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Experiments show that the transit times of chirped, narrow-band pulses that move across nonabsorbing, one-
dimensional barriers are modified dramatically by the interplay between the chirp and the transmission func-

tion of the sample.
a 450-um GaAs etalon.

In an experiment we monitored 0.9-ns chirped, nearly Gaussian pulses as they traversed
At certain wavelengths pulse transit times can be superluminal or even negative.

To explain these phenomena we have proposed a generalization of the transit time for chirped pulses that is

still meaningful even when the transit times are superluminal or negative.
© 2002 Optical Society of America

the experimental results.
OCIS codes: 240.0310, 230.4170, 190.5530.

The transit time of optical pulses traversing differ-
ent types of media has been a topic of interest for
many years.'”® For an incident pulse whose spectral
bandwidth is sharply peaked about a specific value w
of transmittance spectrum 7'(w) of a one-dimensional,
nonabsorbing optical barrier, the time that the trans-
mitted part of the pulse takes to traverse the struc-
ture is the phase time* (or group delay), defined as
T(wo) = (d¢i(w)/dw)ly=w,, Where ¢;(w) is the phase
of the transmission function, ¢, = /T(w) explig:(w)].
Sowe ask: What happens if the input pulse is chirped,
such that it remains sharply peaked about the same
frequency ¢ of the transmission spectrum? Under
these circumstances, can the phase time accurately
predict the transit time? Is it still meaningful to con-
sider a transit time, or must we abandon the concept of
transit time because pulse distortion is so extreme as
to render the concept unclear?

To answer these questions we performed a simple
experiment in which we measured transit time as
a function of wavelength for an optical pulse tran-
siting a 450-um GaAs substrate polished at both
ends. The surfaces were not antireflection coated,
so there were residual reflections, which resulted in
etalon effects. In our experiment, the laser diode
(New Focus, Inc., Model 6328 tunable laser) produces
approximately Gaussian pulses (in the central re-
gion) of the type A¢(t) = Ag exp[—(¢2/270%) — iyt?],
where T0O = TFWHM/(2V1n 2), TFWHM =~ 0.9 ns, and
v =—T X 10'® 572 is the magnitude of the chirp. The
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Our predictions agree well with

sample was positioned between the laser head and a
high-speed detector (New Focus Model 1611 InGaAs
detector with a 1-GHz bandwidth). The detector
output was observed on an HP 54750A digitizing
oscilloscope with an HP 54751A, 20-GHz module.
We determined the peak position to an uncertainty
of 1-2 ps by fitting the waveform data about the
peak region with a third-order polynomial. The total
path without the sample served as the baseline. The
sample was then inserted into the optical path, and
the time difference (the delay time) recorded. The
transit time was then obtained by addition of the
free-space propagation time to the delay time.
The results of the experiment are given in Fig. 1,
where we also show the measured transmittance of
the sample and the spectral bandwidth of a typical
input pulse. In the figure, the transit times predicted
from the phase times and the measured transit times
have discrepancies that are well in excess of 100%.
Agreement between the two times persists only at the
peaks and valleys of the transmission function. We
also found cases that correspond to negative transit
times, in which the peak of the transmitted pulse
appears on the other side of the barrier before the
peak of the incident pulse enters the barrier.

The skeptical reader might think that in our experi-
ment the transmitted part of the pulse is so drasti-
cally reshaped that the concept of transit time becomes
vague. Indeed, such is not the case. Pulses do un-
dergo small distortion, only in the wing regions, but

© 2002 Optical Society of America
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Fig. 1. (a) Measured transit time (dotted curve) and

predicted phase time (solid curve) versus wavelength
(Ao = 27¢/wp) in units of L/c (= 1.5 ps) for a 0.9-ns
Gaussian pulse propagating through an L = 450 um
GaAs Fabry—Perot etalon (wq is the carrier frequency).
The chirp coefficient is y ~—7 X 10'® s72. (b) Measured
transmittance of the sample (filled squares) and Fourier
spectrum of a typical incident chirped pulse (continuous
curve). The pulse is sharply peaked with respect to
the transmission function and is approximately 40 times
smaller than the FWHM of resonance bandwidth.
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Fig. 2. Four snapshots of the incident (solid curves) and
the transmitted (dashed curves) pulses that have the fol-
lowing carrier wavelengths (b): (a) 1550.8 nm, (transmis-
sion minimum), (b) 1551 nm, (¢) 1551.2 nm (transmission
maximum), (d) 1551.3 nm.

from Fig. 2 one can clearly still determine the location
of the peak of the pulse and monitor it to extract the
transit time. Below, we shall see that it is possible to

generalize the notion of phase time to still accurately
predict the transit time.

We begin with the wave equation 0%f/9z2 —
[n%(z)/c?]9%f/at? = 0, such that n(z) = 1 for z > L and
z<0,and n(z) = ng for 0 < z = L (ny = 3.37 for GaAs in
the wavelength range of interest), so n(z) is real. The
solution of the wave equation at z = L for the transmit-
ted field is f(L, t) = (1/2m) ftzf(L, w)exp(—iwt)dw,
where

F(L, ) =T (o) explig:(@)]f(0, )
= exp(i{p/(w) — (i/2)n[T(0)]NF (0, ®)

and (0, w) = FT{f(0, ¢)}. FT is the Fourier-trans-
form operator. For convenience we may define
an effective, complex wave vector k(w) = A(w)w/c;
ilw) = (¢c/Lw){p(w) — (/2)In[T(w)]} is the ef-
fective index of the barrier that satisfies that
Kramers—Kronig relations.” Then the solution
of the wave equation for the transmitted field,
without approximations, takes the following form:
FL,t) = (1/2m) [72F(0, w)expli[k(w)L — wt]ido.
We consider a linearly chirped, Gaussian pulse with
carrier frequency wo such that, at z = 0, f(0, ¢t) =
Ao(t)exp(—iwot) and Ag(t) = Agexp[—(¢2/270%) —
ivt?]. So at t = 0 the peak of the pulse is located
at z = 0. For the transmitted field we obtain
(L, t) = (1/2m) [27 Aog(@ — wolexplilk(w)L — wt]}do,
where A,(w) = FT{Ay(#)}. We expand the propagator
about carrier frequency wo up to first order® and
obtain

) = %({@(wo) - (/20T (wo)])

+ [T(wo) — i%}(m - wo)), ey

where 6 = [dT(w)/dw]lw=w,/T (wo) is a parameter that
depends on the transmission of the structure, and
7(wo) = [d¢i(w)/dw]l»=w, is the phase time calculated
at the carrier frequency.

After substituting expression (1) into the expression
for the transmitted field, f(L, t), and performing the
resulting integral, we arrive at the expression for the
transmitted field intensity:

62
If(L,)|> = A®T (wo)exp| — + 8%y?7¢?
47’02

" exp( _{t = [r(wo) + 67702]}2)_ @

7'02

Equation (2) suggests that, whereas the amplitude of
the transmitted pulse is rescaled, the output pulse re-
mains Gaussian in shape. From Eq. (2), one may also
extract the time #i,ansit that the peak of the pulse takes
to propagate from (z = 0, ¢ = 0) to z = L because it is
the time for which Eq. (2) is maximized. We find that
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Fig. 3. Measured transit time (filled circles) and predicted
transit time [solid curve, i.e., tyansit = 7(wo) + 8y 702 for the
structure of Fig. 1. The horizontal thick solid lines delimit
superluminal transit times. Transit times are subluminal
when #ansit = L/c and are negative when #¢qn64 = 0.

ttransit = T(wO) + 67702- 3)

In Fig. 3 we compare the experimentally measured
transit times and the transit times predicted by
Eq. (3). The agreement between the two curves is
evident, and Eq. (3) clearly represents an accurate
generalization of the more-traditional phase time.

In Fig. 4 we compare the transmitted field obtained
by using Eq. (2) with the transmitted field that we ob-
tained by numerically integrating the wave equation.
We also depict the pulse after it has propagated a dis-
tance of 450 um in free space. The envelope of the
transmitted pulse is contained well within the enve-
lope of the freely propagating pulse.

In conclusion, we have discussed the properties of
narrow-band chirped pulses that traverse nonabsorb-
ing structures of finite length. 'We have provided theo-
retical and experimental evidence that the structure is
only partly responsible for the delay imparted to the
incident pulse; the total delay also depends on the ex-
act nature of the incident pulse itself, a fact that to our
knowledge is usually overlooked.
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Fig. 4. Comparison of the numerical and the analyti-
cal solutions for the intensity of an output pulse that
corresponds to an input chirped, 0.9-ns Gaussian pulse
propagating through an L = 450 um GaAs Fabry—Perot
etalon. The intensity of the output pulses (thicker solid
curve) is normalized with respect to the peak intensity of
the input pulse. The two curves are indistinguishable
at this scale. The carrier wavelength of the pulse is
~1550.55 nm, corresponding to a transmittance of ~70%
and a negative transit time (Fig. 1). The relative error
(dashed curve) between Eq. (2) and the solution of the
wave equation, as outlined in the text, is defined as
|[Ioutnumerical(t) _ Ioutanalytical(t)]/Ioutnumerical(t)l. Note that
the relative error is less than 1 part in 10° in the central
region of the pulse. The thinner solid curve depicts the
same input pulse after it has propagated a distance of
450 um in free space.
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