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ABSTRACT

Machine Learning has increased our ability to model large quanti-
ties of data efficiently in a short time. Machine learning approaches
in many application domains require collecting large volumes of
data from distributed sources and combining them. However, shar-
ing of data from multiple sources leads to concerns about privacy.
Privacy regulations like European Union’s General Data Protec-
tion Regulation (GDPR) have specific requirements on when and
how such data can be shared. Even when there are no specific reg-
ulations, organizations may have concerns about revealing their
data. For example in cybersecurity, organizations are reluctant to
share their network-related data to permit machine learning-based
intrusion detectors to be built. This has, in particular, hampered
academic research. We need an approach to make confidential data
widely available for accurate data analysis without violating the pri-
vacy of the data subjects. Privacy in shared data has been discussed
in prior work focusing on anonymization and encryption of data.
An alternate approach to make data available for analysis without
sharing sensitive information is by replacing sensitive information
with synthetic data that behave as original data for all analytical
purposes. Generative Adversarial Networks (GANSs) are one of the
well-known models to generate synthetic samples that can have the
same distributional characteristics as the original data. However,
modeling tabular data using GAN is a non-trivial task. Tabular data
contain a mix of categorical and continuous variables and require
specialized constraints as described in the CTGAN model.

In this paper, we propose a framework to generate privacy-
preserving synthetic data suitable for release for analytical pur-
poses. The data is generated using the CTGAN approach, and so
is analytically similar to the original dataset. To ensure that the
generated data meet the privacy requirements, we use the principle
of t-closeness. We ensure that the distribution of attributes in the
released dataset is within a certain threshold distance from the
real dataset. We also encrypt sensitive values in the final released
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version of the dataset to minimize information leakage. We show
that in a variety of cases, models trained on this synthetic data
instead of the real data perform nearly as well when tested on the
real data. Specifically, we show that the machine learning models
used for network event/attack recognition tasks do not have a sig-
nificant loss in accuracy when trained on data generated from our
framework in place of the real dataset.
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1 INTRODUCTION

The importance of machine learning has increased significantly
in the last decade. A growing number of domains now rely on
machine learning to discover novel insights from large data sets.
While some machine learning approaches can work with small data
sets, the modern push in that area is for deep learning approaches
where large volumes of data are required. The development of these
novel ML techniques has overlapped with an increased reliance
on technology for various aspects of our lives. This embedding of
computing in the daily fabric of our lives means that substantial
amounts of data are being collected at an individual and aggregated
level.

The resulting potential for inappropriate dissemination and us-
age of a given consumer’s private data and derived information has
raised concern among the public [3], prompting the creation of a
plethora of data protection regulations like the Payment Card In-
dustry Data Security Standard (PCI DSS) [9], the European Union’s
General Data Protection Regulation (GDPR) [1], and the Children’s
Online Privacy Protection Act (COPPA) [8]. A Pew study in 2019[4]
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showed that 81% of Americans don’t feel they have control over
data that is collected, and that the risk of collecting data outweighs
the benefits. The past decade of research in machine learning has
led to sophisticated algorithms that can obtain very significant in-
sights into users based on data. It has often been said that users
are not customers of social media companies, but products they
sell to advertisers. To address the public’s fear of large-scale data
collection and its potential for misuse, we need to prioritize privacy
guarantees for all potentially sensitive data, not just the Personally
Identifiable Information (PII).

Previous studies have proposed different privacy approaches
for machine learning. One approach is to distribute the learning
process to each site, learn from the sensitive data, and share back the
model which can be combined. An alternate approach is to share
the data with the central site while respecting privacy. Among
these various privacy approaches, differential privacy [15] is most
widely used due to its algorithmic simplicity, and relatively small
systems overhead. However, differential privacy does not guarantee
complete anonymity for sensitive data. Besides differential privacy,
there are many other privacy definitions, such as k-anonymity [16]
and l-diversity [30]. The principle of t-closeness[28] requires that
the distribution of a sensitive attribute in any equivalence class is
close to the distribution of the attribute in the overall table. This
provides a privacy guarantee in shared data that ties back to the
notion of differential privacy [12].

Most of the anonymization techniques discussed before still re-
quire a subset of the real data to be shared. This is risky for some
domains, where we do not want any part of the original data to
be shared with a remote entity. For example, network event data
is continuously being collected in hosts, firewalls, and routers. It
includes information specific to the user’s behavior, including the
IP addresses most often visited or period of most online activity and
even the contents of the packet they are sending. Such network data
has been used in a variety of machine learning models to detect at-
tacks, going back to the pioneering work of Lee and Stolfo[27]. The
ability to have large network-level data from a variety of sources
under attack can help build good machine learning-based intrusion
detection systems.

However, security research has been significantly hampered by
the inability of organizations to share such data with others, es-
pecially academic researchers. Even within an organization, there
are restrictions on access to this data. At UMBC, for instance, re-
searchers can get access to only the headers of UMBC network data,
and that too after they have been anonymized. This reluctance to
share is because such data can give away information about the
user’s behavior that is protected, or can give an outside organiza-
tion significant insight into the sharing organization. In the worst
case, such data can be exploited to the benefit of an adversary. So
organizations are unwilling to share any form of this data with an
outside entity that needs this data for computational tasks such
as intrusion detection, network event modeling, etc. To guarantee
no part of the user’s data is being shared outside the user’s pri-
vate network even for research purposes, we need an alternative to
sharing the real data that can be exploited. This is true for many
other domains where data is sensitive due to either regulatory (e.g.
medical) or competitive reasons.

In this work, we propose a framework that replaces sensitive data
with synthesized data that closely resemble real data for analytical
purposes, minimizing the need for accessing real sensitive data for
distributed machine learning. Previous studies[10] have proposed
synthetic data replacement for a sensitive attribute using models
such as Decision Trees, Random Forest, Support Vector Machine,
etc. Dandekar et al’s work propose that the synthetic datasets are
close to the original data based on statistical properties like mean
or median. However, that is not a sufficient condition to replace real
data with synthetic data for most modern machine learning systems.
We need to test whether a classifier trained on the synthetic data
can still predict accurately on data from the original dataset.

One of the approaches to generate synthetic data that bears a
close resemblance to original data for any analytical task is using
generative adversarial networks (GANs). GANSs are a type of neural
network that can feed on random noise as input, and as the training
progresses produce realistic copies of the real data. GANs are often
used for synthetic data generation and translation in image and text
data [6, 20, 43, 46]. Synthetic data generated using GAN has been
shown to replace real data for statistical and analytical purposes.
Tabular data, like network event data, contains a mix of categorical
variables (e.g. Event ID, Reporting Device, Overall Severity, etc.) as
well as continuous variables (time to live, count, etc.). To generate
synthetic tabular data that looks and behaves the same as real
data, we use the CTGAN model as proposed by Liu et al. [45]. The
CTGAN model accounts for multi-modality in continuous variables
and class imbalance in discrete variables. It can synthesize tabular
data that are close to real data for all analytical functions.

We use CTGAN [45] to generate synthetic tabular data. We
ensure that the distribution of attributes in the sampled dataset
is within a certain threshold distance from the real dataset, thus
securing the principle of t-closeness[28]. Our data generator can
create data that is very similar to the original without repeating
data points from the original dataset. However, the data generator
can not fabricate completely new values for some attributes like IP
Addresses. To guarantee extra privacy, we encrypt selected sensitive
attributes using a hashing algorithm. We show that the machine
learning models for tabular data have a negligible loss in accuracy
when trained on data generated through our framework. We show
this specifically for event recognition tasks using network event
data. We also use this use framework for standard tabular datasets
collected from the UCI machine learning repository that is often
used for ML classification tasks.

In the following sections, we go into the details of our proposed
method and experimental results. The rest of the paper is orga-
nized is as follows: In Section 2, we describe the background and
motivation for our work. In Section 3, we describe our proposed
methodology. In Section 4, we give details of our experiment and
results. We discuss related works in Section 5 We conclude the
paper in Section 6.

2 BACKGROUND
2.1 Privacy in Shared Data

As researchers are developing more sophisticated machine learning
models, there is a gap between the computational capabilities avail-
able through ML and the data available for research. Data scientists



are invested in gathering large volumes of data with secure and
privacy-preserving approaches. There has been significant research
in designing privacy-preserving data sharing methods. However,
most approaches have a caveat associated with them.

The notion of privacy has been heavily discussed for data shar-
ing in machine learning. Among these various privacy approaches,
differential privacy [15] is most widely used due to its algorith-
mic simplicity, and relatively small systems overhead. However,
differential privacy does not guarantee complete anonymity for
sensitive data. For gradient-based learning methods, differential
privacy applies random perturbation to the intermediate output
at each iteration. This means that one cannot draw specific con-
clusions about any sample in the learning process. However, it
still allows most of the data to be shared intact from one host to
another. This is still a violation of privacy requirements if the hosts
belong to different geographic and administrative boundaries. It
also makes it hard to ascertain the extent of conclusions drawn
from the shared data, which is a fundamental guarantee of data
protection regulations. For example, in the case of network event
data, it is not sufficient to hide or anonymize the destination IP
list from an individual source. The host to which the data is being
shared should not be able to draw any conclusion regarding the
systemic behavior of the individual source from the data.

The other notions of privacy in shared data propose sharing data
such that anonymity is guaranteed for data subjects. K-anonymity
[16] proposes a way for data holders to release a version of their
private data with scientific guarantees that the individuals who
are the subjects of the data cannot be re-identified while the data
remain practically useful. This is guaranteed from the principle
that each person contained in the release cannot be distinguished
from at least k-1 individuals whose information also appears in the
release.

In the 2007 paper on L-diversity [30], the authors point out
that k-anonymized datasets are susceptible to adversarial attacks.
An attacker can discover the values of sensitive attributes when
there is little diversity in those sensitive attributes. Additionally,
k-anonymity does not guarantee privacy against attackers using
background knowledge. As a solution to these problems, the au-
thors propose the notion of l-diversity which suggests that each
equivalence class has at least 1 well-represented values for each
sensitive attribute. However, l-diversity also has its limitations. In
particular, it is neither necessary nor sufficient to prevent attribute
disclosure.

As a solution, Li et al. [28] propose t-closeness, which requires
that the distribution of a sensitive attribute in any equivalence class
is close to the distribution of the attribute in the overall table. This
means that the distance between the distributions of a sensitive
in shared vs original table should be no more than a threshold,
t. The distance measure used in this case is the Earth Mover’s
Distance (EMD) [39]. t-closeness with EMD satisfies generalization
and subset property. It provides a practical approach to privacy in
data sharing. Furthermore, it can be proved that t-closeness and
e-differential privacy are strongly related to one another when it
comes to anonymizing data sets [12].

Previous studies have proposed synthetic data replacement for
sensitive attributes as an approach to security. In the 2018 paper by
Dandekar et al. [10], the authors use models such as Decision Trees,

Random Forest, Support Vector Machine, etc. to generate new data.
They show that the generated data have a statistical resemblance to
the original data by showing that the datasets have similar means
and close KL divergence values. However, this is not sufficient to
determine that the synthetic data can be shared in place of original
data for any learning methods. Unlike Dandekar et al’s work, the
test of our synthetic dataset is not its statistical properties like mean
or median. We test whether a classifier trained on the synthetic
data can still predict accurately on data from the original dataset.

2.2 Generative adversarial networks

Generative Adversarial Networks (GAN) were proposed as a frame-
work for estimating generative models via an adversarial process.
In the GAN framework, a generative model G captures the data
distribution, and a discriminative model D estimates the probability
that a sample came from the original distribution rather than G.
The training procedure for G is to maximize the probability of D
making a mistake. As the training progresses, the generator gets
better at generating new examples that plausibly come close to the
samples from the original distribution. The idea behind GAN can
be formulated as a two-player min-max game with value function
V(G, D):

mén max V(G,D) = Exwpyora(x) [logD(x)]

1
+E;p. (z) [log(1 = D(G(2)))] @

The original paper on GAN by Goodfellow et al. [19], describes
GAN’s utility in generating new plausible samples for image datasets,
such as the MNIST handwritten digit dataset, the CIFAR-10 small
object photograph dataset, and the Toronto Face Database. In gen-
eral, there is a lot of evidence of GAN being used for synthetic data
generation and translation in image and text data [6, 20, 43, 46].

Tabular data, like network event data, contains a mix of cate-
gorical variables (e.g. Event ID, Reporting Device, Overall Severity,
etc.) and continuous variables (e.g. time to live, count, etc.) This is
different from standard image data that are often generated through
GAN. To generate synthetic tabular data that looks and behaves the
same as real data, we need further constraints on the generation
process to get the desired outcome. We will further discuss the
difference between tabular data and image data in Section 3.

In an unconditioned generative model, there is no control over
the modes of the data being generated. Conditional Generative
Adversarial Nets (CGAN) [31] introduces the concept that by con-
ditioning the model on additional information, it is possible to
direct the data generation process. The objective function of the
two-player minimax game is rewritten as:

ngn mSXV(G’ D) = Ex~paata(x) [logD(x|y)]
+Ez~p, (2) [log(1 = D(G(z|y)))]

The Wasserstein GAN (WGAN), introduced by Arjovsky et al.
[2] in 2017, is an extension of the original Generative Adversarial
network. Instead of using a “Discriminator” to classify or predict
the probability of a certain generated event as being real or fake,
WGAN introduces the concept of a “Critic” that scores the realness
or fakeness of a given event. This change is introduced because
while training a generator, we should seek to minimize the distance
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Figure 1: An architecture diagram for our proposed method

between the distribution of the data observed in the training dataset
and the distribution observed in the generated samples.

The 2019 paper, “Modeling Tabular Data using Conditional GAN"
[45] describes a GAN model that utilizes a conditional generator to
address the challenges of a multi-modal continuous variable and
imbalanced discrete column in tabular data. It uses a “critic” model
that seeks to minimize the distance between generated and real data.
CTGAN adds to the idea of TGAN in addressing data imbalance
by employing a conditional generator and training-by-sampling
method. The proposed model outperforms Bayesian methods on
most of the real datasets for several metrics such as likelihood
fitness and machine learning efficacy of the synthetically generated
data. Due to its ability to produce realistic tabular data that bear
statistical resemblance to the original data, we will be using the
CTGAN model to generate data in our proposed method.

3 PROPOSED METHOD

In this paper, we propose a novel method of securely sharing sensi-
tive data that utilizes the principles discussed above. In our proposed
approach, we first train a CTGAN model using the real data. After
training, the generator in the CTGAN model can generate a sam-
ple set that can be used instead of the real dataset. To ensure that
privacy constraints are met, the distribution of sensitive attributes
in the generated set should be within an acceptable distance from
its distribution in the original dataset. Finally, to ensure that sensi-
tive values, like IP addresses, from the original dataset are never
revealed in the new dataset, selected attributes are encoded using a
hashing algorithm. The dataset thus created is available for secure
sharing with a remote host. An overview of our proposed approach

is described in Figure 1. We go into the detail of each step in our
approach further in this section.

3.1 Generation using CTGAN

The vanilla GAN architectures have proven to be successful in
generating fake image data. Image data, when normalized, consists
of real numbers within a fixed range. The real-valued or continuous
variables that represent the image data can be modeled using a
Gaussian distribution. This is particularly helpful for high-quality
image generation using traditional GANs. Generating images of
specific categories is still challenging as there is a high degree of
variance associated with specific types of images. However, the
central limit theorem suggests most of the real-valued datasets that
are formed by random distributions merged together, are some form
of Gaussian. In general, pixels’ values, as stated in the paper [45],
do follow a ‘Gaussian-like’ distribution when normalized using a
min-max normalizer. However, continuous variables in domains
other than computer vision, may not always come from a Gaussian-
like distribution. A min-max normalization can lead to a vanishing
gradient problem. This is because the values can have a much
higher range than image pixel data. Some values can be very high,
and when a min-max normalization is done, most values of that
particular variable will be very close to 0. This highlights the need
for a special type of GAN that can handle non-image continuous
data as well as other types of discrete data.

The problem CTGAN addresses is that of generating fake tabular
data with the help of GANs. In domains such as cybersecurity
or finance, we are often faced with modeling datasets that have a
mixture of continuous and discrete variables. The method, proposed
in the paper [45] , claims to have dealt with the problem of modeling



tabular data that has a mix of continuous and discrete variables.
The following steps were used in the paper by CTGAN to work
with tabular data.

o Mode-specific normalization
e Conditional Generator
o Training by sampling

CTGAN handles continuous and discrete variables differently. Mode-
specific normalization is used for the continuous variables. Since this
model targets non-Gaussian multimodal continuous variables, the
first step is to estimate the number of models for each continuous
column. Variational Gaussian Mixture Model (VGMM) [29] is used
to estimate the number of modes for each continuous column. The
probability of the data coming from the ‘k’th mode would be py
described as follows.

Pi = N (ciji Nies Pic)

where c¢; j is the j’th continuous variable of the ‘i’th row, n, is
the kth mode and ¢ is the standard deviation of the kth mode. The
modes are sampled from this probability distribution, and after that
they are represented by two vectors a and . ; j is simply a one-hot
vector representing which mode is sampled. For example, if VGMM
estimates there are 3 modes, and the second mode is chosen, the
vector f; j becomes [0,1,0]. «; j, described below, represents how
much the value is separated from the mode.

a and f for all continuous columns are concatenated together.

The Mode-specific normalization described above deals with the
multimodal nature of the continuous variables in tabular data. Dis-
crete variables are represented by a one-hot vector encoding of
the discrete values dy, ;. Each row vector r; is represented by the
concatenated vectors of @; j, fi,j, and d ; , where i ranges for all
the continuous variables N and k ranges for all the discrete vari-
ables Ny. This can be seen in Figure 2. To deal with the discrete
variables, a conditional vector is provided to the Generator of the
GAN model. The Generator, in this case, becomes a Conditional
Generator as it takes a condition or a vector as input. In Figure
2, we can see the condition as the concatenated vector of D1 and
D2. This is also called the ‘mask vector’ in the CTGAN paper [45].
The condition tells us that we are setting a condition for one of the
discrete columns to have a predefined value.

Out of all the discrete columns ( Ny), one of them is uniformly
chosen. Once a discrete column, say Dj, is chosen, a particular dis-
crete value, say k, is sampled with the probability of log( frequency(D;
k)). This helps in constructing the mask vector which forms the
condition that is provided as an input to the Conditional Generator.
Each dy ; is converted to empty sequence, except for the one-hot
vector of D; (if D; is chosen). For the the vector representing D;,
only the kth bit is 1 and the rest are all 0s (if kth discrete value is
chosen). In Figure 2, we can see the mask vector of D1 and D2. In
this case, D2=1 is the condition. D1 has 3 values and D2 has 2 values.
So the condition becomes a concatenation of [0,0,0] and [1,0].

The loss for training the Conditional Generator is cross-entropy
loss acting only on the condition. This is to ensure that after being
trained considerably well, the Conditional Generator will be able to
produce an output sample that has the value of the discrete variable
D2=1, if that is the condition provided. In the next step, the Critic
or the Discriminator evaluates the quality of the generated sample.

This is done by the method defined as Training by Sampling. It
is a fairly simple mechanism. From the training set, a sample is
chosen that satisfies the condition D2=1, if that was the condition
provided to the generator at that iteration. The loss for the Critic of
the Discriminator is the Euclidean distance between the sampled
data from the training set and the generated sample.

In Figure 2, we can see an example of the algorithm in action.

o After processing the continuous variables with Mode specific
normalization, a discrete variable is chosen at random with
uniform probability. If there are two discrete variables D1
and D2, one of them is sampled.

o From the sampled discrete variable, in this case, D2, a discrete
value is sampled with probability proportional to the log of
the frequency of the value. This sampled value, in this case,
C1, for the discrete variable D2 forms the condition vector.

e The condition vector, as we can see in Figure 2, denotes the
value of the discrete variable that is sampled. It is provided
as an input to the generator to generate a sample. Cross
entropy loss is calculated between the condition and the
one-hot encoding of the discrete variables. In the Figure 2,
the portion of the vector is denoted by d; ;.

e A data point is sampled from the training set, that satisfies
the condition that was provided as an input to the generator.
In this case, the condition was D2=C1. The discriminator,
or the critic, calculates the Euclidean distance between the
sampled data from the training set and the generated sample.

3.2 Sampling by EMD

After the Generator in the CTGAN model is trained, it can generate
fabricated samples that are close to the real dataset. We want to
generate a synthetic dataset that can be shared instead of the real
data. For this, we want to sample the Generator model n-times
to generate a dataset with n-datapoints. In the generator network
model, the probability mass function (PMF) of the discrete variables
is close to the PMF of the variable in the original dataset. Hence,
when sampling the data this information can be exploited for the
benefit of an adversary.

Li et al. [28] discuss the problems of inadvertently disclosing
information from such attributes that are quasi-identifiers, i.e. the
attributes whose values when taken together can potentially iden-
tify an individual. There are two types of potential information
disclosure in shared data: identity disclosure and attribute disclo-
sure. Identity disclosure occurs when an individual is linked to a
particular record in the released data. Attribute disclosure occurs
when new information about some individuals is revealed, i.e., the
released data makes it possible to infer certain characteristics of
an individual more accurately than it would be possible before the
data release. Once the identity of an individual is disclosed, the
corresponding attributes can be revealed, thus leading to attribute
disclosure. It has even been recognized that disclosure of false at-
tribute information can also cause harm [26]. So, even in shared
data using completely fabricated samples we want to limit the dis-
closure risk. To ensure that the quasi-identifiers in the released
dataset can be used for identity disclosure, the t-closeness principle
requires that in an equivalent dataset, the distance between the
distribution of a sensitive attribute in this set and the distribution
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Figure 2: An architecture diagram for CTGAN model

of the attribute in the whole data set is no more than a threshold t.
In the original paper by Li et al. [28], Earth Mover’s Distance (EMD)
is proposed as the distance measure between the distributions. For
two distributions P and Q, the EMD, D[P,Q], can be calculated as
follows:

If P and Q are numerical attributes, let r; = p; — ¢;,(1=1,2,.... m):

D[P,Q] = m_1(|r1| +lri+rel+ i+ rmeal)  (3)
S0y

=—— ) 1)l @
m-14 j=1

If P and Q are categorical attributes,

DIP.Ql =§Z|pi—qi| ©)
We use the privacy principle of t-closeness to ensure that our re-
leased data has limited disclosure risk. Additionally, the distance
measure helps us ensure that the distribution of discrete values
in the released dataset bears statistical similarity to the original
data. Hence, after the i-th sample is drawn from the generator we
calculate the EMD for each attribute in the dataset. We keep draw-
ing a sample from the generator, while the maximum EMD for
any attribute is greater than the threshold t. Once, the EMD for all
attributes is less than or equal to t, t-closeness is achieved and we
stop sampling. The sample dataset that has been retrieved, passes
on to the next step before being released.

3.3 Encrypting sensitive strings

Our data generator can create data that is very similar to the original
without repeating data points from the original dataset. However,
the data generator can not fabricate completely new values for
some attributes like IP Addresses, which are drawn from a limited
space. While the generator hides the correlations that an adversary
can discover using traffic analysis, it can’t completely hide the

range of IP addresses in the data. This is information that a user or
individual data source might be unwilling to share with a remote
entity or an aggregating learner. To provide extra privacy, we use
hashing/encryption here.

Specifically, we use a hashing algorithm to encrypt all sensitive
values. This makes it harder to retrieve the original values of at-
tributes from the released dataset. We use the SHA-256 algorithm
[41] to encrypt all sensitive values. The benefit of using a standard
hashing algorithm is that it scrambles the data deterministically.
Hence, data from different sources can be encrypted using the same
hashing function and identical values will have the same hashed
value in the released data. We note that probing attacks for IP ad-
dresses hashed using SHA256 are not trivial, and more complex
encryptions can be used if needed. Additionally, the hashing func-
tion accepts an input of arbitrary length and outputs a fixed-length
result that makes sharing data over communication channels easier.
After the sensitive values have been encrypted, the dataset is secure
and can be released for learning with minimal risk to privacy.

4 EXPERIMENTS AND RESULTS
4.1 Datasets

In this section, we discuss the experiments on our proposed frame-
work. We aim to find a secure way to release sensitive data, such
that analytical tasks have the same results for the released dataset
as they would have for the original data. To prove, the validity
of our proposed framework, we use well-known datasets that are
frequently used for machine learning-based classification tasks. We
will generate a securely release-able version of each of the datasets
and show that classification algorithms have comparable results
for real data and data released securely through our framework.
We will specifically use this framework to provide a secure and
privacy-preserving way of releasing network event data. For the
original dataset, we use the Network Event Data released as a part



alert_ids | notified | categoryname ip alerttype dstip srcport | dstport | severity | username | signature
Real wyX 0 Exploit YW.RN.220.183 | ThreatWatch Outbound YT.LB.34.21 21384 443 4 1 1
Generated wyX 0 Exploit YW.RN.220.183 | ThreatWatch Outbound | UJ.TZ.210.230 | 56511 443 2 1 1
Real WYwW 1 Exploit YT.PK.194.174 IDPS Alert YT.PK.194.174 49962 80 4 1 1
Generated | WYW 1 Exploit YTPK.194.174 | Suspicious SMB Activity | YT.PK.194.174 | 61687 445 4 0 1

Table 1: A comparison of real datapoint from Network Event Data and generated datapoint from CTGAN generator

#of # of #of

Dataset Continuous | Discrete
. ) Instances

attributes attributes
Census Income | 6 9 48842
Contraceptive
Method Choice 2 8 1473
Credit Approval | 10 6 690
Pima Indian 3 1 768
Diabetes
Iris Flower 3 1 150

Table 2: Number of Attributes and Instances in the Datasets
used for our experiments

of BigData 2019 Cup [21] that was used for false alarm identifica-
tion. We go into the details of the dataset used for our experiments,
below.

Network Event Data:“IEEE BigData 2019 Cup: Suspicious Net-
work Event Recognition” [21] was a data mining competition orga-
nized jointly by companies Security On-Demand (SOD) and QED
Software at the KnowledgePit online platform, in association with
the IEEE BigData 2019 conference. In this challenge, participants
were allowed to explore the network traffic data provided by SOD.
This data contains threat watch alerts identified by SOD’s systems
and investigated by the SOC team members during six months.
Network event alerts were represented by the data retrieved at
three different processing stages, raw information extracted in
form of network event logs, a series of localized alerts that usually
correspond to single network connections assessed as suspicious
according to rules designed by the SOD’s Threat Reconnaissance
Unit, and threat watch alert corresponding to time-interval-specific
aggregations of localized alerts, which are finally investigated by
security operators and analysts. The task in this competition was to
come up with an efficient scoring model that could discern among
truly meaningful threat watch alerts and false alarms.

In the data acquisition stage, specific attributes (e.g., device_type,
reporting_device_code, device_vendor_code), were identified as
sensitive and the organizers had to anonymize the dataset before
releasing it. The preparation of such dictionaries required process-
ing a very large data set of raw event logs - its size was over five
times greater than the size of the final event logs provided to par-
ticipants of the challenge (2.2T B). While this was sufficient for this

competition, this is not a practical solution for data sharing. Cy-
bersecurity investigators and machine learning researchers require
large volumes of data, like the one released in the BigData 2019 Cup.
We need a more practical and secure solution for persistent data
sharing. As seen from the results of the BigData 2019 Cup, machine
learning models provide an efficient and accurate solution to false
alert identification that can considerably reduce the need for human
intervention. Hence, it is worth investigating a secure solution to
fast data release, such that more meaningful investigations can be
carried out.

We use our proposed methodology to generate a dataset from
the original data set of this challenge. The generated data is safe
for release and contains the privacy guarantees we have described
earlier. We will show that machine learning models used for false
alarm identification on the original dataset have similar perfor-
mance on the new dataset. Thus showing that the secure dataset
generated from our framework can be used instead of the original
dataset for analytical purposes.

Other Datasets: To prove that our framework can be gener-
alized to other datasets, we apply our proposed method to other
well-known tabular datasets that are often used for machine learn-
ing classification tasks. The datasets are collected from the UCI
Machine Learning Repository [14]. The datasets used for our ex-
periments are:

e Adult Census Income Data [23], the classification task is
to predict whether income exceeds 50K/yr based on census
data.

e Contraceptive Method Choice Data [11], the classifica-
tion task is to predict contraceptive method used in a family.

e Credit Approval Data [37], the classification task is to pre-
dict if the credit card application will be approved.

e Pima Indians Diabetes [40], the classification task is to
predict the likelihood of diabetes in a Pima Indian female.

e Iris Flower Data [17], the classification task is to predict
the variety of Iris flower.

All datasets contain a mix of continuous and categorical variables.
The details are provided in Table 2.

4.2 Generating Privacy-Preserving Synthetic
Data

We use our framework to generate privacy-preserving synthetic
data that can replace tabular datasets for machine learning models.
An overview of the data generation pipeline is given in Figure 1.
The pipeline broadly involves the following steps:
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Figure 3: Plot of Max EMD of attributes vs Number of Generated Samples in different datasets

(1) Train a CTGAN model with the real dataset. Once trained,

the generator of the CTGAN should generate data points
close to the original data. The CTGAN constitutes of two
components, a Generator, and a Critic or a Discriminator.
The Generator has an input layer that is a concatenation of
two vectors. The first vector is a 128 dimensional sampled
vector from a Normal Distribution. The second vector is a
one-hot vector of the same dimension of the conditional
vector for the discrete data. This vector is dependent on
the dataset. For the network event dataset, the dimension
is 2995, which is the total number of discrete values in the
dataset. The generator has two more fully connected layers
of dimension 256. Each of these layers has ReLU activation,
and is followed by a BatchNormalization layer. The final
layer is of the dimension of the input data.

The input data dimension is dependent on the number of
continuous variables, the maximum number of modes of the
continuous variables, the number of discrete variables, and
the possible number of discrete values for each of the vari-
ables. In the network event dataset, there are 10 continuous
variables and 18 discrete variables. We also consider the max-
imum number of modes to be 10. The input dimension is the
sum of 2" number of continuous columns * maximum num-
ber of modes and the total number of discrete values for all
variables. For the network event data, the input dimension
will be 20 * 10 + 2995 = 3195. The input to the Discrimi-
nator is a vector of the same dimension. It is followed by
2 fully connected 256 dimensional layers. The layers have
LeakyReLU activation. The dimension of the output is 1.



Baseline Classifier
Competition | Classifier trained on
Winner trained on Generated
Original Data | Data
AUC Score | 0.93 0.92 0.91
Macro-Avg. |, o5 0.88 0.87
of Precision
Macro-Avg.
of Recall 0.92 0.98 0.98
Macro-Avg.
of F-1 Score 0.93 0.92 0.92
Accuracy 0.96 0.95 0.95

Table 3: Comparison of Network Event Recognition task for
Classifiers trained on Original Data and Generated Data

For reference, a subset of a row from the original network
event data and the generated dataset is provided in Table 1.
(2) We iteratively sample data points from the CTGAN genera-
tor, till the EMD for all attributes in the generated dataset is
within a threshold, T from the original dataset. Though there
is no hard rule for choosing T, the distance should ideally be
less than 1. For our experiment, we chose the value 0.6 for T.
Since it is less than 1, it is sufficient to meet privacy require-
ments. Additionally in experiments over multiple datasets
of varying sizes, we observe that this threshold value can be
reached within approx. 50 iterations of sampling, with each
iteration sampling 1/10-th the size of the dataset.
The change of maximum EMD for any attribute with the
number of samples is plotted in Figure 3 for reference. We
also ensure that no row from the original dataset is fully
repeated in the generated dataset.

(3) The sensitive values in the generated dataset are encrypted
using the SHA-256 algorithm. This is specific to the dataset
being used. For the network event data, the organizers of
the challenge specify that the IP addresses require special
anonymization. We encrypted these fields in our dataset. For
the other datasets, we encrypted all field values containing
strings or special characters.

We compare the impact of these synthetic datasets on machine
learning tasks.

4.3 Testing with ML models

To show that data generated through our framework can replace
real data for machine learning tasks, we use it to train ML classifiers.
First, we train a standard classifier using the original data. A subset
of the original data is reserved for testing and not used in training.
Then, we train another classifier (same hyperparameters) with just
the generated dataset. We use the first classifier to predict the label
for the test set reserved from the original data. We use the second
classifier to also predict the label for the same test set. We calculate
all validation metrics for both classifiers and compare the results.
Network Event Data: “IEEE BigData 2019 Cup: Suspicious
Network Event Recognition” [21] challenge released Network Event

Baseline #of
Accuracy on Accuracy on Samples
Dataset .. Y Released . P
Original Data in Released
Data Data
Census 0.80 0.76 16700
Income
Contraceptive
Method 0.53 0.52 1560
Choice
Credit 0.86 0.79 930
Approval
Pima
Indian 0.75 0.75 610
Diabetes
Iris
0.98 0.96 270
Flower

Table 4: Comparison of Accuracy in Original Data vs Data
generated by our framework

dataset in association with SOD. The objective of the challenge
was to efficiently discern among truly meaningful threat watch
alerts and false alarms. Though the dataset was anonymized before
being released, the anonymization task was costly and can not be
generalized. We show here that the network event data anonymized
through our framework has a similar performance as the original
data for the network event recognition task.

We use an XGBoost classifier with Grid Search hyperparameter
tuning for network event recognition on the original dataset. We
first train the classifier on a subset of the original dataset, training
data and test it on a subset of the original dataset, test data. We
then train another classifier with the same hyperparameters on
the dataset generated from our framework. We compare the scores
in Table 3. For reference, we also provide the performance of the
classifier model that won the competition. We tried to replicate the
winning Machine Learning model from the description given. The
baseline classifier we have used is slightly different but comparable
in results.

Other datasets: To show that our model can be generalized to
any standard tabular dataset, we apply it to other standard tabular
datasets from the UCI Machine Learning repository. We use the
XGBoost classifier for classification tasks described for each dataset.
We first train the classifier on a subset of the original dataset, train-
ing data. We measure its performance by predicting the class labels
of the remaining sample points in the dataset, the test data. We
then train another classifier with the same hyperparameters on the
data generated by our framework. We measure its performance by
predicting the class labels of the same test data used for testing
the original training set. We then compare the performance of the
two classifiers. The baseline accuracy on the original data vs the
accuracy on the data released through our framework has been de-
scribed in Table 4. We also report the number of generated samples
that were used.



4.4 Summary of Results

For all standard tabular datasets, there is minimal loss in accuracy
for the classifier when trained on data generated through our frame-
work. The average loss in accuracy for the six datasets used in our
experiment is 3%. For the network event data, the AUC score for
the classifier trained on the generated dataset is 0.91, which is a
small difference from our baseline classifier score (0.92) and also
comparable to the winner of the challenge (0.93). There is a small
drop in Precision and F1-score, the recall is the same for both.
Overall, the classifiers trained on the generated datasets have
comparable performance as the baseline classifiers. Thus, our frame-
work provides a secure solution for releasing data with sensitive
information that has minimal impact on learning tasks.

5 RELATED WORK

Privacy in data sharing has been heavily discussed in the past
decade. Organizations are invested in finding secure, automated
solutions to collecting and sharing data [25], [24]. However, organi-
zations are still sceptical about sharing their data for use in research.
Network data is useful for multiple purposes, the most common
being creating Intrusion Detection Systems (IDS). Previous meth-
ods for IDS like Snort [18], uses rule-based methods for matching
possible attacks with known attacks. The main drawback of rule-
based methods is that it does not perform as well for novel attacks
that bypass the existing rules used for detection. For this reason,
ML-based methods are being used currently because the rules cre-
ated by them are often more complex than human-designed rules.
Lee et al. described methods to collect features for network events
for ML analysis [27]. There are multiple supervised methods that
work on IDS [32, 47]. Unsupervised methods, using deep learning
models have also been useful in detecting cyber-threats involv-
ing network data [36, 42]. Reinforcement Learning-based methods
are also becoming popular in detecting cyber-threats and malware
[33, 35, 44]. Some researchers have shown that Random Forests
outperform other state-of-the-art algorithms for Network IDS tasks
[5]. However, all machine learning-based algorithms for network
data analysis rely heavily on large volumes of network data being
available for analysis. This is not practical. Network Data contain
sensitive information that requires added privacy measures.

There has been some work done on the dataset that we have
used [21] for network data sharing. Specifically, in this work, GANs
were used for adversarial training and the discriminator was used
as a classifier [34]. This was done to deal with the class imbalance
problem that is common across ML algorithms working on network
event data. GANs have been used to generate samples that are
useful for other ML models [13]. The first paper talked about fully
connected GANSs [19]. Soon, Deep Convolution GANs [38] became
state-of-the-art for GANSs in image data. A problem that needed
to be addressed for GANs was that of being unable to generate
class-specific data. Conditional GANs [31] helped in the generation
of class-specific data with the help of an additional class label for
both the discriminator and the generator. InfoGAN [7], also helps
in this regard by providing class-specific codes along with the noise
vectors as an input to the generator. An additional neural network
is required to estimate the posterior probability of the generated
sample for the class

6 CONCLUSION

As machine learning models have grown in efficiency over the years,
there is a gap between the computational capabilities of machine
learning models and data available for use. For many sensitive
domains, corporate and government entities are unwilling to share
their data for use in ML research, despite the obvious benefits.
Alleviating privacy concerns will go along way in making more data
available, thus benefiting researchers at large. This is especially true
for cybersecurity. Organizations that investigate cyber attack events
are reluctant to share their network-related data, even though they
can greatly help not just cybersecurity research, but prevention
of similar attacks in other places. We need techniques that help
make such data widely available for accurate data analysis without
violating the privacy of the data subject. Though privacy in data
sharing has been frequently being discussed, there is still no perfect
solution.

In this paper, we explored the approach of making data available
for analysis without sharing sensitive information is by replacing
sensitive information with synthetic data that behaves the same
for machine learning tasks. We described a framework to generate
such synthetic data using a combination of CTGANS, t-closeness
measures, and hashing. We then tested a model trained on our
synthetic data against the actual test data from the original dataset.
We showed that for a variety of datasets selected from the UCI
repository, our approach led to only marginal decreases in the
accuracy measures of the classifier. We also tested our approach on
an actual dataset of attack-related network events released as a part
of the BigData 2019 Cup. Our experiments show that synthetically
generated is analytically similar to the original dataset, dropping
the AUC score from 0.92 to 0.91. This provides a privacy-preserving
and secure alternative to sharing real tabular data. We hope that this
could help organizations and individuals to release their sensitive
data for academic research.

Kaggle has very recently released a medical dataset [22] as part
of their Tabular Playground Series. They did not release the original
dataset, rather a synthetic version was generated using a CTGAN.
Though they do not completely describe their anonymization pro-
cess, it is interesting that data organizations are invested in the
secure release of data for public use using approaches similar to
the one we have proposed.
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