
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

e at SciVerse ScienceDirect

Digital Investigation 10 (2013) S87–S95
Contents lists availabl
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
Design and implementation of FROST: Digital forensic tools
for the OpenStack cloud computing platform

Josiah Dykstra*, Alan T. Sherman
Cyber Defense Lab, Department of CSEE, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250,
United States
Keywords:
OpenStack
Cloud computing
Digital forensics
Cloud forensics
FROST
* Corresponding author.
E-mail addresses: dykstra@umbc.edu (J. Dykstra)

(A.T. Sherman).

1742-2876/$ – see front matter ª 2013 Josiah Dyks
http://dx.doi.org/10.1016/j.diin.2013.06.010
a b s t r a c t

We describe the design, implementation, and evaluation of FROSTdthree new forensic
tools for the OpenStack cloud platform. Our implementation for the OpenStack cloud
platform supports an Infrastructure-as-a-Service (IaaS) cloud and provides trustworthy
forensic acquisition of virtual disks, API logs, and guest firewall logs. Unlike traditional
acquisition tools, FROST works at the cloud management plane rather than interacting
with the operating system inside the guest virtual machines, thereby requiring no trust in
the guest machine. We assume trust in the cloud provider, but FROST overcomes non-
trivial challenges of remote evidence integrity by storing log data in hash trees and
returning evidence with cryptographic hashes. Our tools are user-driven, allowing cus-
tomers, forensic examiners, and law enforcement to conduct investigations without
necessitating interaction with the cloud provider. We demonstrate how FROST’s new
features enable forensic investigators to obtain forensically-sound data from OpenStack
clouds independent of provider interaction. Our preliminary evaluation indicates the
ability of our approach to scale in a dynamic cloud environment. The design supports an
extensible set of forensic objectives, including the future addition of other data preser-
vation, discovery, real-time monitoring, metrics, auditing, and acquisition capabilities.
ª 2013 Josiah Dykstra and Alan T. Sherman. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Today, cloud computing environments lack trustworthy
capabilities for the cloud customer or forensic investigator
to perform incident response and forensic investigation.
Consequently, customers of public cloud services are at the
mercy of their cloud provider to assist in an investigation.
Law enforcement relies on the cumbersome and time-
consuming search warrant process to obtain cloud data,
and requires the cloud provider to execute each search on
behalf of the requester. In 2012, we concluded that the
management plane is an attractive solution for user-driven
forensic capabilities since it provides access to forensic data
, sherman@umbc.edu

tra and Alan T. Sherman. Pub
without needing to trust the guest virtual machine (VM)
or the hypervisor and without needing assistance from the
cloud provider. Storing and acquiring trustworthy evidence
from a third party provider is non-trivial. This paper
describes our design and implementation of amanagement
plane forensic toolkit in a private instantiation of the
OpenStack cloud platform, which we call Forensic Open-
Stack Tools (FROST).

FROST provides the first forensic capabilities integrated
with OpenStack, and to our knowledge the first to be built
into any Infrastructure-as-a-Service (IaaS) cloud platform.
Throughout the paper we use the NIST definition of cloud
computing as a model for on-demand access to a pool of re-
sources “that can be rapidly provisioned and released with
minimal management effort or service provider interaction”
(National Institute of Standards and Technology, 2011). Our
forensic extensions allow for efficient, trustworthy, anduser-
lished by Elsevier Ltd. All rights reserved.

mailto:dykstra@umbc.edu
mailto:sherman@umbc.edu
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.diin.2013.06.010&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2013.06.010
http://dx.doi.org/10.1016/j.diin.2013.06.010

J. Dykstra, A.T. Sherman / Digital Investigation 10 (2013) S87–S95S88
driven incident response and forensic acquisition in a cloud
environment, which match the cloud characteristic of being
user-driven.

This work implements practical tools on the theoretical
foundations we established (Dykstra and Sherman, 2012).
FROST collects data at the cloud provider, from the host
operating system level (outside the guest virtual ma-
chines), and makes that data available within the man-
agement plane. The management plane, exposed through a
website and application programming interface (API), is
how users of OpenStack control the cloud and where they
start and stop virtual machines. Because the user collecting
forensic data does not communicate with a virtual ma-
chine, the forensic data are preserved against compromised
or untrustworthy virtual machines.

Consider a cloud customer, Alice, whose provider uses
OpenStack with FROST. Alice wants to investigate an inci-
dent of suspiciously-high bandwidth usage from her
cloud-hosted webserver. While her webserver logs web
requests inside of its VM, Alice can get a more complete
pictures of activity by obtaining a record of management
activity and metadata about her VM. Alice uses FROST to
retrieve firewall logs, Nova Compute Service API logs, and a
virtual hard drive image of the suspicious machine and
then provides this evidence to the authorities. The firewall
logs may show an attacker scanning Alice’s virtual ma-
chine before hacking it. API logs may contain evidence of
unauthorized attempts to stop the virtual machine. The
disk image may contain evidence of what an attacker did
once he obtained access. This is strong forensic evidence
about the potential crime that can be used in court. Alice
can obtain this evidence using either thewebmanagement
plane or the OpenStack API. FROST ensures the forensic
integrity of the evidence that Alice gathers. Without
FROST, this evidence would only be available with assis-
tance from Alice’s cloud provider.

OpenStack (2012b) is an open-source cloud computing
platform, conceived as a joint project between the National
Aeronautics and Space Administration (NASA) and Rack-
space. OpenStack users include many large organizations
such as Intel, Argonne National Laboratory, AT&T, Rack-
space, and Deutsche Telekom. The cloud platform com-
prises six primary modular components: Nova, the
compute platform and cloud controller; Swift, the object
storage system; Glance, the service for managing disk im-
ages; Keystone, the identity service; Horizon, the web-
based dashboard for managing OpenStack services; and
Quantum, network services for virtual devices. OpenStack
is a complex software package, with over 600,000 lines of
code and 415 active developers (OpenStack, 2012a). It is a
widely used platform for private cloud instances, but it is
also compatible with commercial cloud offerings. Open-
Stack has APIs compatible with Amazon EC2 and S3.

Without loss of generality, our approach makes the
following assumptions. First, the user-driven forensic ca-
pabilities are applicable in situations where a cooperative
cloud customer is involved in the investigation. That is, if a
malicious customer uses the cloud to commit a crime, the
cloud provider will still be required to assist law enforce-
ment in the investigation. Second, the proposed solution
assumes a trusted cloud provider and cloud infrastructure.
Evidence from our forensic tools could be manipulated
unless the underlying layers of the cloud infrastructure,
such as the host operating system and hardware, have
integrity. We assume that the hardware, host operating
system, hypervisor, and cloud employees are trusted, but
we do not assume trust in the guest machine. Third, we do
not consider legal issues associated with the process or
product of cloud-based forensic data acquisition; Dykstra
and Riehl (2012) previously explored those issues.

Our contributions are:

� Description of the architecture, design goals, and
implementation of user-driven forensic acquisition of
virtual disks, API logs, and firewall logs from the man-
agement plane of OpenStack.

� An algorithm for storing and retrieving log data with
integrity in a hash tree that logically segregates the data
of each cloud user in his or her own subtree.

� Preliminary informal Evaluation results showing that
the proposed solution satisfies technological and legal
requirements for acceptance in court and scales appro-
priately for a cloud environment.

The rest of the paper is organized as follows. Section 2
reviews previous and related work. Section 3 describes
the requirements, specifications, and capabilities of FROST.
Section 4 explains the architecture of our solution. Section
5 discusses the design. Section 6 explains our API and
management console implementations based on the ar-
chitecture. Section 7 evaluates our solution. Section 8 dis-
cusses advantages, limitations, and trust assumptions.
Section 9 concludes the work.
2. Previous and related work

We survey previous and related work in remote forensic
acquisition, forensic data collected by providers, and
methods for storing content on untrusted platforms.

Data acquisition is a key issuewhen investigating cloud-
based incidents (Dykstra and Sherman, 2011a,b; Ruan et al.,
2011; Taylor et al., 2011). Research to date has focused on
explaining this issue but has failed to produce practical
tools to support remote forensic acquisition. Dykstra and
Sherman (2012) illustrated how to use existing tools like
Guidance EnCase to acquire forensic data remotely over the
Internet, but explained why the data may be untrustwor-
thy. Martini and Choo (2012) proposed a conceptual
framework for preservation and collection of forensic data
from cloud computing but did not implement any capa-
bilities. In some cases, such as in AmazonWeb Services, it is
possible to retrieve an image of the virtual disk of a virtual
machine. There is, however, no mechanism to obtain a hash
of the image on the provider’s system to validate the
integrity of the image after download.

In addition to disk images, forensic investigators use
metadata and system logs to reconstruct an event. Gener-
ating metadata and system logs are usually standard
practices in the operation of a system, rather than forensic-
specific tasks. Nevertheless, the logs are useful in an
investigation and easily gathered. Consumers of cloud

J. Dykstra, A.T. Sherman / Digital Investigation 10 (2013) S87–S95 S89
services have few tools available for accessing low-level
logs to the cloud infrastructure. Cloud providers and re-
searchers encourage application-level logging (Marty,
2011); Google, Amazon, and Microsoft allow customers to
log accesses to stored objects (Google, 2012; Amazon Web
Services, 2011; Microsoft, 2012). Cloud customers are usu-
ally responsible for their own monitoring, metrics, and
auditing inside the customer’s VM. Amazon CloudWatch is
a monitoring service for EC2, but its metrics are very coarse
(Amazon Web Services, 2013); detailed monitoring for
network utilization reports the number of bytes sent or
received on all network interfaces by an instance at one-
minute frequency. To our knowledge, no cloud provider
makes available customer accessible API call audit logs or
VM firewall logs. That is, a customer has no way to know if,
when, and fromwhat IP address his or her credentials were
used to make API calls.

Data integrity is a critical component of the forensic
process. Given the popular discussions about data security
in the cloud, researchers and commercial vendors have
been dedicated to addressing data privacy. Other authors
have developed proposals for ensuring integrity on
untrusted machines, such as third-party servers. Clarke
(2005) proposed a method for validating the integrity of
untrusted data using hash trees and a small fixed-sized
trusted state. This method differs from our method
because it does not check the integrity of subsets of the
data. SUNDR (Secure untrusted data repository) (Li et al.,
2004) is a filesystem for storing data securely on untrus-
ted servers. However, SUNDR requires that each filesystem
user is able to see file modifications by all other clients. In
our solution, we want each cloud consumer to be inde-
pendent from the other customers.

Other researchhas focusedonstoringcontent securelyon
untrusted servers, which could then produce trustworthy
forensic data, even from third-party cloud providers. Haber
et al. (2008) explored in depth the redaction of subdocu-
ments from signed original data, while preserving the
cryptographic link of integrity between the two datasets.
Haber posited that audit logs can be considered an append-
only database, and that an audit report is essentially a
database query with certain entries redacted. Haber’s pro-
posed redactable signature algorithm is precisely applicable
to the cloud logs wewill encounter, though it must take into
account a constantly changing dataset.

The dissertations of Crosby (2009) and Kundu (2010)
bear striking similarity to our goals despite different mo-
tivations. Crosby proposed history tree tamper-evident
logs, and suggested that they could “increase the trust in
software service and ‘cloud computing.”’ Kundu was
interested in authenticating subsets of signed data objects
without leaking structural information about the data
structures. Our work was influenced by these designs. We
assume that the logger is trusted, and we use our enhanced
logging mechanism simply for efficient log storage,
retrieval, and integrity validation.

3. Requirements, specifications, and capabilities

We describe the requirements, specifications, and ca-
pabilities for FROST. We identify the stakeholders and use
cases that will help determine the tool requirements. We
also discuss the accepted legal and forensic community
requirements, and how we will meet them.

Cloud-based crimes take two general forms that deter-
mine the stakeholders who would use FROST. One form is a
crime committed against the cloud-based resources of an
innocent victimwho is cooperative in an investigation. The
other is a crime committed by an uncooperative party using
the cloud as an instrument of a crime. In the first case, the
legitimate cloud customer and/or law enforcement will use
FROST. In the second case, law enforcement or the provider
will use FROST. In both cases the requirement is to mini-
mize interaction with personnel at the cloud provider. The
cloud provider deploys FROST, but has no other re-
sponsibilities (subject to the assumptions in Section 1).
3.1. Scientific, technical, and legal requirements

There is no single, authoritative source for requirements
development of new forensic tools. Our solution, however,
is informed by accepted practices and written guidance.
The Scientific Working Group on Digital Evidence (SWGDE)
(2006) asserts that “Digital Evidence submitted for exam-
ination should be maintained in such a way that the
integrity of the data is preserved. The commonly accepted
method to achieve this is to use a hashing function.” On the
requirements for acquisition the National Institute for
Standards and Technology (2004) says “The two critical
measurable attributes of the acquisition process are
completeness and accuracy. Completeness measures if the
all the datawas acquired, and accuracymeasures if the data
was correctly acquired.” Integrity and completeness of the
data will be of foremost importance.

The cloud environment dictates the technical re-
quirements. Any digital forensic tools for cloud computing
should be compatible with cloud characteristics of on-
demand self-service, rapid elasticity, and scalability. The
following technical requirements are consistent with these
characteristics:

1. Be compatible with existing forensic formats. Instead
of creating new data formats, the new capabilities
output data in existing formats to be easily ingested by
other forensic tools. Our logs and disk images are pro-
vided in standard formats, and all are accompanied by a
Digital Forensic XML (DFXML) file (Garfinkel, 2012).
DFXML is used to express the cryptographic hashes and
provenance information.

2. Be easy to generate. It must be easy to modify existing
cloud deployments to add forensic capabilities. It must
also be intuitive and simple for a user to request forensic
data. Our changes to a stock installation of OpenStack can
be made by running an installation script. Users can
request forensic datawith a single command orweb click.

3. Be open and extensible. The implementation must be
available for any OpenStack administrator. Developers
should be able to extend and contribute new forensic ca-
pabilities. The platform we developed allows other de-
velopers to integrateother forensic toolsquicklyandeasily.
The software will be submitted to the OpenStack project.

J. Dykstra, A.T. Sherman / Digital Investigation 10 (2013) S87–S95S90
4. Be scalable. The forensic tools must be usable for single
cloud instances, while also supporting millions of cloud
customers and virtual machines. FROST can support any
number of instances and is limited only by the pro-
cessing time it takes the host operating system to
retrieve the forensic data.

5. Follow existing practices and standards. Where
possible, cloud forensic tools should follow standard
forensic practices. The forensic data we provide adheres
to accepted practices and can be ingested by standard
forensic tools such as Guidance EnCase.

For acceptance in court, the Department of Justice’s
“Search and Seizure Manual” (2009) applies Federal Rules
of Evidence 901(b)(9), explaining that “to demonstrate
authenticity for computer-generated records, or any records
generated by a process, the proponent should introduce ‘[e]
vidence describing a process or a system used to produce a
result and showing that the process or system produces an
accurate result.”’ In most cases, the reliability of a computer
program can be established by showing that users of the
program actually do rely on it on a regular basis, such as in
the ordinary course of business. Our solutions use ordinary
data, such asfirewall logs, evenwhenwehave enhanced the
storage of data to add increased data security.

3.2. Specifications and capabilities

FROST has three primary components. First, a cloud user
can retrieve an image of the virtual disks associatedwith any
of the user’s virtual machines, and validate the integrity of
those imageswith cryptographic checksums. Second, a cloud
user can retrieve logs of all API requests made to the cloud
provider made using his or her credentials, and validate the
Fig. 1. Pictorial snippet of the OpenStack architecture showing where OpenStack Com
FROST. Horizon provides a web interface to the management plane and Nova prov
FROST were to the API Daemon.
integrity of those logs. The API is used for administering
virtualmachines, such as creating and startingVM instances.
Third, the cloud user can retrieve theOpenStackfirewall logs
for any of the user’s virtual machines, and validate the
integrityof those logs. TheOpenStackfirewall operates at the
host operating system, and the API is used to administer it,
such as allowing or blocking network ports. These three
components are useful and offer forensic data that are not
available directly to cloud users today. In our informal dis-
cussions with cloud users and administrators of two large
private clouds and forensic experts, they all requested ca-
pabilities that were consistent with these features.

Cloudusers interactwith their provider andmanage cloud
resources through the management plane using a web inter-
face and API. FROST is accessible from each of these man-
agement plane interfaces. The implementation is modular to
allow additional forensic capabilities to be added later.

4. Architecture

We describe the architecture of our solution. We show
how we integrate with OpenStack, the type and format of
the data we collect, and the methods for returning data to
the requestor.
4.1. Integration with OpenStack

OpenStack has many components, but we focus on the
two where we have integrated FROST: Nova and Horizon.
Nova provides the compute service through virtual servers
similar to those in Amazon EC2 and implements the
computeAPI. Horizonprovides theweb-baseduser interface
for OpenStack, and communicates with Nova through the
pute (Nova) and OpenStack Dashboard (Horizon) have been modified to add
ides an API interface to the management plane. The majority of changes for

J. Dykstra, A.T. Sherman / Digital Investigation 10 (2013) S87–S95 S91
compute API. Fig. 1 highlights where we modified Nova and
Horizon to integrate FROST.

We add new Nova API calls that correspond to our
forensic features. Cloud users who interact with OpenStack
using the compute API are able to exercise our capabilities
from command-line tools and in their own programs.

Horizon isbuiltusingDjangoandPython, and implements
dashboards for OpenStack. We modify the specification for
the dashboard that displays instance information and creates
a new tab. This tabhas links to our forensic capabilities. These
links return data from their corresponding API calls.

OpenStack has a variety of credentials for different
purposes. Our tools assume that OpenStack has authenti-
cated the user making the request. The Horizon web
interface requires only a username and password. The
command-line API requires either an access key and secret
access key (which can be retrieved using the API), or an
X.509 certificate and private key. API requests are digitally
signed using the private key, and this signature is trans-
mitted to OpenStack along with the certificate. Nova also
has a root certificate that can sign documents. We use this
root certificate to add integrity to the storage of log data,
which we call the Authenticated Logging Service (ALS).

4.2. Data retrieval

Each of the three FROST capabilities accesses unique
data that are already stored by OpenStack or which we can
easily enable for storage. Retrieval of data for the user de-
pends on how and where the data are stored.

Retrieval of virtual disks is the most straightforward
task. For each virtual machine, OpenStack creates a direc-
tory on the host operating system that contains the virtual
disk, ramdisk, and other host-specific files. The file format
of the virtual disk varies according to the hypervisor used.
Since we use KVM as our hypervisor, the format of our
virtual disks is QEMU QCOW2 images. The ability to
retrieve the original virtual disks must support snapshots
of disks from machines that are running, as well as
downloads of disk images from stopped machines. QEMU
provides utilities to convert QCOW2 images to raw format,
and libewf can convert raw images to the EWF-E01 format.

Cloud users may run a firewall inside their VM, but
OpenStack provides firewall services beneath the VM. By
default OpenStack uses the Linux iptables firewall on the
host machine to implement network security for the guest
machines. A new chain, or group of rules, is created for each
instance. Several default rules are automatically created,
such as allowing the host to communicate with the guest.
Cloud users are then able to create custom rules manually,
such as allowing inbound SSH or HTTP traffic. OpenStack
has no inherent configuration options to log network
connections that match the firewall rules or connections
that are denied by the firewall. However, iptables natively
has this ability. We enable logging on all denied network
connections and enable the user to retrieve logs for her
OpenStack instances.

OpenStack has the ability to log request successes and
failures when a user issues a request to Nova. For example,
when a user uses the API to request a new VM, this request
can be recorded. These logs are stored on the host operating
system, and therefore are typically not available to cloud
users. FROST stores these data, but in a method that allows
the data to be segregated for each user and that includes
integrity checking information.

5. Design

The goals of enhanced API and firewall logging are to
enable a cloud user to retrieve and validate the integrity of
forensically-relevant log data. The Authenticated Logging
Service supplements Nova’s default logging capability. This
service stores the same data as the traditional log, but a
new hash tree segregates users’ data and integrity checking
information with minimal overhead for record storage or
retrieval. Each OpenStack user account has his or her own
subtree under the root.

When a user provisions a new virtual machine in
OpenStack, a universally unique identifier (UUID) is
assigned to the machine. These UUIDs become children of
the owner’s root, and logs for thatmachine are appended as
follows. The subtree of any virtual machine has a depth of
four for the year, month, and day of the log entry, with the
log messages as leaves of the tree. Because the tree is
constantly changing as new log entries are added, hash
values for the intermediate hash tree nodes are re-
calculated daily. This structure enables a user to request
any date range for any or all virtual machines, while
reducing the additional overhead required.

The Authenticated Logging Services guarantees integ-
rity of the log data using cryptographic hashes. Integrity
checking allows the user to validate if data have been
inserted, removed, or modified. For example, if Alice re-
quests her logs for December, she can calculate the hash
values that she expects in the tree and compare them to
what the provider claimed they should be. If an attacker
modified the log data in transit, the integrity check would
fail and alert Alice to errors or manipulation.

6. Implementation

We provide details about the implementation of FROST
and show how users interact with the tools.

We implemented the forensic extensions using Dev-
Stack, an OpenStack development environment, on Ubuntu
12.04. We used OpenStack Folsom, which was released
September 27, 2012. We used the Xen hypervisor and
Ubuntu guests, but our implementation can support any
hypervisor and guest operating systems.

6.1. Authenticated logging service

The Authenticated Logging Service uses Merkle trees
(Merkle, 1988) as the data structure for storing API and fire-
wall log data. Unlike previous work, we are not concerned
with hiding the structural information associated with the
tree, nor about prohibiting redaction in exported subtrees.

Hash trees offer three advantages. First, storing sum-
mary information about a larger dataset enables efficient
validation andminimal data transmission. For any subset of
data in the tree, the algorithm hashes chunks of the data,
and uses those hashes to compute the hash of the whole

Fig. 2. Tree structure used to store API logs by user, machine, year, month,
and day, showing log entries for Alice’s two virtual machines on December
7–8, 2012. The value at each branch node is a hash of the concatenation of
the values of its children. These hash values enable integrity validation for
any subtree of the whole.

J. Dykstra, A.T. Sherman / Digital Investigation 10 (2013) S87–S95S92
tree. It is unnecessary to reveal or transmit the entire tree.
Second, given the way we organize the tree, a user can
easily query for data over any date range. Third, the hash
tree natively enables a user to validate the integrity of a
subset of log data.

Our algorithm for storing API and firewall logs is as
follows. These two sets of data are stored separately. Since
the design is the same for each, we describe only the
storage of API logs. As shown in Fig. 2, the cloud provider
maintains a single, append-only hash tree for all users.
When a new user joins the cloud service, a subtree is
created for the user under the root. The user’s tree root is
signed using the user’s public key. All API logs associated
with that user are stored in his or her subtree. Data under
the user’s root are organized in five layers, corresponding to
the machine instance, year, month, and day of the respec-
tive log entry. Raw records are found at the leaves, stored as
children of the day. The value at each branch node is
calculated by concatenating the values of its children and
computing the hash of that aggregate. Every minute, the
provider computes a hash of the children at each node and
Listing 1. Execution of the FROST API to retrieve the Nova logs for virtual machine 0
a new virtual machine. These data are available only to users with FROST or with
updates the value of each node with a new hash. The pro-
vider also signs the root of the tree, and the root of each
cloud customer, using the Nova root certificate.

When a user wishes to retrieve the logs associatedwith a
particular instance, the cloud provider returns the raw log
messages and any hash values necessary to validate the
integrityof the result upto theuser’s root. Forexample, in the
most trivial case shown in Fig. 2, the provider would return
only a single logmessage and the hash value at node “Alice.”
Using the Nova root certificate, the provider also hashes and
signs all data being returned and records these values in a
DFXML logfilewhich is returned to theuser. Alice could then
compute the hashes and validate that the value she calcu-
lated for “Alice”matches what the provider claimed.
6.2. API implementation

Many users interact with cloud platforms with com-
mand line tools that call API functions. The Nova API
daemon is the endpoint for API queries. Our API extension
file contains code to implement our features. We register
these extensions with Nova, and add the ability to call them
from the dashboard and the command-line novaclient.
New API calls are added to OpenStack by placing their
functionality in a contribution directory, and modifying
novaclient to allow the user to call the API. Each of our
forensic capabilities is implemented in this manner. We
then hook the Nova logging handler to send logmessages to
our replacement logging service, described below. We also
hook the iptables manager to label firewall messages with
the instance ID associated with them. The Nova Network
daemon then carries out the work of correctly modifying
the iptables rules as the system and the user create them.

To use FROST a user must have already authenticated to
OpenStack with his or her private key or credentials. The
authenticated user can access only the logs for machines
that he or she owns, as enforced by Keystone, the Open-
Stack identity service. The API validates that the requestor
has permission to access the instance for which he or she is
requesting forensic data.

Nova logs are stored in/var/log/nova/on the host oper-
ating system. When a user requests his or her Nova logs,
FROST searches this file for lines that contain that user’s
personal identifier.

Listing 1 shows the output of using FROST from the com-
mand line to retrieve the Nova logs for a single virtual ma-
chine. FROST returns the Nova entries that match that UUID,
and also creates a DFXML file named report.xml. The DFXML
file contains provenance information about the execution of
FROST and a hash of the log data for integrity validation.
afcfbcd-b836-4593-a02c-25d8d3a94b00 showing user “admin” provisioning
provider assistance.

J. Dykstra, A.T. Sherman / Digital Investigation 10 (2013) S87–S95 S93
Firewall logging must be enabled, since it is not enabled
by default in OpenStack. Because OpenStack creates default
rules for each running virtual machine, we append another
rule that logs all dropped packets to/var/log/syslog. For
each instance, we prepend a special prefix to the log mes-
sages that labels the UUID of the machine. Doing so enables
us to parse the log file and identify those lines that corre-
spond to the particular virtual machine that the user
requests.

Listing 2 shows the output of using FROST from the
command line to retrieve the firewall logs for a single vir-
tual machine. FROST returns the firewall logs that match
that UUID, and also creates a DFXML file named report.xml.
Listing 2. Execution of the FROST API to retrieve the firewall logs of virtual machine 0a 18799f-c198-4dbb-b369-b49184e3dfbc showing traffic to ports 443 and
53 being dropped. This level of logging is exposed only to users with FROST or with provider assistance.
Disk images are stored in the filesystem of the host
operating system. The file path includes the name of the
instance, which is used to identify the correct image to
return to the user.

Our implementation supports the retrieval of disk im-
ages from virtual machines that are powered off. New
versions of QEMU and Libvirt include functionality to create
snapshots of running instances, but these features have not
yet been added to OpenStack.

Listing 3 shows the output of using FROST from the
command line to retrieve a disk image for a single virtual disk
with volume name myvol-e9a5612d. FROST returns the disk
image for myvol-e9a5612d, and also creates a DFXML file
named report.xml in the same way as above. The requestor
can validate the integrity of the image by comparing the hash
value in the DFXML, as computed by the cloud provider, with
the hash value computed by the requestor.
Listing 3. Execution of the FROST API to retrieve a disk image of volume myvol-e9a5612d. The user can easily validate the integrity by comparing the checksums.
6.3. Management console web implementation

The Management Console for OpenStack Compute
contains an Instance Detail page for each virtual machine
guest created by the user. We added a new tab for “Incident
Response” to the Instance Detail section. This tab contains
our forensic tools, and provides a space for future forensics
and incident response related features.

Fig. 3 shows the Incident Response page for a virtual
machine. On this page a user can click to retrieve Nova logs,
firewall logs, and a disk image. These links return a zip file
that contains the data requested and a DFXML file.

7. Preliminary evaluation

We conducted two evaluations of FROST. The first is an
objectives-based assessment to validate that FROST can
scale and produce correct results. The second is a
consumer-oriented demonstration and independent
appraisal to gather feedback from potential users.

We tested FROST by creating 100 fictitious users and
used the API to launch five virtual machines for each user
simultaneously. For each virtual machine, we associated
firewall rules that allowed only SSH. With 500 virtual
machines running, we used a network scanner to scan
ports 1–1024 on each machine. This was done to trigger
the firewall to block network traffic on the prohibited
ports. We then chose a random user’s key from the list of
100 users, and a random instance from the list of 500,
and used the API to try and stop the virtual machine.
There was only a 1% chance that the chosen user owned
the chosen virtual machine, and this procedure gener-
ated Nova logs for both successful and unsuccessful
attempts.

We then chose 20 users at random and for each user
requested the API logs, firewall logs, and disk image for
each of the user’s instances. We validated the integrity of
each log and disk image returned by computing the hash of
the data and comparing it to the hash value in the DFXML
file. No anomalies were observed.
To scale to more users the logging mechanism needs
onlymore storage space. Each API and firewall log entry can
be no larger than 1 KB. Using SHA-1 as the cryptographic
hash algorithm requires 160 bits for each tree node (user,
VM, year, month, day). In the worst case this creates 1664
bytes per entry. Therefore, the logging mechanism can
store more than 645,000 log entries in 1 GB of storage. We
believe that modern servers can easily handle this load.
Cloud providers could choose to share this cost with cus-
tomers who wish to enable the logging service.

Fig. 3. Screenshot of the OpenStack web interface showing our new incident
response tab and links to FROST functions to download Nova logs, firewall
logs, and disk images for one virtual machine. These links provide easy ac-
cess to forensic functions for cloud users.

J. Dykstra, A.T. Sherman / Digital Investigation 10 (2013) S87–S95S94
Cloud providers can expect minimal performance
impact after deploying FROST. The overhead of calculating
checksums and providing them to users is negligible. The
time and bandwidth required for a user to download his or
her logs or disk images is dependent upon the size of the
data. We also expect users to request large data volumes,
such as disk images, infrequently.

We demonstrated FROST to 12 users and administrators
of a large private government cloud; their reactions were
positive. One administrator said “[FROST] is exactly what
OpenStack has been missing” and “I appreciate shifting the
load [of investigation] away from me and onto our users.”
The audience was confident that FROST would be useful in
incident response and forensics due to its ease of use. Users
exercised FROST’s web and API interfaces and described
them as “intuitive and consistentwith Open-Stacks design.”
Most users anticipated automating their use of FROST, such
as for collecting logs on a daily basis. They were also inter-
ested in using FROST for non-forensic purposes, such as
troubleshooting and compliance. The administrators plan to
deploy FROST to this cloud in mid-2013.

This evaluation shows that the integrity, completeness,
and accuracy of the forensic data are intact, as identified by
SWGDE and NIST in Section 3.1. The legal requirements are
similarly met. Our solutions use computer data which are
already collected and used in standard practice, or like
firewall logs, are standard practice in computer networks
and are easily enabled in OpenStack.

8. Discussion

We discuss advantages, limitations, trust assumptions,
and open problems of FROST.

FROST offers advantages to forensic investigators over
today’s options for data acquisition. Obtaining a search
warrant and serving it to a cloud provider, or requiring a
system administrator’s intervention to collect data puts the
investigator at the mercy of others to complete the data
acquisition. Today’s forensic tools like EnCase Enterprise
also perform acquisition inside the guest VM, which could
be compromised. FROST performs acquisition at the host
operating system.

One limitation of FROST is that it still requires trust in the
cloud provider. In particular, users must trust the host
operating system, hardware, network, and cloud em-
ployees. We (2012) previously explored options for
addressing these concerns, such as rooting trusting in
hardware with trusted platform modules. Today FROST
concedes some trust in the system for the ability to perform
forensics remotely. FROSTcomes as a software solutionwith
almost no cost to the provider other than some disk space
and the support required to maintain and troubleshoot
FROST. More comprehensive trust solutions, including
TPMs, require more substantial cost on a large scale, and
hardware changes to the entire cloud infrastructure.

The enhanced logging mechanism is not foolproof. First,
it is impossible to detect if an untrusted logger intentionally
fails to record an event without access to the logger. Sec-
ond, cloud clients could collude with the logger to roll back
or modify events that may be difficult for a third party, such
as law enforcement, to detect. Because we assume that the
cloud provider is non-coercible, this concern is mitigated.

One open problem is preservation of data in the cloud.
Rapid elasticity is a feature of cloud computing, but it
comes with the challenge of preserving data in an inves-
tigation until that data can be identified and retrieved.
OpenStack needs the capability for manual or automatic
data preservation to maintain the record of activity of a
malicious cloud user. This could be achieved by archiving
logs and virtual disks for some period of time after the
cloud consumer requests their disposal. However, forensic
accountability may present tension with user privacy and
requires careful thought.

Forensic examination of cloud layers remains open. For
example, forensic capabilities for hypervisors or virtual
networks and software-defined networking should be
addressed.

Another open problem is the evolution and maturity of
OpenStack. OpenStack has an active development com-
munity and regular software releases. Future modifications
to OpenStack may affect FROST’s functionality. We are
working to add FROST to the public OpenStack project.

Futurework remains in several areas. FROST is unique to
IaaS environments. While the reference implementation
has been done with OpenStack, implementations for other
IaaS platforms are feasible. Platform-as-a-Service and
Software-as-a-Service give less control to cloud users.
Forensic capabilities for these environments remain to be
done, and require considerations for their unique chal-
lenges. The provider will have to collect more of the
forensic data, such as logging in the guest operating system.

Expansion within OpenStack also remains. It would be
useful to support other virtual disk formats, since Open-
Stack supports many hypervisors. Other forensic capabil-
ities could be added to FROST, such as data preservation or
server-side e-discovery. Users will need the capability to
create snapshots of running instances, which will be
possible with the latest versions of QEMU and Libvirt. It
would be useful to have automated snapshots of virtual
machines, and the ability to detect changes between
snapshots. Forensic tools for object storage, like that pro-
vided by OpenStack Swift and Amazon S3, would be useful
today.

Our preliminary evaluation indicates that FROST is able
to support many users without introducing undue

J. Dykstra, A.T. Sherman / Digital Investigation 10 (2013) S87–S95 S95
overhead. More comprehensive testing in a large scale
environment is needed to gage the performance impact.
We suggest an analysis to compare a production environ-
ment with and without FROST.

While FROST implements the acquisition phase of the
forensic process, future work should consider solutions for
other phases of the process affected by cloud computing.
FROST produces data that can be consumed by standard
tools, but as data volumes increase other analysis tools will
be necessary.

9. Conclusion

We have introduced the FROST suite for OpenStack, the
first collection of forensic tools integrated into the manage-
ment plane of a cloud architecture. These tools enable cloud
consumers, law enforcement, and forensic investigators to
acquire trustworthy forensic data independent of the cloud
provider. In addition to incident response and forensics,
FROST can also be used for real-time monitoring, metrics, or
auditing.

FROST offers concrete user-accessible forensic capabil-
ities to cloud consumers.Whilemany organizations are still
hesitant to adopt cloud solutions because of security con-
cerns, FROST arms them with powerful and immediate
response capabilities. Similar tools should be a part of all
commercial cloud services, and we look forward to the
creation and adoption of more such tools to enhance
forensic readiness for cloud computing.

Acknowledgments

We would like to thank the anonymous reviewers for
their helpful suggestions. We thank Simson Garfinkel, Ken
Zatyko, and Tim Leschke for comments on early drafts. We
also thank Ron Rivest and Stuart Haber for insights and
suggestions related to hash trees.

Sherman was supported in part by the Department of
Defense under IASP grantsH98230-11-1-0473 andH98230-
12-1-0454, and by the National Science Foundation under
SFS grant 1241576. Dykstrawas supported inpart byanAWS
in Education grant award.

References

Amazon Web Services. Amazon web services: overview of security pro-
cesses. Available at: http://awsmedia.s3.amazonaws.com/pdf/AWS_
Security_Whitepaper.pdf; 2011 [accessed 28.10.12].

Amazon Web Services. Amazon CloudWatch. Available at: http://aws.
amazon.com/cloudwatch/; 2013 [accessed 05.02.13].

Clarke DE. Towards constant bandwidth overhead integrity checking of
untrusted data [Ph.D. thesis]. MIT; 2005.

Crosby SA. Efficient tamper-evident data structures for untrusted servers
[Ph.D. thesis]. Rice University; 2009.
Dykstra J, Riehl D. Forensic collection of electronic evidence from
infrastructure-as-a-service cloud computing. Richmond Journal of
Law and Technology 2012;19. Available at: http://jolt.richmond.edu/
wordpress/?p¼463.

Dykstra J, Sherman AT. Understanding issues in cloud forensics: two
hypothetical case studies. In: Proceedings of the 2011 ADFSL
Conference on digital forensics security and law. ASDFL; 2011a.
p. 191–206.

Dykstra J, Sherman AT. Understanding issues in cloud forensics: two
hypothetical case studies. Journal of Network Forensics 2011b;3(1):
19–31.

Dykstra J, Sherman AT. Acquiring forensic evidence from infrastructure-
as-a-service cloud computing: exploring and evaluating tools, trust,
and techniques. Digital Investigation 2012;9(Suppl. S90–S98). The
Proceedings of the Twelfth Annual DFRWS Conference.

Garfinkel S. Digital forensics xml and the dfxml toolset. Digital Investi-
gation 2012;8(3–4):161–74.

Google. Access logs & storage data (experimental) – Google cloud storage.
Available at: https://developers.google.com/storage/docs/accesslogs;
2012 [accessed 28.10.12].

Haber S, Hatano Y, Honda Y, Horne W, Miyazaki K, Sander T, et al. Efficient
signature schemes supporting redaction, pseudonymization, and data
deidentification. In: Proceedings of the ACM Symposium on infor-
mation, computer & communication security (ASIACCS’08) 2008.
p. 353–62.

Kundu A. Data in the cloud: authentication without leaking [Ph.D. thesis].
Purdue University; 2010.

Li J, Krohn M, Mazières D, Shasha D. Secure untrusted data repository
(SUNDR). In: Proceedings of the 6th conference on Symposium on
Operating Systems Design & Implementation - Volume 6 (OSDI’04).
Berkeley, CA, USA: USENIX Association; 2004. p. 9–9.

Martini B, Choo KKR. An integrated conceptual digital forensic framework
for cloud computing. Available at: http://dx.doi.org/10.1016/j.diin.
2012.07.001; 2012 [accessed 10.09.12].

Marty R. Cloud application logging for forensics. In: Proceedings of the
2011 ACM Symposium on applied computing. New York, NY, USA:
ACM; SAC ’11 2011. p. 178–84.

Merkle RC. A digital signature based on a conventional encryption func-
tion. In: A Conference on the theory and applications of cryptographic
techniques on advances in cryptology. London, UK, UK: Springer-
Verlag; CRYPTO ’87 1988. p. 369–78.

Microsoft. About storage analytics logging. Available at: http://msdn.
microsoft.com/en-us/library/windowsazure/hh343262.aspx; 2012
[accessed 12.11.12].

National Institute of Standards and Technology. Digital data acquisition
tool specification. Available at: http://www.cftt.nist.gov/Pub-Draft-1-
DDA-Require.pdf; 2004 [accessed 16.09.12].

National Institute of Standards and Technology. The NIST definition of
cloud computing. Available at: http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf; 2011 [accessed 05.01.13].

OpenStack. Keynote recap, day 2: why we do what we do. Available at:
http://www.openstack.org/blog/2012/10/keynote-recap-day-2-why-
we-do-what-we-do/; 2012a [accessed 26.10.12].

OpenStack. OpenStack open source cloud computing software. Available
at: http://www.openstack.org/; 2012b [accessed 13.12.12].

Ruan K, Carthy J, Kechadi T, Crosbie M. Cloud forensics: an overview. In:
Advances in digital forensics VII 2011.

Scientific Working Group on Digital Evidence (SWGDE). Data integrity
within computer forensics. Available at: https://www.swgde.org/
documents/Current%20Documents/2006-04-12%20SWGDE%20Data%
20Integrity%20Within%20Computer%20Forensics%20v1.0; 2006
[accessed 16.09.12].

Taylor M, Haggerty J, Gresty D, Lamb D. Forensic investigation of cloud
computing systems. Network Security 2011;3:4–10.

U.S. Dept. of Justice. Searching and seizing computers and obtaining
electronic evidence in criminal investigations. Available at: http://
www.justice.gov/criminal/cybercrime/docs/ssmanual2009.pdf; 2009
[accessed 16.09.12].

http://awsmedia.s3.amazonaws.com/pdf/AWS_Security_Whitepaper.pdf
http://awsmedia.s3.amazonaws.com/pdf/AWS_Security_Whitepaper.pdf
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/cloudwatch/
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref3
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref3
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref4
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref4
http://jolt.richmond.edu/wordpress/%3fp%3d463
http://jolt.richmond.edu/wordpress/%3fp%3d463
http://jolt.richmond.edu/wordpress/%3fp%3d463
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref6
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref6
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref6
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref6
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref7
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref7
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref7
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref8
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref8
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref8
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref8
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref9
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref9
https://developers.google.com/storage/docs/accesslogs
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref11
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref11
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref11
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref11
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref11
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref12
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref12
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref25
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref25
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref25
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref25
http://dx.doi.org/10.1016/j.diin.2012.07.001
http://dx.doi.org/10.1016/j.diin.2012.07.001
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref14
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref14
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref14
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref15
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref15
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref15
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref15
http://msdn.microsoft.com/en-us/library/windowsazure/hh343262.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh343262.aspx
http://www.cftt.nist.gov/Pub-Draft-1-DDA-Require.pdf
http://www.cftt.nist.gov/Pub-Draft-1-DDA-Require.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.openstack.org/blog/2012/10/keynote-recap-day-2-why-we-do-what-we-do/
http://www.openstack.org/blog/2012/10/keynote-recap-day-2-why-we-do-what-we-do/
http://www.openstack.org/
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref21
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref21
https://www.swgde.org/documents/Current%2520Documents/2006-04-12%2520SWGDE%2520Data%2520Integrity%2520Within%2520Computer%2520Forensics%2520v1.0
https://www.swgde.org/documents/Current%2520Documents/2006-04-12%2520SWGDE%2520Data%2520Integrity%2520Within%2520Computer%2520Forensics%2520v1.0
https://www.swgde.org/documents/Current%2520Documents/2006-04-12%2520SWGDE%2520Data%2520Integrity%2520Within%2520Computer%2520Forensics%2520v1.0
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref23
http://refhub.elsevier.com/S1742-2876(13)00056-X/sref23
http://www.justice.gov/criminal/cybercrime/docs/ssmanual2009.pdf
http://www.justice.gov/criminal/cybercrime/docs/ssmanual2009.pdf

	nc nd cover.pdf
	1-s2.0-S174228761300056X-main
	Design and implementation of FROST: Digital forensic tools for the OpenStack cloud computing platform
	1 Introduction
	2 Previous and related work
	3 Requirements, specifications, and capabilities
	3.1 Scientific, technical, and legal requirements
	3.2 Specifications and capabilities

	4 Architecture
	4.1 Integration with OpenStack
	4.2 Data retrieval

	5 Design
	6 Implementation
	6.1 Authenticated logging service
	6.2 API implementation
	6.3 Management console web implementation

	7 Preliminary evaluation
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

