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Abstract

The canonical methods for gravitational wave detection are ground- and space-based laser interferometry, pulsar
timing, and polarization of the cosmic microwave background. But as has been suggested by numerous
investigators, astrometry offers an additional path to gravitational wave detection. Gravitational waves deflect light
rays of extragalactic objects, creating apparent proper motions in a quadrupolar (and higher-order modes) pattern.
Astrometry of extragalactic radio sources is sensitive to gravitational waves with frequencies between roughly
10−18 and 10−8 Hz (H0 and 1/3 yr−1), overlapping and bridging the pulsar timing and CMB polarization regimes.
We present a methodology for astrometric gravitational wave detection in the presence of large intrinsic
uncorrelated proper motions (i.e., radio jets). We obtain 95% confidence limits on the stochastic gravitational wave
background using 711 radio sources, ΩGW<0.0064, and using 508 radio sources combined with the first Gaia
data release: ΩGW<0.011. These limits probe gravitational wave frequencies 6×10−18 Hzf1×10−9 Hz.
Using a WISE-Gaia catalog of 567,721 AGN, we predict a limit expected from Gaia alone of ΩGW<0.0006,
which is significantly higher than was originally forecast. Incidentally, we detect and report on 22 new examples of
optical superluminal motion with redshifts 0.13–3.89.

Key words: astrometry – cosmology: observations – gravitational waves – inflation – proper motions – techniques:
high angular resolution

Supporting material: machine-readable tables

1. Introduction

A stochastic gravitational wave background deflects light
from distant objects, producing an apparent proper motion
(Braginsky et al. 1990). The angular deflections will be
correlated across the sky with an amplitude of the order of the
dimensionless strain of the gravitational waves, hrms (Braginsky
et al. 1990; Kaiser & Jaffe 1997); one microarcsecond (μas)
of deflection is equivalent to a dimensionless strain h∼5×
10−12. Observations spanning a time intervalD =t f1 obs will be
sensitive to gravitational waves with frequencies <f fobs, roughly
down to the inverse of the light travel time to the observed objects,
f∼10−18–10−17 Hz (e.g., Book & Flanagan 2011).

Book & Flanagan (2011) show that the cosmological
gravitational wave background energy density can be related
to the correlated light deflections as

mW ~ á ñ( ) ( ) ( )f f H , 1GW
2

0
2

where má ñ( )f 2 is the variance in the proper motion at observed
frequency f, and H0 is the Hubble constant. The proper motion
power spectrum, for quadrupolar and higher-order modes, can
measure or constrain the gravitational wave background over
10 decades in frequency, H◦f1 yr−1 (10−18f10−8

Hz). The dominant signal is quadrupolar (Figure 1), with smaller
contributions from ℓ>2 modes. In practice, observations
constrain the energy density integrated over frequencies,

ò W ( )f d flnGW , which will hereafter be labeled as ΩGW.
Detecting or constraining ∼10−18–10−16 Hz primordial grav-

itational waves is a key goal of CMB polarization B-mode
measurements (e.g., Kamionkowski et al. 1997; Seljak &
Zaldarriaga 1997; Ishino et al. 2016), but between the CMB
polarization measurements and pulsar timing, which is sensitive to
frequencies ∼10−9–10−7 Hz (e.g., Arzoumanian et al. 2016), are

∼7 orders of magnitude in frequency space. Proper motion
measurements can approach gravitational wave detection in a
completely independent manner and bridge the frequency gap
between the pulsar timing and CMB polarization methods. The
frequency range f10−15 Hz can also be probed using the CMB
power spectrum because gravitational waves contribute to the
radiation density of the universe and can mimic a massless
neutrino, modifying the effective number of neutrino species (e.g.,
Smith et al. 2006).
Previous observational work on astrometric detection of

gravitational waves using active galactic nuclei (AGNs) using
radio interferometry include Gwinn et al. (1997) and Titov
et al. (2011). They quote upper limits on the stochastic
gravitational wave background—expressed in terms of the
critical cosmological energy density—of W < -h0.11GW 100

2 for
f<2×10−9 Hz at 95% confidence (Gwinn et al. 1997) and
W < -h0.0042GW 100

2 for f<10−9 Hz (Titov et al. 2011).
However, we cannot reproduce either of these limits based
on their quoted quadrupolar fit parameters.
In this paper, we present detailed methods for astrometric

measurement of the gravitational wave background including a
maximum likelihood method for extracting correlated signals
in vector fields with large significant outliers (the uncorrelated
“intrinsic” apparent proper motion induced by relativistic jets;
Section 2). We use these methods in Sections 3–5 to obtain
new stochastic gravitational wave limits from a Very Long
Baseline Array (VLBA)1 astrometric catalog (Truebenbach &
Darling 2017) and from this catalog combined with the first
Gaia data release (Gaia Collaboration et al. 2016a, 2016b). We
also use a Gaia-WISE catalog (Paine et al. 2018) to make
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predictions for the gravitational wave detection sensitivity of
Gaia by the end of its mission (Section 6).

The only cosmological assumption used for the gravitational
wave results is H○=70 km s−1 Mpc−1. When expressed as
an angular frequency, the Hubble constant becomes H0=
15 μasyr−1. For superluminal motion2 calculations, we
additionally assume a flat cosmology with ΩM=0.27, and
ΩΛ=0.73.

2. Methods

To characterize a vector field on a sphere, one can extend the
usual spherical harmonic characterization of a scalar field on a
sphere to vector spherical harmonics (e.g., Thorne 1980),
defined as the gradient and curl of the scalar spherical
harmonics, which resemble electric (E) and magnetic (B) fields
(Mignard & Klioner 2012):

a d a d=
+

( )
( )

( ) ( )S
ℓ ℓ

Y,
1

1
, , 2ℓm ℓm

and

a d a d=
-

+
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1

1
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where the Sℓm is the “spheroidal” E-mode of degree ℓ and order
m, Tℓm is the “toroidal” B-mode, and n̂ is the radial unit vector.
Sℓm, Tℓm, and n̂ are mutually orthogonal, by construction. A
general vector field a d( )V , on the surface of a sphere can be
expanded in terms of this vector spherical harmonic basis using

complex coefficients sℓm and tℓm:

å åa d a d a d= +
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The first three spherical harmonic degrees relevant to this
treatment (E- and B-mode dipole, quadrupole, and octopole)
are listed in Tables 4 and 5 and explicitly as equations with
coefficients in Appendix A (but note that these equations
describe a real-valued vector field and are a special case of the
general complex vector spherical harmonics described by
Equation (4)). We follow the Mignard & Klioner (2012)
prescriptions for calculating the power in any mode (the
quadrature sum of coefficients, modulo factors of 2),

å= + + + + +
=
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( )

P s t s s t t2 ,

5

ℓ ℓ ℓ
m

ℓ

ℓm
Re

ℓm
Im

ℓm
Re

ℓm
Im

0
2

0
2

1

2 2 2 2

and use the Z-score to assess significance (Mignard &
Klioner 2012, Equation (85)).
The Gwinn et al. (1997) power (sum of squared “moduli”

[amplitudes]) is equivalent to the Mignard & Klioner (2012)
power prescription, despite slightly different definitions. One
can therefore use the quadrupole power (ℓ=2) as described in
Equation (5) to obtain an estimate of the gravitational wave
energy density:

p m
W = =
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The factor of 6/5 in this expression corrects for the 5/6
contribution of the quadrupole to the total gravitational wave
signal (Gwinn et al. 1997; Book & Flanagan 2011).
In general, a proper motion catalog that produces a limit on

the quadrupole vector spherical harmonics can also provide a
similar limit on the octopole (and higher orders), but the
expected relative weighting on quadrupole power versus higher
multipoles in a stochastic gravitational wave signal declines
rapidly, as ℓ−4.9 (Book & Flanagan 2011). A quadrupole-only
limit will typically be the most constraining, despite the
additional information contained in higher-order modes, so a
“bandpower” approach such as that used in CMB signal
detection will not be effective (e.g., Bond et al. 1998). We
demonstrate this explicitly using data in Section 5. Figure 1
compares an ℓ=2 proper motion stream plot to a

+( ) ( )V V5 6 7 601 2
2

1 2
3 vector field. The quadrupole and

octopole coefficients were randomly selected from normal
distributions with the appropriate 2 scaling of the m=0
terms. The differences between the two cases are subtle
because the octopole power is de-weighted by a factor of ∼7
compared to the quadrupole.

3. Data Sources and Proper Motions

We measure proper motions from astrometric time series
using VLBA data only and VLBA data combined with a single
Gaia epoch. For both time series, we fit position versus time in
R.A. and decl. separately using error-weighted linear least-
squares bootstrapped to incorporate the effect of outlier epochs,
as described in Truebenbach & Darling (2017).

Figure 1. Randomly generated all-sky quadrupole (top) and quadrupole plus
octopole (bottom) E- and B-mode stream plots in equatorial coordinates (see
Section 2). For the combined quadrupole and octopole plot, the weighting is
(5/6)1/2 and (7/60)1/2, respectively, which accounts for 95% of the expected
signal power (the remainder is in higher multipole modes; Book &
Flanagan 2011). Streamlines indicate the vector field direction, and the colors
indicate the vector amplitude, from violet (zero) to red (maximum).

2 See Cohen et al. (1977), Blandford et al. (1977).
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3.1. VLBA Catalog

The VLBA astrometric catalog is described and character-
ized in detail in Truebenbach & Darling (2017). In summary,
the catalog contains 713 objects with mean astrometric
uncertainties of 24 μas yr−1. These were obtained from long-
term astrometric monitoring programs as well as new
observations. Proper motions were measured from astrometric
time series using a bootstrapped error-weighted least-squares fit
for each object in each coordinate, substantially improving on
previous proper motion measurements for most objects.

The time baselines spanned by the new and archival
data cover the range 6.4–27.2 years (1.2×10−9 Hz to
5.0×10−9 Hz). The median time series spans 22.2 years, which
is equivalent to f=1.4×10−9 Hz. Figure 2 shows the
distribution of observed frequencies for the catalog. The majority
(95%) of objects sample the range fobs=(1.0–2.5)×10−9 Hz.
The lower bound on detectable frequencies is set by the distance
of the catalog objects, which must be greater than the
wavelength of the gravitational waves. The sensitivity of the
sample to the longest wavelength gravitational waves will
therefore be a function of frequency because the sample size
decreases with distance. The median redshift is 1.10, and the
upper and lower quartile divisions are 0.594 and 1.64. We
conservatively set the lower bound on frequency using the first
redshift quartile, z25%=0.594, where 75% of the sample can
still be used to detect gravitational waves. Using our assumed
cosmology, the light travel time is 5.74 Gyr, which corresponds
to 6×10−18 Hz. The astrometry is therefore sensitive to
gravitational waves with 6×10−18 Hzf1×10−9 Hz.

While this catalog shows very low proper motion errors, the
proper motions themselves can be substantial and significant
due to relativistic radio jet motion (see Section 3.2). This
“intrinsic” proper motion is uncorrelated between objects, but
introduces special challenges to detecting small-amplitude
correlated global proper motions. Section 4 presents a solution
to this uncorrelated large-amplitude significant-signal contam-
ination problem.

3.2. VLBA+Gaia Catalog

The first Gaia data release (DR1) catalog (Gaia Collaboration
et al. 2016a) contains a single-epoch (2015.0) position for 2191

AGN in the International Celestial Reference Frame (ICRF2)
catalog (Mignard et al. 2016). Five-hundred seventy-seven of
these are VLBA sources in the Truebenbach & Darling (2017)
catalog, and we use them to measure proper motions from the
VLBA-Gaia time series. Median uncertainties in the Gaia
astrometry of these objects are 518 μas and 459 μas in R.A. and
decl., respectively.
To create a VLBA+Gaia proper motion catalog, we perform

a 500-iteration bootstrap error-weighted least-squares fit to the
VLBA time series as described by Truebenbach & Darling
(2017), but we include the Gaia point in every fit rather than
allowing it to fall into the bootstrap selection pool. This causes
the Gaia point to act as a loose astrometric anchor, to within its
uncertainty. When there are many radio epochs in a time series,
the Gaia point will still have a minor impact on the best-fit
proper motion.
We assess the Gaia offset from the VLBA-only proper motion

prediction for the Gaia epoch strictly based on the uncertainty in
the Gaia measurement, which is typically larger than the
prediction uncertainty of the time series fit. The proper motions
obtained from the time series that include a single Gaia epoch
are typically not significantly altered from the VLBA-only
results, but there are some notable exceptions. It is remarkable
that 88% of the objects’ proper motions show consistency
between the radio trend and the Gaia position. In most of these
cases (87% of the consistent subset), the measured proper
motion, given its uncertainty, is consistent with zero, which
implies that the optical and radio positions coincide with no
motion to within the measurement uncertainty.
In 13% of the sample, the Gaia epoch extends the time series

beyond the VLBA epochs, agrees with the VLBA proper
motion, and generally improves the proper motion solution (see
0007+171 in Figure 3). We assume in these cases that the
optical and radio centroids are coincident (as is the case with
most objects in the sample).
In 12% of the sample, the Gaia epoch is significantly (>3σ)

offset from the VLBA proper motion fit in one or both
coordinates, indicating that the optical and radio centroids do
not coincide. Figure 3 shows an example, 0003+380, where
the Gaia astrometry is significantly offset in both coordinates.
We cannot yet say whether the radio and optical proper
motions differ because there is only one optical astrometric
epoch. There are many possible reasons for radio-optical
offsets, including optically faint jet emission, optical light from
the host galaxy, dust obscuration of the AGN, and offset radio
and optical emission regions within jets (e.g., Kovalev
et al. 2016). Given these scenarios, it is surprising that 88%
of the sample does show good radio-optical coincidence at the
sub-mas level (but see Petrov & Kovalev 2017).
In 9% of the subsample with good VLBA+Gaia agreement

(8% of the total sample), the proper motion is significant (>5σ
in at least one coordinate) and intrinsic to the object (not
cosmological, caused by gravitational waves, or observer-
induced). For example, 0007+171 shows a R.A. proper motion
of 136.6(25.4) μas yr−1 (Figure 3 and Tables 6 and 7). At a
redshift of z=1.601 (Wills & Wills 1976), this proper motion
coincides with apparent superluminal motion of 10.1(1.9)c in
the object’s rest frame.
Apparent velocities are calculated in the source rest frame

using the proper motion distance DM, which is equal to the line-
of-sight comoving distance in a flat cosmology and related
to the angular diameter distance DA as = +( )D D z1M A

Figure 2. Distribution of observed frequencies obtained from astrometric time
series of the VLBA and VLBA+Gaia catalogs. The upper bound on the
gravitational wave frequency sensitivity of an object is the inverse of the time
span used to measure its proper motion. The gravitational wave frequencies
probed by these proper motions span the range 6×10−18 Hzf1×
10−9 Hz (see Section 3.1).
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(Hogg 1999). The redshift scale factor translates the observer-
frame time interval used to calculate apparent velocity into the
object rest-frame time interval. We therefore calculate the
apparent transverse velocity from proper motion via

m= ( )v D , 7M

where DM may be expressed in distance per radian or most
often kpc arcsec−1.

In total, there are 22 objects that show superluminal optical
and radio motion, up to 10.1 c. Table 6 lists the properties of
these objects. We interpret these observations to indicate that
the AGN radio jets also show significant detectable optical
emission, even at substantial redshifts. It is noteworthy that
optical superluminal motion has only been observed in the
local universe in a small number of objects including M87 and
3C264 (e.g., Biretta et al. 1999; Meyer et al. 2015).

Table 7 lists the VLBA-only and the VLBA+Gaia proper
motions as well as the Gaia offsets from the VLBA-only fits.
For signal extraction from this catalog, we exclude objects with
significant (3σ) Gaia offsets in either coordinate direction.

After culling, 508 objects remain in this sample, and these are
used in the vector spherical harmonic fits (Sections 4 and 5).
The time baselines spanned by the VLBA+Gaia proper motion

catalog are somewhat longer than the VLBA-only catalog (see
Figure 2). Time series range from 10.6 to 37.6 years (8.4×
10−10 Hz to 3.0×10−9 Hz), and the median time series spans
24.9 years, which is equivalent to f=1.3×10−9 Hz. The majority
(95%) of objects sample the range fobs=0.8–2.5×10

−9 Hz. The
median redshift is 1.23, and the upper and lower quartile divisions
are 0.73 and 1.80. The first redshift quartile, z25%=0.73, with
light travel time 6.55Gyr, sets the lower bound on frequency of
5×10−18 Hz. The ℓ�2 correlated proper motions used to
constrain the stochastic gravitational wave background are therefore
sensitive to waves with frequencies 5×10−18 Hzf0.8×
10−9 Hz.

3.3. Gaia Catalog

The advantages of extragalactic Gaia proper motions over
radio interferometric proper motions lie in the factor of ∼1000
increase in number of optical sources over radio and the

Figure 3. Example time series astrometric fits of VLBA only (blue) and VLBA plus the 2015.0 Gaia epoch (red). The columns depict the R.A. (left) and the decl.
(right), and the proper motions and their errors are indicated in the inset boxes. Top panels: 0003+380 shows significant Gaia-VLBA inconsistency, indicating
physical offsets between the radio and optical emission regions. Middle panels: 0007+171 shows highly significant (and superluminal) motion where the optical and
radio emission regions are consistent. This is also an example of the Gaia epoch substantially extending the time series. Bottom panels: 0019+058 shows agreement
between the VLBA and Gaia astrometry where no proper motion is detected. This case represents the majority (77%) of the astrometric sample.
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(generally) lower intrinsic optical proper motions. These
advantages may overcome the less precise astrometry and
shorter time baseline of Gaia compared to geodetic VLBI
monitoring (in the short term).

The Gaia DR1 catalog contains a single-epoch position for
AGN, but the expected end-of-mission proper motion uncer-
tainties can be used to predict the sensitivity of the final Gaia
catalog to gravitational waves. To first order, the vector proper
motion error of each object depends on its ecliptic angle and
optical G-band magnitude.3 We use the pyGaia4 package to
predict the proper motion errors for each object in the 567,721
AGN Paine et al. (2018)WISE-Gaia sample. Paine et al. (2018)
present the expected uncertainties, the sky distribution, and the
potential systematics of the sample. We use this catalog in
Section 6 to predict the expected Gaia end-of-mission
sensitivity to the stochastic gravitational wave background.

4. Signal Extraction

The challenge to vector spherical harmonic fitting posed by
radio sources is their often significant large apparent intrinsic
proper motions induced by relativistic jets. These intrinsic proper
motions are uncorrelated between objects but can dominate an
error-weighted least-squares fit of the correlated proper motions.
Investigators measuring the secular aberration drift dipole have
therefore heavily censored their samples in order to maximize
the signal of interest (e.g., Titov et al. 2011; Titov & Lambert
2013), but this requires a priori knowledge of the expected
signal. A different approach can be bootstrap resampling, which
was successfully implemented by Truebenbach & Darling
(2017) to extract the secular aberration drift dipole induced by
the barycenter acceleration about the Galactic Center with
minimal data clipping.

Here, we implement a maximum likelihood MCMC
“permissive fit” method that allows for highly significant
large-departure data points by assuming that the mismatch
between model and data will in some cases be bounded
from below by the measured uncertainty (Sivia & Skilling 2006,
p. 168). This method, rather than minimizing an error-weighted
data-model residual s= -( )R D Modeli i i for each data point
Di with uncertainty σi, maximizes the logarithm of the posterior
probability density function

å= +
-

=

-⎛
⎝⎜

⎞
⎠⎟ ( )L

e

R
constant ln

1
. 8

i

N R

i1

2

2

i
2

In this work, the data are the positions and proper motions of
extragalactic objects, the model is a linear combination of
vector spherical harmonics evaluated at each object position,
and the uncertainties are the proper motion errors (uncertainties
in the positions of objects have no impact on low-ℓ signals). To
assess the model fits and uncertainties, we employ an MCMC
technique using lmfit (Newville et al. 2014) to obtain the
maximum likelihood and confidence intervals for each fit
parameter directly from the resulting distribution of outcomes.

For the vector spherical harmonic fits, all coefficients and
uncertainties are maximum likelihood estimates. The power in
a given mode is calculated from Equation (5), and its
significance is estimated using a Z-score following Mignard
& Klioner (2012), Equation (85).

4.1. The Secular Aberration Drift Dipole

We start with a fit of the E- and B-mode dipole signals in
both catalogs, which must be removed from vector fields before
attempting to measure higher-order modes. While the vector
spherical harmonics are orthonormal in principle, there can be
correlation between degrees and orders when fitting the
harmonics to discrete sparsely sampled nonuniform noisy data,
so “nuisance” signals must be subtracted. We simultaneously
fit for both E- and B-mode dipoles (aberration drift and
rotation, respectively) to capture any residual signature of a
non-inertial frame (or other cosmic rotation) as well as any
correlations between the two modes (even if the B-mode dipole
is nonsignificant, there can still be crosstalk with the E-mode
dipole). Following Mignard & Klioner (2012), the dipole
equations are listed in Tables 4 and 5 and explicitly as
equations with coefficients in Appendix A.
Table 1 lists the dipole fit coefficients for the VLBA and

VLBA+Gaia samples. We significantly detect the secular
aberration drift with 5.5σ and 5.1σ significance, respectively.
The E-mode dipole apex lies at 279°.2(9°.8), −27°.0(8°.7) and
274°.0(9°.3), −18°.0(9°.2) and is consistent with the Galactic
Center (266°.4, −29°.0) in each case (Figure 4). The dipole
amplitude is 1.70(0.26) and 1.70(0.29) μas yr−1, which is
substantially smaller than expected. For example, Titov &
Lambert (2013) find 6.4(1.1) μas yr−1, and Xu et al. (2013)
obtain 5.8(0.3) μas yr−1. These are consistent with the
expectation of 5.5(0.2) μas yr−1 based on barycenter orbital
parameters obtained from Galactic maser parallaxes and proper
motions and the Sgr A* reflex motion (Reid et al. 2014). The
amplitude of the dipole measured here is likely suppressed by
the no-net-rotation constraint imposed by the global fitting used
to produce the ICRF catalog (see Truebenbach & Darling
(2017) for a detailed discussion). For the purposes of detecting
higher multipole modes in the proper motion data, we simply
need to measure whatever dipole is present and subtract the
dipole fit from each proper motion catalog before fitting higher
multipoles to extract (or constrain) the gravitational wave
signal.

Table 1
Dipole Fits

VLBA VLBA+Gaia

Quantity Amplitude Amplitude
(μas yr−1) (μas yr−1)

E-mode Dipole (Aberration Drift)
s10 −2.24(0.74) −1.52(0.78)
s11
Re −0.50(0.53) −0.21(0.53)
s11
Im −3.07(0.54) −3.29(0.61)
Ps

1 4.93(0.76) 4.91(0.85)

Z-scorea 5.5 5.1

B-mode Dipole (Rotation)
t10 −0.72(0.62) −0.51(0.68)
t11
Re +1.17(0.52) 0.76(0.55)
t11
Im −0.40(0.66) −0.36(0.68)
Pt

1 1.89(0.74) 1.29(0.79)

Z-scorea 1.2 0.1

Notes. Fits are simultaneously made to electric and magnetic dipole vector
fields.
a This statistic is unitless.

3 https://www.cosmos.esa.int/web/gaia/science-performance
4 https://pypi.python.org/pypi/PyGaia
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No rotation is detected: the B-mode dipole fits are not significant
(1.2σ or less), with square root power of 1.89(0.74) μas yr−1 for
the VLBA catalog and 1.29(0.79) μas yr−1 for VLBA+Gaia.
These correspond to angular rotation rates of 0.65(0.26) and
0.45(0.27) μas yr−1, respectively.

4.2. Constraints on Gravitational Waves

For each catalog, we simultaneously fit E- and B-mode
quadrupolar vector spherical harmonics for the best constraint
on the stochastic gravitational wave background. We also
simultaneously fit E- and B-mode quadrupole and octopole
coefficients, but this fit is less constraining than quadrupole
alone, as described in Section 2 and demonstrated explicitly in
Section 5. Measuring the quadrupole and octopole powers
separately is a way to test the isotropy of the background, which
is assumed when combining the two modes to obtain a limit on
ΩGW. The quadrupole and octopole vector spherical harmonics
are listed in Tables 4 and 5 and explicitly as equations with
coefficients in Appendix A, Equations (11)–(14).

It is incorrect to obtain a limit on ΩGW from the parameters
of a nonsignificant quadrupole fit to a vector field. When no
significant signal is detected, we follow the method described
by Gwinn et al. (1997): assuming independent Gaussian errors
on the fit coefficients as determined using the above methods,
we resample the fit components and recalculate the quadrupole
power 10000 times. We set the upper limit to be 95th percentile
of the quadrupole power distribution. This method gives a less-
constraining result than has been quoted in previous work, such
as Titov et al. (2011).

A stochastic gravitational wave background (or a reliable
limit) should show equal power in the E- and B-modes (Book
& Flanagan 2011). One can therefore identify spurious,
nongravitational wave signals by comparing the power in the
two modes.

5. Results

5.1. VLBA

We fit the vector spherical harmonic quadrupole to the
Truebenbach & Darling (2017) VLBA proper motion catalog
with minimal restrictions on the fit sample. We omit two objects
with proper motion amplitudes greater than 1 milliarcsec yr−1,

leaving 711 objects in the catalog. After E-mode dipole
subtraction, a simultaneous E- and B-mode quadrupole fit
produced no significant signal, with a total quadrupole power of

= ( )P 1.83 0.722 μas yr−1. Table 2 shows the fit components,
mutually consistent (and nonsignificant) E- and B-mode powers
( = ( )P 1.46 0.69s

2 μas yr−1 and = ( )P 1.11 0.77t
2 μas yr−1,

respectively), and the Z-score of the fit. Using the resampling
method described above (Section 4.2), we obtain a 95%
confidence limit on the stochastic gravitational wave energy
density of ΩGW<0.0064 (see Equation (6)). Direct conversion
of the nonsignificant quadrupolar power to energy density gives
a smaller (nonsignificant) value: ΩGW=0.0014(0.0011). This is
roughly equivalent to a dimensionless gravitational wave strain
amplitude of h;10−10 for f;10−9 Hz ( ~ W( )h H f ;0 GW
Book & Flanagan 2011). The maximum proper motion
amplitude in the quadrupole is 1.0μasyr−1, which is equivalent
to h;10−10 for f;10−9 Hz (h∼μ/f ).
A simultaneous quadrupole and octopole fit in both E- and

B-modes produces a weaker constraint on the stochastic
gravitational wave background, as expected (see Section 2):

= ( )P 3.53 1.092 μas yr−1, = ( )P 4.98 0.923 μas yr−1, and
ΩGW<0.032 (95% confidence limit). To calculate the above
limit on ΩGW from the nonsignificant quadrupole and octopole
fits, we substitute a weighted power into Equation (6),

+( )P P1.05 2 3 in the place of ( )P6 5 2, and resample the fit
coefficients to find a 95% confidence limit. Table 3 lists the
coefficients, mode powers, and Z-scores for this fit.

5.2. VLBA+Gaia

We subtract the E-mode dipole and then fit the vector spherical
harmonic quadrupole to the 508-object VLBA+Gaia proper
motion catalog with no proper motion restrictions. The simulta-
neous E- and B-mode quadrupole fit is not significant; the total
quadrupole power is = ( )P 3.36 0.752 μas yr−1, and the E- and
B-mode powers are consistent: = ( )P 2.70 0.74s

2 μas yr−1 and

= ( )P 2.01 0.78t
2 μas yr−1, respectively. Table 2 lists the fit

Figure 4. Maximum likelihood secular aberration drift (E-mode dipole) model
fit to the VLBA sample plotted in equatorial coordinates. The fit parameters
and uncertainties are listed in Table 1. The red circle indicates the Galactic
Center, and the point with the error bars shows the dipole apex obtained from
the dipole (simultaneous E- and B-mode) fit.

Table 2
Quadrupole Fits

VLBA VLBA+Gaia
Quantity Amplitude Amplitude

(μas yr−1) (μas yr−1)

Quadrupole
s20 0.83(0.72) 1.72(0.78)
s21
Re 0.80(0.47) 1.16(0.52)
s21
Im −0.22(0.48) −0.49(0.51)
s22
Re −0.17(0.58) −0.04(0.59)
s22
Im 0.06(0.44) 0.74(0.46)
Ps

2 1.46(0.69) 2.70(0.74)

t20 −0.48(0.66) −1.17(0.70)
t21
Re 0.01(0.50) −0.68(0.58)
t21
Im −0.16(0.43) −0.41(0.47)
t22
Re 0.43(0.53) 0.25(0.56)
t22
Im 0.54(0.60) 0.81(0.60)
Pt

2 1.11(0.77) 2.01(0.78)

P2 1.83(0.72) 3.36(0.75)
Z-scorea −0.7 1.9

Notes. Fits are simultaneously made to electric and magnetic quadrupole vector
fields. Parenthetical quantities indicate 1σ uncertainties.
a This statistic is unitless.
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components and the Z-score of the fit. The 95% confidence limit
on the stochastic gravitational wave energy density is ΩGW<
0.011 (see Equation (6)).

The simultaneous quadrupole and octopole fit in both E- and
B-modes yields = ( )P 3.23 1.012 μas yr−1, = ( )P 5.10 0.893
μas yr−1, and ΩGW<0.028 (95% confidence limit). This limit
on the stochastic gravitational wave background is less
constraining than the quadrupole-only fit, as expected, but is
slightly more constraining than the VLBA-only quadrupole
plus octopole fit. Table 3 lists the coefficients, mode powers,
and Z-scores for this fit.

6. Gaia Predictions

The rough expectation for a stochastic gravitational wave
background limit obtained from Gaia presented by Book &
Flanagan (2011) was ΩGW10−6 for f10−8 Hz, but this
was under the assumption of a proper motion uncertainty of
σμ=10 μasyr−1 per source and using 106 objects. The
revised end-of-mission error budgets, which have the largest
impact on faint sources, have σμ∼200 μasyr−1 per quasar,

and ∼5×105 objects (Paine et al. 2018), so we expect
ΩGW10−3.
To confirm this expectation, we use the expected end-of-

mission proper motion errors on the extragalactic Gaia-WISE
catalog compiled by Paine et al. (2018) and described in
Section 3.3. We randomly sample vector proper motions from
within the predicted error budget for each object assuming
Gaussian errors. Provided that the barycenter acceleration
about the Galactic Center can be removed from the data, the
resulting proper motions should be uncorrelated and represent a
no-signal noisy data set that can be used to predict the best
possible limit on a gravitational wave signal. Unlike the Gaia
Universe model snapshot (GUMS) sample (Robin et al. 2012),
this catalog represents real objects detected in Gaia that will
likely be employed when final proper motions are measured.
After randomly sampling from within the proper motion

error budgets for each object, we performed an error-weighted
least-squares fit of 500 randomly generated E- and B-mode
quadrupolar gravitational wave signals with the quadrupolar
power in the range 0.5 μas  - Pyr 51

2 μas yr−1 in 25
logarithmic steps with 20 trials each. For each trial, we add the
input proper motion quadrupolar signal to the catalog proper
motions and then fit simultaneous E- and B-mode quadrupole
vector spherical harmonics (listed in Appendix A) to obtain a fit
power. For each input power, we calculate the mean and
standard deviation of the best-fit power to assess the offset and
scatter of the fit compared to the input.
Figure 5 shows the results of these fit trials, recast in terms of

ΩGW. For ΩGW10−3, we reliably recover the input
gravitational wave signal with some scatter, but a clear noise
floor arises for ΩGW6×10−4 such that the (nonsignificant)
fit does not fall below ΩGW∼6×10−4. This is the limit on
the stochastic gravitational wave background that Gaia may
achieve using the Paine et al. (2018) Gaia-WISE extragalactic
proper motion catalog, which agrees with the rough expectation
above.

7. Discussion

The VLBA+Gaia fits are less constraining on the stochastic
gravitational wave background than the VLBA-only fits,
despite the generally improved proper motion solutions
obtained from the VLBA+Gaia time series. Because ΩGW

depends on the vector spherical harmonic mode power, it will
scale roughly as N, not N , and the reduced VLBA+Gaia
sample size should decrease sensitivity by a factor of roughly

2 compared to the VLBA-only sample. The sample size
accounts for some, but not all, of the difference in limits on
ΩGW.
The expected Gaia proper motions, despite the substantially

lower precision compared to radio-based astrometry, will
further constrain the stochastic gravitational wave background
by roughly an order of magnitude due to the larger extragalactic
sample size available in visible light. The Gaia proper motions
are also expected to be less dominated by the intrinsic proper
motions caused by relativistic AGN jets. While the VLBA+Gaia
sample identified 22 new cases of radio and optical superluminal
motion and 23 cases of subluminal significant intrinsic proper
motion (8% of the 577-object sample in total), these are radio-
selected objects. The Paine et al. (2018) Gaia-WISE sample
is optical- and infrared-selected and will therefore not be so

Table 3
Quadrupole and Octopole Fits

VLBA VLBA+Gaia
Quantity Amplitude Amplitude

(μas yr−1) (μas yr−1)

Quadrupole
s20 0.55(0.98) 0.58(0.70)
s21
Re 0.88(0.62) 0.29(0.71)
s21
Im −0.30(0.52) −0.99(0.61)
s22
Re −0.28(0.69) −0.42(0.76)
s22
Im 0.04(0.30) 0.05(0.54)
t20 −0.27(0.20) −0.18(0.53)
t21
Re 0.78(0.63) −0.10(0.57)
t21
Im 0.13(0.36) −1.01(0.48)
t22
Re −0.50(0.37) 0.02(0.01)
t22
Im 2.05(0.84) 1.66(0.83)
P2 3.53(1.09) 3.23(1.01)

Z-scorea 1.9 1.2

Octopole
s30 −0.75(0.87) −0.34(1.02)
s31
Re −0.35(0.18) 0.42(0.53)
s31
Im 0.00(0.24) 0.82(0.73)
s32
Re 1.57(0.66) 1.10(0.66)
s32
Im 0.59(0.61) 0.61(0.51)
s33
Re 0.60(0.53) −0.37(0.52)
s33
Im 0.85(0.58) 0.39(0.58)
t30 −0.10(0.81) −0.41(0.96)
t31
Re −1.43(0.58) −2.68(0.62)
t31
Im 0.78(0.53) 0.94(0.57)
t32
Re 0.90(0.59) 0.86(0.60)
t32
Im −0.77(0.49) −0.04(0.73)
t33
Re −2.01(0.75) −0.73(0.84)
t33
Im −0.12(0.61) −0.90(0.57)
P3 4.98(0.92) 5.10(0.89)

Z- scorea 3.4 2.6

Notes. Fits are simultaneously made to electric and magnetic quadrupole and
octopole vector fields. Parenthetical quantities indicate 1σ uncertainties.
a This statistic is unitless.
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jet-dominated as a VLBI radio-selected sample, and it is therefore
reasonable to assume that the vast majority of Gaia objects will
show no detectable intrinsic proper motion.

The astrometric gravitational wave limit may be improved
by increasing the sample size in either radio or visible light.
Identifying additional AGN in the Gaia catalog may decrease
the expected ΩGW noise floor by at most a factor of 2 if one can
achieve a 106-object sample. In this case, one might achieve
ΩGW2×10−4, which is nonetheless substantially larger
than the ∼10−6 value predicted by Book & Flanagan (2011).
Improvements could also arise from an extended Gaia mission
or better-than-expected performance of the main mission.
Enhancing the radio sample size is a possibility, perhaps by an
order of magnitude. Assuming similar astrometric precision
and intrinsic proper motions to the current catalog, this would
reduce the 95% confidence limit to ΩGW6×10−4, which is
similar to the Gaia limit.

8. Conclusions

We have obtained limits on the low-frequency stochastic
gravitational wave background using VLBA astrometry alone
and VLBA astrometry combined with the first Gaia epoch. We
demonstrate that a quadrupole signal is the most constraining
and obtain 95% confidence limits on the gravitational wave
energy density of ΩGW<0.0064 over the frequency range
6×10−18 Hzf1×10−9 Hz for the VLBA proper
motions. When Gaia is included, proper motion errors
improve, but the limit is less constraining mainly due to a
reduced sample size: ΩGW<0.011. The noise threshold for the
VLBA fit is roughly equivalent to a dimensionless gravitational
wave strain amplitude of h;10−10 for f;10−9 Hz.

We also predict the limit that may be obtained with the full
Gaia data release that includes proper motions (or limits) of
AGN. One hurtle is the identification of AGN among the 1000-
fold more numerous stars in the Gaia catalog and finding an

all-sky distribution that is amenable to low-ℓmode fitting, but
provided this can be done (see Paine et al. 2018), then we
predict that Gaia will find a noise floor of ΩGW6×10−4

using ∼6×105 objects.
Astrometric limits on the stochastic gravitational wave

background will continue to improve with time as geodetic
monitoring of radio-loud AGN continues, but substantial
improvements will need to come from growing the number
of objects monitored. The next post-Gaia advance could be
made by a Next Generation Very Large Array were it to have
substantial collecting area on VLBA baselines (Bower
et al. 2015).
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Figure 5. Fit vs. input values for the stochastic gravitational wave background energy density, ΩGW, expected from Gaia proper motions. Points and their error bars
indicate the mean and standard deviation of 20 recovery trials per random injected signal. Arrows indicate nonsignificant fits. The green line indicates the one-to-one
perfect signal recovery locus, and the orange bar shows the ΩGW=6×10−4 noise floor imposed by the end-of-mission Gaia proper motion sensitivity to AGN in the
Gaia-WISE catalog.
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Appendix A
Vector Spherical Harmonics

Here, we present explicit formulae for the ℓ�3 vector spherical
harmonics based on those described in Mignard & Klioner (2012)
for real-valued vector fields but that have strictly real coefficients
(and therefore have sign differences) and explicitly include factors
of 2 that are needed for correct power calculations.

The vector spherical harmonics for the electric and magnetic
dipoles described by Mignard & Klioner (2012) and listed in
Tables 4 and 5 are
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where the sℓm are the amplitudes of the spheroidal (curl-free or
E-mode) orders, the tℓm are the amplitudes of the toroidal
(divergence-less or B-mode) orders, and âe and d̂e are the unit
vectors in the R.A. and decl. directions, respectively.

The quadrupole vector spherical harmonics are

a d
p

a d
p

a d

p
a d

p
a d

p
d

p
a d

p
a d

p
a d

p
a d

= +

- -

+ -

+ -

+

a

d

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

ˆ

ˆ

( )

V

e

e

s s

s s

s s

s s

s

,
1

2

5
sin sin

1

2

5
cos sin

1

2

5
sin 2 cos

1

2

5
cos 2 cos

1

4

15

2
sin 2

1

2

5
cos cos 2

1

2

5
sin cos 2

1

4

5
cos 2 sin 2

1

4

5
sin 2 sin 2

11

E
Re Im

Re Im

Re

Im Re

Im

2 21 21

22 22

20 21

21 22

22

Table 4
Spheroidal (E-mode) Vector Spherical Harmonics (ℓ�3)
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Table 5
Toroidal (B-mode) Vector Spherical Harmonics (ℓ�3)
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The octopole (ℓ=3) vector spherical harmonics are

a d
p

a d

p
a d

p
a d

p
a d

p
a d

p
a d

p
d d

p
a d d

p
a d d

p
a d d

p
a d d

p
a d d

p
a d d

= -

+ -

-

- +

+

+ -

+ -

- -

- -

+ -

+

-

a

d

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( )

ˆ

( )

( )

( )

( )

( )

ˆ

( )

V

e

e

s

s

s

s s

s

s

s

s

s

s

s

s

,
1

8

7
sin 5 sin 1

1

8

7
cos 5 sin 1

1

4

35

2
sin 2 sin 2

1

4

35

2
cos 2 sin 2

1

8

105
sin 3 cos

1

8

105
cos 3 cos

1

8

21
5 sin 1 cos

1

8

7
cos sin 15 sin 11

1

8

7
sin sin 15 sin 11

1

4

35

2
cos 2 cos 3 sin 1

1

4

35

2
sin 2 cos 3 sin 1

1

8

105
cos 3 cos sin

1

8

105
sin 3 cos sin

13

E
Re

Im

Re

Im Re

Im

Re

Im

Re

Im

Re

Im

3 31
2

31
2

32

32 33
2

33
2

30
2

31
2

31
2

32
2

32
2

33
2

33
2

and

a d
p

d d

p
a d d

p
a d d

p
a d d

p
a d d

p
a d d

p
a d d

p
a d

p
a d

p
a d

p
a d

p
a d

p
a d

= -

+ -

- -

- -

+ -

+

-

+ - -

- -

+ +

-

-

a

d

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( )

( )

( )

( )

ˆ

( )

( )

ˆ

( )

V

e

e

t

t

t

t

t

t

t

t

t

t t

t

t

,
1

8

21
5 sin 1 cos

1

8

7
cos sin 15 sin 11

1

8

7
sin sin 15 sin 11

1

4

35

2
cos 2 cos 3 sin 1

1

4

35

2
sin 2 cos 3 sin 1

1

8

105
cos 3 cos sin

1

8

105
sin 3 cos sin

1

8

7
sin 5 sin 1

1

8

7
cos 5 sin 1

1

4

35

2
sin 2 sin 2

1

4

35

2
cos 2 sin 2

1

8

105
sin 3 cos

1

8

105
cos 3 cos .

14

M

Re

Im

Re

Im

Re

Im

Re

Im

Re Im

Re

Im

3 30
2

31
2

31
2

32
2

32
2

33
2

33
2

31
2

31
2

32 32

33
2

33
2

Appendix B
VLBA+Gaia Astrometry and Proper Motions

Table 6 lists the objects that show significant and consistent
radio and optical proper motion. Based on the amplitudes of the
proper motions, these are most likely intrinsic and associated
with jets. Objects showing apparent superluminal motions are
indicated in bold, as are the superluminal velocity components
and amplitudes.
Table 7 lists the Gaia 2015.0 epoch J2000 coordinates, the

VLBA-only and VLBA+Gaia proper motions obtained from
the time series fits described in Section 3.2, and the Gaia-
VLBA coordinate offset in Gaia standard deviations. The
VLBA proper motions were obtained from bootstrap-
resampled time series and may differ slightly from—but are
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Table 6
Objects Showing Significant Consistent Radio and Optical Proper Motion

Name VLBA+Gaia PM Redshift Referencesa DM
Apparent Velocity

ma md vα vδ vTotal
(μas yr−1) (μas yr−1) (Mpc) (c) (c) (c)

0007+171 136.6(25.4) −0.3(12.4) 1.60 1 4654 10.1(1.9) −0.02(0.91) 10.1(1.9)
0016+731 −5.5(1.1) 5.1(0.7) 1.78 2 4969 −0.43(0.09) 0.40(0.06) 0.59(0.07)
0059+581 −7.5(0.4) −2.8(0.5) 0.64 3 2359 −0.28(0.01) −0.10(0.02) 0.30(0.02)
0119+041 −9.2(1.8) 6.0(1.9) 0.64 2 2359 −0.34(0.07) 0.22(0.07) 0.41(0.07)
0229+131 10.7(0.7) 7.0(0.7) 2.06 2 5409 0.92(0.06) 0.60(0.06) 1.09(0.06)
NRAO150 6.0(1.9) 16.6(2.3) 1.52 4 4505 0.43(0.14) 1.18(0.16) 1.26(0.16)
0420−014 −5.5(0.7) −8.5(0.9) 0.92 2 3158 −0.27(0.03) −0.42(0.04) 0.51(0.04)
NRAO190 −20.6(9.9) −28.6(3.3) 0.84 2 2943 −0.96(0.46) −1.33(0.15) 1.64(0.30)
0454−234 −3.8(0.7) −7.1(0.8) 1.00 2 3365 −0.20(0.04) −0.38(0.04) 0.43(0.04)
0458−020 −2.5(0.9) −10.4(0.8) 2.29 2 5731 −0.23(0.08) −0.94(0.07) 0.97(0.07)
0454+844 6.9(4.7) 19.7(3.0) 1.34 2 4145 0.45(0.31) 1.29(0.20) 1.37(0.21)
0552+398 0.2(0.4) −3.5(0.4) 2.37 1 5835 0.02(0.04) −0.32(0.04) 0.32(0.04)
0602+673 0.5(0.8) 20.4(1.2) 1.97 2 5274 0.04(0.07) 1.70(0.10) 1.70(0.10)
0657+172 7.2(1.4) −5.4(1.9) 1.08 5 3562 0.41(0.08) −0.30(0.11) 0.51(0.09)
0723−008 −50.0(6.5) 107.5(13.1) 0.13 1 542 −0.43(0.06) 0.92(0.11) 1.02(0.10)
0743+259 −3.5(2.8) −33.4(3.6) 2.99 6 6543 −0.36(0.29) −3.46(0.37) 3.47(0.37)
0805+410 5.4(1.1) 9.4(1.3) 1.42 2 4309 0.37(0.07) 0.64(0.09) 0.74(0.09)
1038+064 −15.1(3.5) 61.6(8.4) 1.27 2 3996 −0.95(0.22) 3.89(0.53) 4.01(0.52)
1045−188 22.3(4.3) −73.5(10.4) 0.59 2 2202 0.78(0.15) −2.56(0.36) 2.67(0.35)
1053+815 −7.1(1.4) 1.8(1.5) 0.71 3 2571 −0.29(0.06) 0.07(0.06) 0.30(0.06)
1057−797 0.5(1.3) −7.5(1.2) 0.58 7 2170 0.02(0.04) −0.26(0.04) 0.26(0.04)
1104−445 −20.1(3.0) 12.4(3.2) 1.60 2 4654 −1.48(0.22) 0.91(0.24) 1.74(0.22)
1124−186 1.7(1.1) −6.8(1.2) 1.05 2 3489 0.09(0.06) −0.38(0.07) 0.39(0.07)
1219+044 6.3(1.1) −3.6(2.0) 0.97 2 3288 0.33(0.06) −0.19(0.10) 0.38(0.07)
1300+580 5.2(0.7) 11.4(0.8) 1.09 2 3586 0.29(0.04) 0.65(0.05) 0.71(0.04)
1342+663 −40.9(7.3) −9.8(2.8) 1.35 2 4166 −2.69(0.48) −0.65(0.18) 2.77(0.47)
1424−418 −9.8(1.6) 2.0(1.8) 1.52 2 4505 −0.70(0.11) 0.14(0.13) 0.71(0.11)
1606+106 5.4(1.0) 0.1(0.9) 1.23 2 3908 0.32(0.06) 0.01(0.06) 0.32(0.06)
1622−253 −0.2(1.1) 8.0(1.4) 0.79 2 2803 −0.01(0.05) 0.35(0.06) 0.35(0.06)
1642+690 6.3(1.6) −19.3(3.0) 0.75 2 2688 0.27(0.07) −0.82(0.13) 0.86(0.12)
1657−562b 33.7(10.1) −110.7(17.0) L L L L L L
NRAO530 7.4(1.3) 7.2(2.3) 0.90 2 3105 0.36(0.06) 0.35(0.11) 0.51(0.09)
1745+624 10.7(1.5) 10.4(2.2) 3.89 8 7328 1.24(0.17) 1.21(0.25) 1.73(0.22)
1846+322 −29.5(4.7) 7.2(5.9) 0.80 2 2831 −1.32(0.21) 0.32(0.26) 1.36(0.21)
3C395 66.2(9.9) −32.1(6.9) 0.64 9 2359 2.47(0.37) −1.20(0.26) 2.74(0.35)
1923+210b 10.0(2.4) 17.9(1.4) L L L L L L
1958−179 −7.7(1.0) −4.0(1.4) 0.65 2 2390 −0.29(0.04) −0.15(0.05) 0.33(0.04)
2007+777 22.8(3.0) −0.0(1.5) 0.34 2 1350 0.49(0.06) −0.00(0.03) 0.49(0.06)
3C418 −15.3(1.2) −7.7(1.6) 1.69 10 4815 −1.16(0.09) −0.59(0.12) 1.30(0.10)
2059+034 −5.3(3.5) −25.0(3.8) 1.01 2 3390 −0.28(0.19) −1.34(0.20) 1.37(0.20)
2126−158 −10.6(2.5) −66.5(5.2) 3.27 2 6812 −1.14(0.27) −7.16(0.56) 7.25(0.55)
2155−152 −30.4(6.3) −40.1(7.3) 0.67 2 2451 −1.18(0.24) −1.55(0.28) 1.95(0.27)
2209+236 21.7(2.0) 2.6(2.0) 1.13 2 3680 1.26(0.12) 0.15(0.12) 1.27(0.12)
2214+350 5.6(3.1) −69.5(5.0) 0.51 1 1942 0.17(0.10) −2.13(0.15) 2.14(0.15)
2229+695 39.3(3.3) 4.8(1.6) 1.41 2 4289 2.67(0.22) 0.33(0.11) 2.69(0.22)

Notes. Parenthetical values are 1σ uncertainties. Apparent velocities are in the rest frame of each object, in units of the speed of light, c (see Section 3.2). Bold type
indicates the names and velocities of objects showing superluminal motion.
a Redshift references: (1) Wills & Wills (1976); (2) Healey et al. (2008); (3) Sowards-Emmerd et al. (2005); (4) Agudo et al. (2007); (5) Álvarez Crespo et al. (2016);
(6) Hewett & Wild (2010); (7) Sbarufatti et al. (2009); (8) Hook et al. (1995); (9) Gelderman & Whittle (1994); (10) Smith & Spinrad (1980).
b 1657−562 and 1923+210 show VLBA+Gaia astrometric correspondence and significant proper motion, but the redshifts for these objects are unknown. If they
have redshifts greater than 0.13 and 0.90, respectively, then their observed proper motions would be superluminal.

(This table is available in machine-readable form.)
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statistically consistent with—the Truebenbach & Darling
(2017) proper motion catalog. The VLBA+Gaia proper motion
catalog in Table 7 forms a subset of the VLBA-only
Truebenbach & Darling (2017) catalog because not all radio
sources have Gaia counterparts.
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Table 7
VLBA+Gaia Astrometry and Proper Motions

Name Gaia 2015.0 Coordinates VLBA PM VLBA+Gaia PM
Gaia-VLBA

Offset

R.A. (J2000) Decl. (J2000) μα μδ μα μδ Δα Δδ

(h:m:s) (d:m:s) (μas yr−1) (μas yr−1) (μas yr−1) (μas yr−1) (σ) (σ)

0002−478 00:04:35.65554(6) −47:36:19.6040(8) −23.1(13.2) −46.5(20.0) −22.9(13.2) −47.4(19.8) 1.1 0.2
0003+380 00:05:57.17593(8) +38:20:15.1435(4) −15.4(9.9) −1.5(11.3) −12.6(9.2) −18.9(13.6) 6.7 14.2
0003−066 00:06:13.89290(2) −06:23:35.3351(1) 0.3(1.3) 3.7(1.8) 0.4(1.3) 3.5(1.8) 0.4 1.4
IIIZW2 00:10:31.00592(2) +10:58:29.5038(2) 2.3(12.3) −9.7(11.8) 3.3(11.5) −13.1(12.0) 0.9 2.2
0007+171 00:10:33.99072(4) +17:24:18.7609(3) 136.2(27.2) 9.8(14.7) 136.6(25.4) −0.3(12.4) 0.6 2.0

Note. The Gaia coordinates are for epoch 2015.0, expressed in the J2000 reference frame. The Gaia-VLBA offsets are expressed in standard deviations of the Gaia
astrometry from the VLBA time series fit, assuming that the error is dominated by the sole Gaia epoch in each coordinate.

(This table is available in its entirety in machine-readable form.)
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