ (red triangles), sonde observations using parcel method (green triangles) and WRF model -

MYNN (blue squares).

Since we are primarily interested in the impact of the assimilation on state vari-193

ables within the boundary layer, in Figure 2 we plot the RMS difference between the model194

and the independent (unassimilated) sonde profiles from the surface to roughly the top195

of the boundary layer (first 8 levels, or about 800 mb). So for the temperature forecast,196

the RMS difference would be197

RMS(ta) =

[
1
8

8∑

i=1

(T f
i − T sonde

i )2
]1/2

(7)

where ta is the analysis time and ntop is the model level at the top of the PBL. Figure198

2 shows the RMS differences with the sonde profiles throughout the day for the forecasts199

(blue) and analyses (red) for potential temperature (a), water vapor mixing ratio (b) and200

the U (c) and V (d) components of velocity. The MYNN profiles are shown by solid lines201

while the MYJ profiles are dashed lines. During the night (2-9 UTC), the assimilation202

has very little impact on the potential temperature RMS differences in the early morn-203

ing (6 and 8 UTC), and the two forecasts have similar accuracy. By late afternoon (22204

and 23 UTC, note that the MYJ forecast stops at 22 UTC) the sonde comparisons show205

that the assimilation reduces RMS differences in the potential temperatures by nearly206

50% for MYNN and around 80% for MYJ. The water vapor mixing ratio (b) also has207
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little impact from the assimilation until 22 UTC, and then the RMS difference for the208

MYJ analysis more than doubles whereas it decreases by roughly half for MYNN. The209

forecasts for the 2 schemes show about the same differences with the sonde moisture pro-210

files throughout the day. The U-velocity profiles (c) begin to show differences between211

the MYJ and MYNN by 8 UTC (3 a.m. local time) and the assimilation reduces the RMS212

differences with sonde profiles significantly by 22 UTC for both models. The V-velocity213

profiles (d) begin to differ between MYJ and MYNN for the forecasts at 8 UTC, and as-214

similation reduces the RMS differences with sondes in late afternoon by 10-20%.215
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Figure 2. RMS difference from surface to top of PBL vs. time of forecast (blue) and analysis

(red) with sonde profiles for (a) potential temperature, (b) water vapor, (c) zonal velocity and

(d) meridional velocity. The solid lines are for the MYNN PBL model and the dashed lines are

for the MYJ PBL model. Times shown are UTC.

We would like to understand why there is no data impact during night time and216

early morning, whereas there is overall improvement in the late afternoon. To this end,217

we plot the forecast, analysis and sonde profiles (T, Q, U and V) at 4 UTC (11 p.m. lo-218

cal time) and 22 UTC (5 p.m. local time) in Figures 3-6. At 4 UTC, (Figures 3,4) these219

clearly indicate that there is no correction made by the assimilation, as the red and plue220
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profiles coincide. But it also shows that the profiles (particularly temperature and mois-221

ture) accurately follow the sonde profiles, meaning that there is little room for improve-222

ment to the forecast state. This is consistent with the PBLH forecasts in Figure (1), which223

shows that little difference between the forecast (particulary MYJ) and lidar observa-224

tion is very small. In the late afternoon (Figures 5, 6) show that there are large differ-225

ences forecast between the forecast and sonde profiles for all of the state variables, and226

the forecast PBLH values differ substantially from the lidar measurements as well. The227

correction to to the profiles is generally in the correct direction, indicating that the fore-228

cast error covariance from the ensemble can relate the PBLH to the state variables. So229

the forecasts that accurately predicted both PBLH and state variable profiles in the early230

morning were not corrected, while the less accurate afternoon forecast was drawn towards231

the independent sonde measurements. The assimilation also made changes to the ver-232

tical velocity (W) in the afternoon, but there is no indpendent data to compare with so233

we have not included it.234

Initial experiments without vertical covariance localization (not shown) found that235

the analysis profiles were changed substantially well into the troposphere, which increased236

the RMS differences with the sonde profiles there. With the addition of the vertical cor-237

relation the analysis profiles relax back to the forecast in the troposphere. The WV pro-238

file is shown to be increased by the assimilation (since WV and PBLH are negatively cor-239

related and higher PBLH corresponds to lower WV levels in the PBL models), but the240

analysis overshoots the sonde WV profile, hence causing the increase in the RMS dif-241

ference in Figure 2(b). Compared to temperature, WV is highly variable in time and space242

and it has been shown in the past that slanted balloon trajectories under estimate the243

WV present (Demoz et al 2006; Crook, 1996). The PBLH may be a macroscale obser-244

vation that is forcing a correction to the WV flux and hence pointing out an issue in mea-245

surements. Future studies should look at the profile measurements of WV from lidars.246

The two components of velocity (c,d) are both drawn towards the sonde profiles, but by247

more modest amounts. These analysis profiles in show that, for this one analysis time,248

the assimilation is pushing the state variables in the proper direction. The reason for these249

corrections to the state variable profiles is that the error covariance between PBLH and250

each state variable, PfHT , can be computed from the ensemble of profiles that was col-251

lected from the model grid. The forecast PBLH for each profile was computed using the252

–10–

https://doi.org/10.5194/amt-2020-238
Preprint. Discussion started: 7 July 2020
c© Author(s) 2020. CC BY 4.0 License.



manuscript submitted to Atmospheric Measurement Techniques

full PBL physics, and therefore contains the essential correlation information between253

these variables.254
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Figure 3. Profiles from sonde (green), forecast (blue) and analysis (red) for potential temper-

ature, water vapor mixing ratio, u-velocity and v-velocity at 4 UTC, July 11, 2015 in Greensburg,

KS. The model uses the MYJ physics parameterization.

The increasing differences between the PBLH and profile forecasts from early morn-255

ing to late afternoon only partly explain the much larger impact of the assimilation at256

22 UTC. We can also analyze this by plotting the error covariance between PBLH and257

each of the state variables, seen in Figure 7 at different times during the day. The co-258

variance with temperature (a) is always positive, and grows by a factor of 4 by late af-259

ternoon near the surface. The covariance with WV is mostly negative and grows by roughly260

a factor of 5, while the covariance with the two components of velocity oscillate between261

positive and negative and shows less consistent growth. Thus, the most significant im-262

pact of assimilation to temperature and moisture occur in late afternoon while more lim-263

ited velocity corrections are largely constrained by the correlations determined by the264

ensemble of model forecast states.265
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Figure 4. Same as figure 3 except using MYNN model.
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Figure 5. Same as figure 3 except using except at time 22 UTC.

–12–

https://doi.org/10.5194/amt-2020-238
Preprint. Discussion started: 7 July 2020
c© Author(s) 2020. CC BY 4.0 License.



manuscript submitted to Atmospheric Measurement Techniques

312 314 316 318

Potential Temperature (K)

650

700

750

800

850

900

P
re

s
s
u

re
 (

m
b

)

Potential Temperature at 22 UTC

Sonde

Forecast

Analysis

Lidar PBLH

4 6 8 10 12 14

WV Mixing ratio (kg/kg) 10
-3

650

700

750

800

850

900

950

P
re

s
s
u

re
 (

m
b

)

WV Mixing Ratio at 22 UTC

Sonde

Forecast

Analysis

Lidar PBLH

0 5 10 15

U velocity (m/s)

650

700

750

800

850

900

950

P
re

s
s
u

re
 (

m
b

)

U Velocity at 22 UTC

Sonde

Forecast

Analysis

Lidar PBLH

0 5 10

V velocity (m/s)

650

700

750

800

850

900

950

P
re

s
s
u

re
 (

m
b

)
V Velocity at 22 UTC

Sonde

Forecast

Analysis

Lidar PBLH

Figure 6. Same as figure 5 except using MYNN model.

4 Conclusions266

These offline data assimilation experiments indicate that assimilation ground based267

lidar backscatter and wind measurements of PBLH into a regional NWP model will likely268

lead to significant improvements within the PBL, particulary when this approach is ap-269

plied to an EnKF assimilation system with cycling. Using two NU-WRF forecasts over270

a period of one day with different PBL physics models, we show how the state variables,271

T, WV, U and V can be corrected using an an assimilation system with ensemble based272

error covariances. During the night and early morning the assimilation has little or no273

impact on the state variables, but by late afternoon the temperature field is drawn closer274

to independent sonde measurements. We have shown that the lack of data impact early275

in the day is the due to the high accuracy of the model and lack of correlation between276

the forecast PBLH and temperature profiles at that time. Later in the day, when the model277

is less accurate in predicting the growth of the boundary layer, the data begins to draw278

the analysis towards the independent sonde profiles. The water vapor mixing ratio is over279

corrected in the direction of sonde data, and this could likely be tuned in an assimila-280

tion system. The assimilation corrected the two velocity components by smaller amounts,281

but still reduced differences with the sonde profiles. These corrections are the result of282
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Figure 7. Covariance PfHT between PBLH and temperature (a), water vapor (b), U-velocity

(c) and V-velocity (d), at times 4, 8, 22 and 23 UTC, for PBL physics model MYHH.
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ensemble computed error covariances between the PBLH and the state variable profiles283

within the PBL. The results here indicate that this approach could be used in a fore-284

cast system in a way that that the PBLH observational information could be carried for-285

ward in time so as to improve the forecast accuracy within the PBL. An additional value286

of assimilating PBLH is its close connection with the PBL scheme used in the model.287

The covariances between PBLH and the different state variables through the PBL physics288

scheme. This has an impact on the corrections made to the profiles within the PBL, which289

can be used as another way to evaluate the physics parameterizations. For example, the290

MYJ and MYNN result in analysis profiles that differ, though a full evaluation would291

require that the assimilation be implemented into a cycling data assimilation system.292

This work is intended only to demonstrate a necessary first step in terms of how293

ensemble statistics can help to constrain profiles within the PBL by assimilating PBLH294

observations. A more complete demonstration of this approach will require the construc-295

tion of an EnKF, and run over many days with a variety of weather patterns, including296

significantly warmer(cooler) and wetter(drier) days. This is needed to show how the as-297

similated PBLH observations will impact future forecasts within the PBL. The PBLH298

assimilation withn the EnKF framework could be done in any of numerous existing enKF299

assimilation systems that connect with WRF, including NU-WRf (Lidard-Peters et al.,300

2015) and WRF-DART (Anderson et al., 2009).301

5 Acknowledgments302

B. Demoz was funded by National Science Foundation award (AGS-1503563) to303

the University of Maryland, Baltimore County and through NOAA Cooperative Science304

Center in Atmospheric Sciences and Meteorology, funded by the Educational Partner-305

ship Program at NOAA in collaboration with Howard University.306

6 Data Sets307

PECAN (https://data.eol.ucar.edu/master_list/?project=PECAN\verb) data are308

archived by NCAR/EOL, which is funded by NSF. The forecast and analysis fields pro-309

duced for this work are stored at https://alg.umbc.edu/pecan/.310

–15–

https://doi.org/10.5194/amt-2020-238
Preprint. Discussion started: 7 July 2020
c© Author(s) 2020. CC BY 4.0 License.



manuscript submitted to Atmospheric Measurement Techniques

7 Competing Interests311

The authors declare that they have no conflict of interest.312

8 Author Contributions313

Andrew Tangborn built the assimilation system, with input from Jeffrey Anderson on314

the algorithm. Belay Demoz and Brian Carroll provided the lidar observations. Joseph315

Santanello provided background information on PBL physics. All of the authors contributed316

to writing and revising the paper.317

9 References318

Anderson, J.L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn and A. Arellano (2009),319

The Data Assimilation Research Testbed: A Community Facility, Bull. Amer. Met. Soc.,320

90, 1283-1296 doi:10.1175/2009BAMS2618.1.321

Ao, C.O., T. K. Chan, B. A. Iijima, J.-L. Li, A. J. Mannucci, J. Teixeira, B. Tian, and322

D. E. Waliser (2008), Planetary boundary layer information from GPS radio occultation323

measurements, Proceedings of GRAS SAF Workshop on Applications of GPSRO Mea-324

surements, ECMWF, Reading, UK.325

Banks, R. F., J. Tiana-Alsina, F. Rocadenbosch, and J. M. Baldasano (2015) Performance326

evaluation of the boundary-layer height from lidar and the Weather Research and Fore-327

casting Model at an urban coastal site in the north-east Iberian Peninsula. Bound.-Layer328

Meteor., 157, 265–292, https://doi.org/ 10.1007/s10546-015-0056-2.329

Bonin, T.A., B.J. Carroll, R.M. Hardesty, W.A. Brewer, K. Hajney, O.E. Salmon and330

P.B. Shepson (2018), Doppler Lidar Observations of the Mixing Height in Indianapolis331

Using an Automated Composite Fuzzy Logic Approach, J. Atmos. Ocean Tech., 35, 473-332

490.333

Browning, K. A., and Coauthors (2007), The Convective Storm Initiation Project. , Bull.334

Amer. Meteor. Soc., 88, 1939–1955, https://doi.org/10.1175/BAMS-88-12-1939.335

–16–

https://doi.org/10.5194/amt-2020-238
Preprint. Discussion started: 7 July 2020
c© Author(s) 2020. CC BY 4.0 License.



manuscript submitted to Atmospheric Measurement Techniques

Carroll, B. J., Demoz, B. B., and Delgado, R. (2019). An overview of low-level jet winds336

and corresponding mixed layer depths during PECAN. Journal of Geophysical Research:337

Atmospheres, 124(16), 9141-9160. https://doi.org/10.1029/2019JD030658.338

Cohen, A.E., S.M. Cavallo, M.C. Coniglio and H.E. Brook (2015), A Review of Plan-339

etary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating South-340

eastern U.S. Cold Season Severe Weather Environments, Wea. Forecat., 30, 591-612.341

Delgado, R., Carroll, B. and Demoz, B. (2016). FP2 UMBC Doppler Lidar Line of Sight342

Wind Data. Version 1.1 [Data set]. UCAR/NCAR - Earth Observing Laboratory. Ac-343

cessed 29 May 2017. https://doi.org/10.5065/d6q81b4h.344

Evensen, G. (2009), Data assimilation: the ensemble Kalman filter, Springer.345

Geerts, B., and Coauthors, (2017), The 2015 Plains Elevated Convection At Night field346

project. Bull. Amer. Meteor. Soc., 98, 767–786, https://doi.org/10.1175/BAMS-D-15-347

00257.1.348

Hegarty, J.D., J. Lewis, E.L. McGrath-Spangler, J. Henderson, A.J. Scarino, P. DeCola,349

R. Ferrare, M. Hicks, R.D. Adams-Selin and E.J. Welton (2018) Analysis of the Plan-350

etary Boundary Layer Height during DISCOVER-AQ Baltimore–Washington, D.C., with351

Lidar and High-Resolution WRF Modeling, J. Appl. Meteo. Climat., 57, 2679-2696.352

Hicks, M., D. Atkinson, B. Demoz, K. Vermeesch and R. Delgado (2016), The National353

Weather Service Ceilometer Planetary Boundary Layer Project, The 27th International354

Laser Radar Conference (ILRC 27), https://doi.org/10.1051/epjconf/201611915004.355

Hicks, M., B. Demoz, K. Vermeesch and D. Atkinson (2019), Intercomparison of Mix-356

ing Layer Heights from the National Weather Service Ceilometer Test Sites and Collo-357

cated Radiosondes, J. Atmos. Ocean Tech., 36, 129-137.358

Hong, S.-Y. and H.-L. Pan (1996), Nonlocal boundary layer vertical diffusion in a medium-359

range forecast model, Mon. Wea. Rev., 124, 2332-2339.360

Hong, S.-Y. and H.-L. Pan (1998), Convective Trigger Function for a Mass-Flux Cumu-361

lus Parameterization Scheme, Mon. Wea. Rev, 126, 2599-2620.362

–17–

https://doi.org/10.5194/amt-2020-238
Preprint. Discussion started: 7 July 2020
c© Author(s) 2020. CC BY 4.0 License.



manuscript submitted to Atmospheric Measurement Techniques

Janjic, Z.I. (1994), The Step-mountain eta coordinate model: Further developments of363

the convection, viscous sublayer, and turbulence closure, Mon. Wea. Rev., 122, 927-945.364

Janjic, Z.I. (2002), Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme365

in the NCEP Meso model (NCEP Office Note No. 437).366

T. N. Knepp, J.J. Szykman, R. Long, R. M. Duvall, J. Krug, M. Beaver, K. Cavender,367

K. Kronmiller, M. Wheeler, R. Delgado, R. Hoff, T. Berkoff, E. Olson, R. Clark, D. Wolfe,368

D. Van Gilst, D. Neil (2017), Assessment of mixed-layer height estimation from single-369

wavelength ceilometer profiles, Atmos. Meas. Tech., 10, 3963-3983.370

Mellor, G.L. and T. Yamada (1974), A Hierarchy of Turbulence Closure Models for Plan-371

etary Boundary Layers, J. Atmos. Sci., 31, 1791-1806.372

Mellor, G.L. and T. Yamada (1982), Development of a turbulence closure model for geo-373

physical fluid problems, Rev. Geophys., 20, 851-875.374

Nakashini, M. and H. Niino (2009), Development of an improved turbulence closure model375

for the atmospheric boundary layer, J. Met. Soc. Japan, 87, 895-912.376

National Research Council (2009), Observing Weather and Climate from the Ground Up:377

A Nationwide Network of Networks, in: Observing Weather and Climate from the Ground378

Up: A Nationwide Network of Networks, 1–234, Natl. Academies Press, 2101 Consti-379

tution Ave, Washington, DC 20418 USA.380

NCAR Technical Note (2012), Thermodynamic Profiling Technologies Workshop Report381

to the National Science Foundation and the National Weather Service, National Cen-382

ter for Atmospheric Research.383

Oke, P.R., G.B. Brassington, D.A. Griffin, and A. Schiller (2010), Ocean data assimi-384

lation: a case for ensemble optimal interpolation, Austr. Meteor.Ocean. J., 59, 67-76.385

Peters-Lidard, C.A. and Co-authors (2015), Integrated modeling of aerosol, cloud, pre-386

cipitation and land processes at satellite-resolved scales, Environ. Mod. Soft., 67, 149-387

159.388

–18–

https://doi.org/10.5194/amt-2020-238
Preprint. Discussion started: 7 July 2020
c© Author(s) 2020. CC BY 4.0 License.



manuscript submitted to Atmospheric Measurement Techniques

Santanello, J.A. and Co-authors (2018), Land–Atmosphere Interactions: The LoCo Per-389

spective, Bull. Amer. Meteor. Soc, https://doi.org/10.1175/BAMS-D-17-0001.1.390

Santanello, J.A.,, S.Q. Zhang, D.D. Turner, P. Lawston, and W.G. Blumberg, PBL Ther-391

modynamic Profile Assimilation and Impacts on Land-Atmosphere Coupling, AGU Fall392

Meeting, San Francisco, CA, Dec. 9-13, 2019.393

Tucker, S.C., S.J. Senff, A.M. Weickmann, W.A. Brewer, R.M. Banta, S.P. Sandberg,394

D.C. Law and R.M. Hardesty (2009), Doppler Lidar Estimation of Mixing Height Us-395

ing Turbulence, Shear, and Aerosol Profiles, J. Atmos. Ocean Tech., 26, 673-688.396

–19–

https://doi.org/10.5194/amt-2020-238
Preprint. Discussion started: 7 July 2020
c© Author(s) 2020. CC BY 4.0 License.


	sheet5
	amt-2020-238

