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Abstract

We present several enhancements to model-reduced fluid simula-
tion that allow improved simulation bases and two-way solid-fluid
coupling. Specifically, we present a basis enrichment scheme that
allows us to combine data driven or artistically derived bases with
more general analytic bases derived from Laplacian Eigenfunc-
tions. We handle two-way solid-fluid coupling in a time-splitting
fashion—we alternately timestep the fluid and rigid body simula-
tors, while taking into account the effects of the fluid on the rigid
bodies and vice versa. We employ the vortex panel method to han-
dle solid-fluid coupling and use dynamic pressure to compute the
effect of the fluid on rigid bodies.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation.

Keywords: Fluid simulation, model reduction, solid-fluid cou-
pling

1 Introduction

One of the most significant drawbacks of physics-based animation
is “the curse of dimensionality”—the quest for ever-higher fidelity
leads to an explosion in the number of degrees of freedom. This
problem naturally leads to the consideration of dimensionality re-
duction techniques. Dimensionality reduction was first applied to
fluid simulation by Treuille and colleagues [2006], who described
how each step of a fluid simulation can be performed in the re-
duced space. Since that work researchers have also developed mod-
ular techniques [Wicke et al. 2009], experimented with different
bases [Gupta and Narasimhan 2007; Long and Reinhard 2009;
De Witt et al. 2012], applied a cubature approach for non-linear
functions [Kim and Delaney 2013], and even included inverse op-
erators for solid-fluid coupling [Stanton et al. 2013].

In this short paper, we present several enhancements to the basic
reduced fluid simulation pipeline. Specifically, we present a basis
enrichment scheme for combining both data-driven and analytic or
artistically authored bases and a new approach to two-way solid-
fluid coupling that scales to a large number of rigid bodies. The
analytic bases act somewhat like regularization allowing our ap-
proach to generalize outside the training data and requiring signif-
icantly less source data without the risk of over-fitting. We treat
two-way solid-fluid coupling in a time-splitting fashion—we first
compute the effect of the solid on the fluid and then compute the
effect of the fluid on the solid. We employ a vortex panel method
to compute obstacles’ effects on the fluid and dynamic pressure to
compute forces induced on the obstacle by the surrounding fluid.
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In precomputation, we must invert the dense “panel matrix,” how-
ever, at runtime solid-fluid coupling reduces to matrix multiplica-
tions. We handle multiple obstacles by iteratively computing the
coupling in a way similar to Schwarz alternating methods [Toselli
and Widlund 2004]. Fluid-solid coupling is achieved using dy-
namic pressure to compute forces for a rigid body simulator from
fluid velocities. Our results demonstrate that our enhancements are
practical for two-way coupled reduced fluid simulation with rigid
bodies.

2 Methods

In this section, we will first briefly review the mechanics of reduced
fluid simulation, then introduce our basis enrichment scheme, and
finally present our approach for two-way solid-fluid coupling.

2.1 Reduced Fluid Simulation

The basic mechanics for reduced fluid simulation were introduce by
Treuille and colleagues [2006]. We begin with the incompressible
Navier-Stokes equations which describe the motion of a viscous
fluid,

∂u

∂t
= −(u · ∇)u− ν∇2u +∇p+ fe (1)

∇ · u = 0 (2)

where u is the velocity, ν is the viscosity parameter, p is the pres-
sure, and fe are the external forces. The goal of reduced simulation
is to reduce the dimensionality of u through Galerkin projection
onto a low-dimensional basis,

r̃ = BTu (3)

where, r̃ ∈ Rr represents the reduced coefficients and B is the
basis represented as matrix with r columns, each representing a
basis function.

A typical fluid simulation in computer graphics employs operator
splitting breaking the simulation into several individual steps: ad-
vection, applying external forces, applying viscosity, and projection
onto a divergence-free field. To perform reduced fluid simulations,
we must address each of these steps.

Fortunately, because we only include divergence free fields in our
basis, we can only represent divergence free fields removing the
need for the expensive projection step. External forces are easily
handled by Galerkin projection onto the basis. Specifically, given
external forces, fe, we compute reduced forces

f̃e = BT fe. (4)

These are simply scaled and added to the reduced velocity coeffi-
cients,

r̃ := r̃ + sf̃e, (5)

for some scaling factor s that accounts for density, grid-spacing,
and timestep.

The diffusion term is also easily handled. Being a linear operator,
the discretization of the diffusion operator∇2u can be represented



as a matrix D. Projecting into the subspace we get the reduced
diffusion matrix

D̃ = BTDB, (6)

which is precomputed.

The non-linear advection operator, −(u · ∇)u, is more compli-
cated. The non-linearities preclude it from being written as a single
reduced matrix. Instead, a reduced advection matrix for each ba-
sis function can be precomputed and then at runtime combined into
the final reduced advection operator. The discretization of the ad-
vection operator for a given velocity field, u can be expressed as a
matrix, Au. This matrix, when applied to a field, v, (i.e Auv) has
the effect of advecting v through u.

Thus, we precompute, for each basis function or mode, bi, in the
basis B = [b1 . . .br] a matrix, Abi, that represents advection
through the velocity field bi. Each of these matrices can be reduced

Ãbi = BTAbiB, (7)

during precomputation. During simulation, the reduced advec-
tion matrix is computed by summing all mode advection matrices
weighted by their corresponding reduced state coefficient

Ã =
∑
i

Ãbiri. (8)

Viscosity and advection can be combined into a single update from
time t to t+ 1 and can be written as:

r̃t+1 =
(
e∆t(νD̃+Ã)

)
r̃t. (9)

This matrix-vector product is computed efficiently using an iterative
Taylor approximation [Wicke et al. 2009].

We note that while the reduced simulation can proceed without the
notion of a grid, for collecting training data and visualization pur-
poses a grid is useful. In our system, we explicitly use the grid for
solid fluid coupling.

2.2 Basis Enrichment

The divergence free basis used in reduced fluid simulations have
been constructed in either of two ways. The first method involves
running a training simulation and then extracting a reduced ba-
sis using a Singular Value Decomposition (SVD). This process is
accomplished by concatenating velocity-field snapshots of a high-
resolution fluid simulation into a matrix, computing the SVD, and
then selecting r singular vectors [Treuille et al. 2006]. However, a
basis generated in this way can suffer from a number of problems.
Arbitrary motion during runtime can be problematic as the basis
may not generalize well to motion outside of the training simula-
tion, e.g. a training simulation where an obstacle generates flow
in one half of the domain but during runtime moves to the other
half. To minimize problems from over fitting, a significant amount
of simulation data has to be precomputed. Additionally, it can be
difficult for artists to know what kinds of training simulations to
run in order to generate a suitable basis, not to mention the large
amount of pre computation space and time needed. However, mo-
tion similar to the training simulation can be represented well in the
least squares sense.

The second method involves creating a basis consisting of eigen-
functions of the Laplacian operator. For a few simple domains,
these can be computed analytically. In more general domains, the

eigenfunctions of the discrete Laplacian operator are computed us-
ing an Eigendecomposition [De Witt et al. 2012]. In simple do-
mains like a box, the advection operators can be computed analyt-
ically and are only loosely coupled, resulting in sparse matrices.
These modes work well for gross flow and do not suffer from over-
fitting, but detailed flow can require an impractically large number
of modes. An example of this would be a simple jet inside a box
that can be turned on or off in the presence of dynamic obstacles.

To give the artist control over generating a basis, we provide a ve-
locity drawing tool. After the velocity has been drawn, it is pro-
jected onto a divergence-free field and the artist can timestep the
simulation to generate the desired velocity field. This allows the
artist to create different flow effects such as vortices or laminar flow
paths, with minimal training data. Alternatively, artists can simply
interact with the simulation to generate training data. We will now
describe how to combine both these types of bases, a similar idea
has been used in the context of reduced bases for direct to indirect
transfer [Loos et al. 2011].

To exploit any sparsity that might exist in the Laplacian Eigen-
functions, we would like to keep this basis intact when including
the data driven, artist generated modes. Thus, given a Laplacian
Eigenfunction basis, E, and velocity fields generated by an artist,
D = [d1 . . .dN ], where each column is a user generated veloc-
ity field scaled to unit length, we would like to construct a com-
bined basis that keeps the structure of E intact. First, the SVD of
D = USVT is computed and the left singular vectors, U, with
corresponding singular values greater than zero are retained. U is
then deflated against the basis,

Ud = U−EETU, (10)

where the columns of Ud now contain the parts of the velocity
fields that could not be represented by the basis. The columns of
matrix Ud are now orthogonal to the columns of E but may no
longer be orthogonal to each other, i.e., UT

dUd may not be iden-
tity. To generate a basis that spans the same subspace we simply
compute the SVD of Ud and retain the singular vectors correspond-
ing to non-zero singular values1, resulting in an orthonormal basis
R. Concatenation of E and R forms an orthogonal basis, perfectly
valid for reduced fluid simulation. From now on we therefore as-
sume that B is the concatenated matrix [E|R].

We would also like the ability to specifically activate the artist gen-
erated modes during runtime. If one wishes to directly excite an
artist created mode during run time, the projection of those modes
into B can be precomputed. At run time the resulting coefficients
can be added to the reduced state. No projection is necessary during
run time.

2.3 Two-way Solid-fluid Coupling

We use the reduced fluid simulation engine described in Section 2.1
and Box2D [2011] for rigid body simulation. To couple them we
use a time splitting technique and alternately timestep each simu-
lator while taking into account the effects of the fluid on the rigid
bodies and vice versa.

2.3.1 Solid to Fluid Coupling

To account for the effect of rigid bodies on the fluid flow, we adopt
a vortex panel method. This approach has two advantages over
previous work. First, obstacles are not limited to a finite range of

1While U is full rank, if there is a large overlap between U and E, de-
flation will result in a rank deficient matrix Ud (with zero singular values).
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Figure 1: Left: Panel coordinate system. Right: Velocity field in-
duced by the panel.

spatial influence. In fact, they have global influence, though the fall-
off is quite fast. Second, we avoid the substantial precomputation of
sampling the object’s effect at various positions and orientations in
the domain. Our only precomputation involves inverting matrices.
Finally, we note that our approach generalizes beyond reduced fluid
simulation and could be used in other contexts, such as smoothed
particle hydrodynamics, Eulerian, or semi-Lagrangian methods.

The vortex panel method was developed to study flow around air-
foils [Cottet and Koumoutsakos 2000] and was introduced to
graphics by Park and Kim [2005] to handle obstacles in a vortex
particle method. More recent variations have been used to simulate
smoke as a surface [Pfaff et al. 2012; Brochu et al. 2012].

In two dimensions, objects are discretized into M piecewise linear
segments called panels. In our system, the panel lengths are chosen
to be on the order of the fluid simulation’s grid spacing. The panels
are then used both as quadrature points and as vorticity sources that
cancel flow normal to the obstacle.

The velocity generated by a panel at a point x in the local coordinate
system of the panel coordinate is given by

ux =
γβ

2π
, uy =

γ

2π
ln
do + ε

de + ε
, (11)

where γ is the panel strength, β is the angle subtended by the panel
from the point x, do , de are the distances from x to the origin and
end of the panel respectively, and ε is a small constant to avoid
division by zero (see Figure 1).

To cancel the flow normal to an object we must consider the inter-
actions between all the panels of the object. To do so we compute
a coupling matrix P ∈ RM×M that encodes the influence of the
strength of panel i on the velocity at panel j. Specifically, let ūij
be the velocity induced at the mid-point of panel j by panel i when
panel i has unit strength (i.e. γi = 1). Then the Pji is given by

Pji = −ūij · nj , (12)

where nj is the normal vector of the j-th panel.

Given P and a velocity field, u, to cancel the flow normal to the
obstacle we must solve the linear system,

Pγ = b (13)

where γ is the panel strength vector, and b is a vector encoding the
violation of the boundary condition. Specifically,

bi = Ai (uf − uo) · ni (14)

where bi is the violation at panel i, Ai is the panel area, uf is
the fluid velocity evaluated at the midpoint of the panel, and uo is

the velocity of the object. This approach corresponds to a 1-point
quadrature rule. Of course, higher order methods could be used.

As described, the M ×M panel coupling matrix P is singular and
an additional constraint must be added in order to obtain a unique
solution. We add the constraint that there is zero circulation around
the boundary, i.e.

M∑
i

Aiγi = 0. (15)

This constraint is encoded by adding an row to the panel matrix
containing the panel lengths and a zero to the end of b. The panel
matrix is computed in object space, allowing for rigid body trans-
formations without modification. P can be inverted during pre-
computation; at runtime panel strengths are computed with a single
matrix-vector product.

Some distributions of panels are problematic when objects contain
symmetries. For example, a square with two panels per side is un-
able to cancel the normal velocities induced from rigid body rota-
tion. In such cases it suffices to use an odd number of panels per
side.

Multiple Bodies Thus far we have described how to handle a sin-
gle object. To handle multiple objects we must account for their
interaction. Ideally, we would compute a single coupling matrix
encoding the interactions of all panels in the system. However,
this would require solving a new and much larger linear system
every step, removing the ability to precompute an inverse [Brochu
et al. 2012]. Instead, we employ a fixed point iteration approach
that takes advantage of the precomputed inverse panel matrices.
First, the panel strengths of each object are computed to satisfy the
boundary conditions of the reduced velocity field, i.e. for all objects
i we compute

γi = P−1
i bi. (16)

We then iteratively solve for panel strengths that additionally satisfy
object-object interactions.

Each iteration, for each object i in our simulation:

1. Compute bobji , which is the boundary violation induced by all
other objects.

2. Store the previously computed panel strengths.

3. Solve for the new panel strengths,

γi = P−1
i (borigi + bobji ). (17)

4. Compute the norm of the difference in panel strengths.

Iterations are performed until the panel strengths converge, or a
user specified tolerance or iteration limit is reached. This scheme,
which falls into the class of Schwarz alternating methods [Toselli
and Widlund 2004], is guaranteed to converge to a unique solution
for second order PDE’s. Golas et al. [2012] successfully demon-
strate an alternating method to couple Eulerian grids with vortex
particle methods.

This alternating scheme may fail due to the singularities that occur
when evaluating the velocity very near a panel. Velocities evaluated
too close to a panel should not be relied upon and instead another
approach should be taken, such as interpolating from reliable posi-
tions [Hess and Smith 1962].



Feedback The resulting velocity field is a combination of the re-
duced fluid velocity, u, and a summation over all the panel veloc-
ities and can be evaluated at any specific point in space. However,
the panel strengths have no memory and are recomputed at the next
timestep, thus we need to feedback their contribution into the re-
duced fluid simulation. In our implementation this step is accom-
plished by iterating over the panels and summing their contribution
to the background grid. The resulting velocity field is projected into
the reduced space and added to the reduced coefficients.

2.3.2 Fluid to Solid Coupling

We incorporate fluid to solid coupling by computing the dynamic
pressure on the boundary of the rigid body. From the dynamic pres-
sure we compute the force, which is then added to the rigid body
simulation. The dynamic pressure, sometimes called the velocity
pressure, is

q =
1

2
ρuTu, (18)

where ρ is the density of the fluid, and u is the fluid velocity.
For each panel we have already computed the difference in rela-
tive velocity between the obstacle and fluid when solving for the
panel strengths. From that velocity, we compute the dynamic pres-
sure q at panel centers and then multiply by the panel area to get
forces [Saffman 1995], which are normal to the panels. Specifi-
cally, the force on panel i is

fi = Aiqni (19)

are then applied to the rigid body at the panel centers.

Buoyancy forces can optionally be included with

fi = −ρAihigni, (20)

hi is the depth of the panel center and where g is the scalar gravita-
tional constant. The minus sign is to signify that the force is in the
direction opposite the surface normal of the panel.

3 Results

In our first example, we have a single data driven mode with 63
eigenmodes. The artist input and pressure projected mode are
shown in Figure 2. The eigenmodes poorly capture this “jet,” but
represent gross flow well, while our enhanced basis is able to cap-
ture the jet well, see Figure 3.

Our second example is of two pairs of falling objects, each pair has
one object above the other. After being released, the objects above

Figure 2: Input on the left, pressure projected data driven mode on
the right.

catch up to the objects below closing the gap between them. The
objects that start out above, draft off of the objects below allowing
them to fall faster through the fluid demonstrating the effects of
solid-fluid coupling and object-object interaction, see Figure 4.

Finally, we have combined both our basis enhancement and two-
way coupling into a simple 2D game, see Figure 5. The game uses
64 eigenmodes and there are 15 objects with a total of 147 panels.
Timing results in Table 1 show that feedback from the panel veloci-
ties back to the reduced simulation dominates timing, taking 22ms
in this example. This is an obvious area for future work. While
we could precompute the coupling to the reduced space by aggres-
sively sampling as others have done [Treuille et al. 2006], a more
promising direction is to precompute a coupling to a hierarchical
basis.

Description Time (ms)
Advect 0.48
Diffuse 0.00385
Panel Solves 5.994
Panel Feedback 22.468

Table 1: Timings in ms for game scene with 64 modes on a 65x65
staggered grid.

4 Conclusion and Future Work

We have presented several enhancements to prior work on dimen-
sionally reduced fluids simulations: An enrichment scheme to mix
data-driven and analytic modes, and a new approach to two-way
solid-fluid coupling through the use of vortex panel methods and
dynamic pressure. Our enrichment scheme combines the general-
ity of Eigenmodes with data-driven modes ability for art direction.
The vortex panel method enables more robust coupling of dynamic
objects to the gross flow, and requires no training data.

In future work, we will investigate acceleration of the coupling be-
tween the panel methods and the reduced fluid and extend the tech-
nique to 3D.
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Figure 3: Left: Only Eigenmodes. Right: a data driven mode with
Eigenmodes. Exciting the jet with high intensity the induced flow is
not well represented just using the Eigenmodes.



Figure 4: Drafting example: solid-fluid coupling and object-object interactions.

Figure 5: Image from game using our system, see the video.
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duction for real-time fluids. ACM Trans. Graph. 25, 3 (July),
826–834.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. ACM Trans. Graph. 28, 3 (July), 39:1–
39:8.


	Coverletter_basic
	gerszewski13enhancement

