
Solving a Two-Dimensional Elliptic Model Problem
with the Conjugate Gradient Method Using

Matrix-Free SSOR Preconditioning in Matlab
Amanda K. Gassman and Matthias K. Gobbert

Department of Mathematics and Statistics, University of Maryland, Baltimore County

{amandag2,gobbert}@umbc.edu

Abstract. The existing Preconditioned Conjugate Gradient method in Matlab can be optimized in
terms of wall clock time and, more importantly, required storage space. The developed optimized algorithm
was tested repeatedly on a two dimensional Poisson problem to ensure that it produced the same numerical
solution as the original Matlab function. The algorithm was optimized in several stages: first a function was
created that reused some vectors in the algorithm, next we developed a matrix-free method of computing
matrix-vector multiplications with the system matrix, then a matrix-free method that implements precondi-
tioning on the system matrix was derived, and finally all memory-saving techniques were combined in order
to create a matrix-free Preconditioned Conjugate Gradient method. This superior algorithm computes the
same numerical solution to our problem as Matlab’s original method, but requires less memory and less
time. Ultimately, the goal of optimizing the algorithm was achieved and convergence results are presented
to confirm the accuracy of the new method and demonstrate its superiority.

1 Introduction

A classical model problem is the Poisson equation with homogeneous Dirichlet boundary conditions, which
is given by

−∆u = f(x, y) in Ω, (1.1)
u = 0 on ∂Ω. (1.2)

This problem is considered on the unit square Ω ⊂ R2. Using the finite difference method with a standard five
point stencil yields a highly structured system matrix that is symmetric positive definite. This paper focuses
on deriving a matrix-free optimal Preconditioned Conjugate Gradient method and applying it to the model
problem over the stated domain. We first present in Table 1 the results of the various optimization techniques
for Matlab’s Conjugate Gradient method (CG) and the optimal Conjugate Gradient method (CGopt) on
our model problem for a system size of N = 2048 with a tolerance of 10−6. The tolerance determines when
the method has found a solution which when multiplied by the system matrix A yields a results within 10−6

of the right-hand side vector b. Table 2 presents results of the various optimization techniques for Matlab’s
Preconditioned Conjugate Gradient method (PCG) and the optimal Preconditioned Conjugate Gradient
method (PCGopt) on our model problem using the same system size and initial parameters.

Table 1 displays the convergence results of implementing Matlab’s CG method and the optimal CG
method with A as a matrix and then matrix-free. In all cases, the error ratio is approximately 4 (which
agrees with the theory), the relative residual is smaller than the tolerance, the conjugate gradient method
required 3192 iterations to converge, the time increases when A is implemented matrix-free, and the observed
memory usage decreases when A is implemented matrix-free. Each row of results in Table 1 is exactly the
N = 2048 row of results in Tables 3 and 4 which are presented later in Section 3.

Table 2 presents the convergence data associated with the PCG method: the first portion show the
results of using Matlab’s PCG method while the second portion are the results for the possible combinations
of “matrix”, “matrix-free”, and “transp” for PCGopt. Thus each row of results presented in Table 2 is
exactly the N = 2048 row of results in Tables 5, 6, 7, 8, and 9 making Table 2 truly a summary table
of the results presented later in Sections 3 and 4 where detailed studies and explanations of the various
memory-saving techniques can be found.
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Method ‖e‖∞ Error Ratio ‖r‖2/‖b‖2 Iter Time(sec) Mem(MB)
Matlab’s CG:
·A =matrix 7.8019e-07 4.0075 9.8757e-07 3192 2,195.67 1,104
·A =matrix-free 7.8019e-07 4.0075 9.8769e-07 3192 3,226.87 808
CGopt:
·A =matrix 7.8019e-07 4.0075 9.8757e-07 3192 1,632.51 1,104
·A =matrix-free 7.8019e-07 4.0075 9.8769e-07 3192 2,134.06 740

Table 1: Convergence Results for CG for N = 2048

Method ‖e‖∞ Error Ratio ‖r‖2/‖b‖2 Iter Time(sec) Mem(MB)
Matlab’s PCG:
·A,M1,M2 =matrix 7.8394e-07 3.9953 9.0626e-07 176 185.03 1,564
·M1 =matrix-free 7.8394e-07 3.9953 9.0626e-07 176 227.24 1,298
·M1,M2 =matrix-free 7.8394e-07 3.9953 9.0626e-07 176 259.85 1,122
·A,M1,M2 =matrix-free 7.8394e-07 3.9953 9.0626e-07 176 313.59 930
PCGopt:
·A,M1,M2=matrix 7.8394e-07 3.9953 9.0626e-07 176 154.64 1,432
·M2=transp 7.8394e-07 3.9953 9.0626e-07 176 235.45 1,356
·M1=matrix-free 7.8394e-07 3.9953 9.0626e-07 176 194.31 1,276
·M1,M2=matrix-free 7.8394e-07 3.9953 9.0626e-07 176 230.08 1,118
·A,M1,M2=matrix-free 7.8394e-07 3.9953 9.0626e-07 176 254.50 910

Table 2: Convergence Results for PCG for N = 2048

An initial glance at Tables 1 and 2 reveals that as the memory-savings techniques get more sophisticated
the amount of memory used decreases; this meets with expectations since the techniques were specifically
designed to save memory. Interestingly, comparison within Tables 1 and 2 shows that the wall clock time
increases when the system matrix A is implemented matrix-free.

All computations associated with this project were performed in the spring of 2009 in Matlab version
R2008b on a quad core processor machine with four 2.83 GHz and 8 GB of memory. The memory observation
was executed in Linux using RedHat EL5 using the Linux command “top”, which shows in real time the CPU
utilization details (i.e., what applications are using how much of the available resources). The investigation
focused on the “VIRT” column (as it shows the memory used by a certain application) and recorded the
highest value reached during each of the methods tested for each dimension N .

Possessing this knowledge is crucial when analyzing the results especially as it allows for a determination
as why to a numerical solution could not be found for a larger dimension. In all cases, the resounding answer
is that the system ran out of memory. Accordingly we seek to minimize the required storage of the Conjugate
Gradient method without impacting its manner of functioning or final solution. Overall, this study helped
us to understand how memory quickly becomes a limiting factor in this type of data processing and which
sort of techniques are successful in limiting storage requirements.

This paper is organized as follows. Section 2 introduces the specific problem and its discretization by the
finite difference method which results in particular system matrices. Section 3 explains the optimal Conjugate
Gradient algorithm and why the system matrix A need not be formally stored in order to be used. Thus we
explore all possible combinations of CG and CGopt where A is stored as a matrix and implemented matrix-
free and present the resultant convergence tables. Section 4 describes the idea of preconditioning, defines
(in detail) the algorithms which implement matrix-free Symmetric Successive Overrelaxation (SSOR(ω)) as
the preconditioner, and presents convergence tables for the various combinations of PCG and PCGopt using
preconditioning matrices and matrix-free techniques.
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2 The Model Problem and Linear System Setup

The classical model problem is the Poisson equation considered over an open, bounded, simply connected,
convex region in the two-dimensional plane Ω = (0, 1) × (0, 1) with homogeneous Dirichlet boundary and
where the function f(x, y) is

f(x, y) = −2π2 cos(2πx) sin2(πy)− 2π2 sin2(πx) cos(2πy). (2.1)

The solution to the problem, which was specifically designed to have a closed-form solution, takes the form

utrue(x, y) = sin2(πx) sin2(πy). (2.2)

The specific problem can be stated as

−∂
2u

∂x2
− ∂2u

∂y2
= f(x, y) for 0 < x < 1, 0 < y < 1, (2.3)

u(0, y) = u(x, 0) = u(1, y) = u(x, 1) = 0 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (2.4)

with the function f(x, y) from (2.1). On this domain, a grid is defined such that

Ωh = {(xi, yj) : xi = ih, i = 0, . . . , N + 1, yj = jh, j = 0, . . . , N + 1},

where h = 1
N+1 > 0. We will let N = 2ν where ν = 1, 2, . . . , 13.

The previously defined grid of x and y values enabled an application of a second-order finite difference
approximation at all interior points of Ωh to the x-derivative and the y-derivative, respectively, and thus we
obtain

∂2u

∂x2
(xi, yj) ≈

u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)
h2

, (2.5)

∂2u

∂y2
(xi, yj) ≈

u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)
h2

, (2.6)

where i = 1, . . . , N, j = 1, . . . , N. We can approximate −∆u = −∂
2u
∂x2 − ∂2u

∂y2 in equation (2.3) with the
above formulas to yield

−ui−1,j − ui,j−1 + 4ui,j − ui,j+1 − ui+1,j = h2fi,j i, j = 1, . . . , N. (2.7)

By using the fact that u = 0 on the boundary, a linear system of n = N2 equations for the interior mesh
points can be created where Au = b. If using a natural ordering of uk ≡ ui,j , k = i+N(j − 1), then A is of
the form

A =


S T
T S T

. . . . . . . . .
T S T

T S

 , S =


4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1
−1 4

 , T =


−1
−1

. . .
−1
−1

 ,

where A ∈ RNxN is a block-tridiagonal matrix consisting of N × N blocks of N × N matrices. The setup
of the matrix A for any dimension N implements the Kronecker tensor product of an identify matrix and
tridiagonal matrix based on the finite difference discretization [1]. The right-hand side vector b depends on
the function f(x, y) where each entry bk = h2fi,j . As h is halfed, the error is improved by a factor of four.
All matrices (when stored) are stored in sparse storage, which conserves valuable memory and allows better
management of larger dimension matrices.
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3 Conjugate Gradient Method

3.1 Optimal Conjugate Gradient Method

A part of the focus of the project was to study an optimal Conjugate Gradient algorithm (referred to in
the following as CGopt) with capabilities identical to the built-in Matlab Conjugate Gradient pcg function
(referred to as CG). CGopt smartly reuses four vectors and therefore requires only six as compared to ten in
Matlab’s original algorithm. Additionally, CGopt requires only one matrix-vector product as compared to
two in the standard Conjugate Gradient algorithm. For a comparison between the two Conjugate Gradient
methods, we present full convergence results in Table 3 for Matlab’s CG and CGopt where A is stored as a
matrix.

For both CG and CGopt, the error decreases and the iteration count, time, and observed memory usage
increase as the system size increases. For any case that converged in less than several seconds, the memory
usage could not be observed and thus only a dash is shown. By comparing the results for CG with CGopt,
we can both ensure accuracy of the optimized method and demonstrate improvement over the standard one.
It should be noted that as CGopt is nearly identical to Matlab’s CG, the convergence results are also nearly
identical. In Table 3, a comparison of the error, error ratio, relative residual, and iteration count for each
dimension N between the two methods reveals that both have the same convergence results, but that CGopt
simply improves the time required. Finally, both methods ran out of memory for system sizes larger than
N = 2048.

N ‖e‖∞ Error Ratio ‖r‖2/‖b‖2 Iter Time(sec) Mem(MB)
Matlab’s CG:

4 1.1673e-01 N/A 4.0646e-16 3 0.00 -
8 3.9152e-02 2.9813 1.2237e-15 10 0.00 -

16 1.1267e-02 3.4748 6.6499e-07 24 0.00 -
32 3.0128e-03 3.7399 5.5637e-07 48 0.01 -
64 7.7811e-04 3.8719 7.0189e-07 96 0.06 -

128 1.9765e-04 3.9368 9.3340e-07 192 0.35 -
256 4.9797e-05 3.9690 8.9244e-07 387 3.53 427
512 1.2494e-05 3.9857 9.0693e-07 783 31.65 459

1024 3.1266e-06 3.9961 9.3989e-07 1581 273.93 579
2048 7.8019e-07 4.0075 9.8757e-07 3192 2,195.67 1,104
4096 Out of Memory
8192 Out of Memory

CGopt:
4 1.1673e-01 N/A 1.5020e-16 3 0.00 -
8 3.9152e-02 2.9813 3.1421e-16 10 0.00 -

16 1.1267e-02 3.4748 6.6499e-07 24 0.00 -
32 3.0128e-03 3.7399 5.5637e-07 48 0.01 -
64 7.7811e-04 3.8719 7.0189e-07 96 0.05 -

128 1.9765e-04 3.9368 9.3340e-07 192 0.28 -
256 4.9797e-05 3.9690 8.9244e-07 387 2.65 426
512 1.2494e-05 3.9857 9.0693e-07 783 24.46 457

1024 3.1266e-06 3.9961 9.3989e-07 1581 203.18 574
2048 7.8019e-07 4.0075 9.8757e-07 3192 1,632.51 1,104
4096 Out of Memory
8192 Out of Memory

Table 3: Convergence Results for CG (A = matrix)
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3.2 Matrix-Free A

It is important to note that the CG method requires only matrix-vector multiplications with the system
matrix A and not the matrix itself [2]. Therefore when the CG method needs to do the multiplication
v = Au, we instead call our matrix-free function with the vector u as input and receive as output the
resultant vector v without ever creating or storing the system matrix A. Knowledge of the structure of
A allows us to create a function that performs matrix-free matrix-vector products between A and a given
vector. By programming this directly, there is no longer a need to store A and thus we save valuable memory.

Based on (2.6), we construct an algorithm that takes the vector u as input. This vector is immediately
reshaped into an N ×N matrix U using column-wise ordering as shown in the N = 4 example below. The
algorithm then creates a matrix V such that V = 4U , which is derived from the entries along the main
diagonal of A. Next in four deliberate steps we alter: all columns except the first, all rows except the first,
all rows except the last, and all columns except the last. The following example for a dimension of N = 4
makes the results of each step clearer.
EXAMPLE: Matrix-Free Matrix-Vector Multiplication for N = 4

v =


v1

v2

v3

v4

 =


4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4

 ·

a
b
c
d

 = Au

u =


a
b
c
d

→ U =
[
a c
b d

]
→ V = 4U =

[
4a 4c
4b 4d

]

V =
[

4a 4c− a
4b 4d− b

]
→
[

4a 4c− a
4b− c 4d− b− c

]
→
[

4a− b 4c− a− d
4b− a 4d− b− c

]
→
[

4a− b− c 4c− a− d
4b− a− d 4d− b− c

]

V =
[

4a− b− c 4c− a− d
4b− a− d 4d− b− c

]
→ v =


4a− b− c
4b− a− d
4c− a− d
4d− b− c


Table 4 presents the convergence results found by running Matlab’s CG and CGopt on our problem using

matrix-free A implementation. In both cases, the error decreases and the iteration count, time, and observed
memory usage increase as the system size increases. Before we can boast the memory savings, we must first
confirm that the matrix-free A algorithm indeed solves the problem correctly. As in Table 3, a comparison of
the error, ‖e‖∞ , error ratio, relative residual, ‖r‖2/‖b‖2 , and iteration count for each dimension N between
the two methods reveals that they have the same convergence results thus confirming the accuracy of the
matrix-free algorithm. However unlike Table 3, CGopt now improves on CG in terms of both the time
required and memory usage observed. Also, both methods converge for system size N = 4096, but run out
of memory for N = 8192.

By eliminating the need to store matrix A, we expect significant memory savings and this confirmed by
a comparison of the observed memory usage for corresponding cases of N between Table 3 and Table 4. The
only difference between the tables is the results in Table 3 originate from the storage of A as a matrix and the
results in Table 4 from the implementation of matrix-free A. A comparison of CG for each dimension N in
Table 3 to the same dimension N in Table 4 shows that by implementing matrix-free A the observed memory
usage decreases. This confirms that not storing A as a matrix, but instead implementing the matrix-vector
multiplications with a matrix-free function, conserves memory. However, it should be noted that the time
required increases by approximately 50% when A is implemented matrix-free. A comparison of CGopt for
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each dimension N in Table 3 to the same dimension N in Table 4 also shows that the observed memory
usage decreases. Again, the time required increases, but now by approximately 33% for each dimension N .

There is very little difference in the performances of Matlab’s CG and CGopt where A is stored as a
matrix as seen in Table 3. However, the complete convergence results for Matlab’s CG and CGopt with
matrix-free A displayed in Table 4 are useful because they demonstrates the superiority of the CGopt over
Matlab’s CG in terms of time required and observed memory usage. For all dimensions, CGopt requires
less memory and less time. While the results in Table 4 reveal that CG and CGopt with matrix-free A
successfully solve the problem for N = 4096, the wall clock time is now considerable. In fact, the time
required by Matlab’s CG with matrix-free A is significantly more than for CGopt for the same system size
N and thus this motivates the further improvement of the optimal method using preconditioning in order
to lessen total wall clock time.

N ‖e‖∞ Error Ratio ‖r‖2/‖b‖2 Iter Time(sec) Mem(MB)
Matlab’s CG:

4 1.1673e-01 N/A 6.8238e-16 3 0.03 -
8 3.9152e-02 2.9813 1.8080e-15 10 0.01 -

16 1.1267e-02 3.4748 6.6499e-07 24 0.01 -
32 3.0128e-03 3.7399 5.5637e-07 48 0.03 -
64 7.7811e-04 3.8719 7.0189e-07 96 0.08 -

128 1.9765e-04 3.9368 9.3340e-07 192 0.42 -
256 4.9797e-05 3.9690 8.9244e-07 387 4.13 422
512 1.2494e-05 3.9857 9.0792e-07 783 46.25 445

1024 3.1266e-06 3.9961 9.3990e-07 1581 404.27 538
2048 7.8019e-07 4.0075 9.8769e-07 3192 3,226.87 808
4096 1.9366e-07 4.0287 9.8366e-07 6452 25,887.31 1,955
8192 Out of Memory

CGopt:
4 1.1673e-01 N/A 1.6953e-16 3 0.00 -
8 3.9152e-02 2.9813 3.8591e-16 10 0.00 -

16 1.1267e-02 3.4748 6.6499e-07 24 0.01 -
32 3.0128e-03 3.7399 5.5637e-07 48 0.01 -
64 7.7811e-04 3.8719 7.0189e-07 96 0.05 -

128 1.9765e-04 3.9368 9.3340e-07 192 0.29 -
256 4.9797e-05 3.9690 8.9244e-07 387 2.89 423
512 1.2494e-05 3.9857 9.0792e-07 783 31.45 441

1024 3.1266e-06 3.9961 9.3990e-07 1581 266.67 523
2048 7.8019e-07 4.0075 9.8769e-07 3192 2,134.06 740
4096 1.9366e-07 4.0287 9.8364e-07 6452 17,169.03 1,828
8192 Out of Memory

Table 4: Convergence Results for CG (A = matrix-free)
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4 Preconditioned Conjugate Gradient Method

In this project we use the classic iterative method Symmetric Successive Overrelaxation (SSOR(ωopt)) as
the preconditioner as it has been demonstrated that the Conjugate Gradient method when coupled with
SSOR(ωopt) yields faster convergence than with unpreconditioned CG. The splitting matrix M for SSOR(ω)
is M = ω

2−ω ( 1
ωD − E)D−1( 1

ωD − F ). Here D is a diagonal matrix of the diagonal entries of the matrix
A, −E is the strictly lower triangular portion of matrix A, and −F is the strictly upper triangular portion
of matrix A such that A = D − E − F . In fact, this splitting matrix can be written as a product of a
lower triangular matrix M1 and an upper triangular matrix M2 where M1 =

√
ω

2−ω ( 1
ωD − E)D−1/2 and

M2 =
√

ω
2−ωD

−1/2( 1
ωD− F ). SSOR(ωopt) preconditioning is implemented by adding linear solves with M1

and M2 which do not require many resources as these matrices are triangular. The speed of convergence
depends largely on the relaxation parameter, ω. The optimal value, ω = 2

1+sinπh , derived in the paper
by Yang and Gobbert [3], is optimal and used here as it guarantees the best performance of the SSOR(ω)
method in term of the mesh spacing h.

By using the optimal Conjugate Gradient code with our preconditioner we derive the optimal Precon-
ditioned Conjugate Gradient method (PCGopt), whose capabilities are equivalent to the built-in Matlab
PCG function. Both PCG and PCGopt can handle matrix-free implementation of the system matrix A
(referred to as A=matrix-free) and matrix-free implementation of the preconditioning matrices M1 and M2

(M1=matrix-free and M2=matrix-free, respectively). Only PCGopt can handle implementation of the pre-
conditioning matrix M2 as the transpose of matrix M1 as it is specifically designed to recognize the flag
M2 =“transp”.

Table 5 presents full convergence results for Matlab’s Preconditioned Conjugate Gradient method (PCG)
and for the PCGopt method on our problem where all matrices are stored. In both cases, the error decreases
and the iteration count, time, and observed memory usage increase as the system size increases. A comparison
of the error, ‖e‖∞ , error ratio, relative residual, ‖r‖2/‖b‖2 , and iteration count for each dimension N between
the two methods reveals that they have the same convergence results. However, PCGopt improves on PCG
in terms of both the time required and memory usage observed, but the memory savings is not significant in
this case. Finally, both methods converged for system size N = 2048, but run out of memory for N = 4096.
The other various memory savings techniques are described in further detail in the following subsections.

4.1 Preconditioning with Transpose M2

As widely demonstrated, preconditioning assists in solving problems more efficiently; it reduces the condi-
tion number κ(A). Therefore, we next turn our attention toward improving the manner in which the system
matrix A is preconditioned. Because our system is symmetric, our selected preconditioner Symmetric Suc-
cessive Overrelaxation (SSOR(ω)) can be factored using Cholesky into a lower triangular factor M1 and
upper triangular factor M2 where M = M1M2 and in fact M2 = M1

T . Matlab’s PCG function does not
take advantage of this fact; our PCGopt utilizes a flag to note when M2 = ”transp”, which allows the use
of M2 = MT

1 in this linear solve involving M2 instead of the storage of M2. Rather than solving M2z = q
using the backslash operator directly, we substituted MT

1 for M2.

q = M2z

q = MT
1 z

qT = zTM1

zT = qTM−1
1

z = (qTM−1
1 )T

In Matlab syntax, we will solve z = (qT /M1)T .
Complete convergence results for PCGopt with M2 = “transp” are displayed in Table 6. A comparison

of this table with the PCGopt results in Table 5 reveals that the technique of substituting MT
1 for M2 yields

the same convergence results and does not change the ultimate outcome. PCGopt with M2 =“transp” is
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N ‖e‖∞ Error Ratio ‖r‖2/‖b‖2 Iter Time(sec) Mem(MB)
Matlab’s PCG:

4 1.1673e-01 N/A 1.1573e-08 7 0.00 -
8 3.9153e-02 2.9813 5.9428e-07 9 0.00 -

16 1.1267e-02 3.4748 2.4780e-07 14 0.01 -
32 3.0128e-03 3.7399 8.3630e-07 19 0.01 -
64 7.7812e-04 3.8719 5.7114e-07 28 0.04 -

128 1.9766e-04 3.9366 7.3653e-07 40 0.16 -
256 4.9811e-05 3.9683 9.2508e-07 57 0.93 -
512 1.2502e-05 3.9842 9.0263e-07 83 5.71 482

1024 3.1321e-06 3.9916 8.9577e-07 121 33.69 699
2048 7.8394e-07 3.9953 9.0626e-07 176 185.03 1,475
4096 Out of Memory
8192 Out of Memory

PCGopt:
4 1.1673e-01 N/A 1.1573e-08 7 0.01 -
8 3.9153e-02 2.9813 5.9428e-07 9 0.00 -

16 1.1267e-02 3.4748 2.4780e-07 14 0.00 -
32 3.0128e-03 3.7399 8.3630e-07 19 0.01 -
64 7.7812e-04 3.8719 5.7114e-07 28 0.03 -

128 1.9766e-04 3.9366 7.3653e-07 40 0.13 -
256 4.9811e-05 3.9683 9.2508e-07 57 0.78 -
512 1.2502e-05 3.9842 9.0263e-07 83 4.74 481

1024 3.1321e-06 3.9916 8.9577e-07 121 27.96 648
2048 7.8394e-07 3.9953 9.0626e-07 176 154.64 1,432
4096 Out of Memory
8192 Out of Memory

Table 5: Convergence Results for PCG

accurate and a valid method. This technique is not related to the main focus of the project, matrix-free
computing, but is regardless a useful technique when trying to solve a symmetric system more efficiently.

Table 6 shows that the error decreases and the iteration count, time, and observed memory usage increase
as the system size increases. When examining Table 6, it is necessary to remember that A and M1 are stored
as matrices and therefore only a savings of the M2 is expected. Comparing the results of this method to
the results of PCGopt in Table 5, we see a memory savings for dimensions N = 1024 and N = 2048, which
represent an even larger total memory savings from Matlab’s PCG (also in Table 5). Unfortunately, we also
see that the wall clock time for PCGopt with M2 =“transp” has increased slightly from regular PCGopt and
from Matlab’s PCG.

4.2 Matrix-Free M1

To further optimize PCGopt, we must observed that preconditioning matrix M1 is lower triangular and
sparse. Consequently, in order to perform a matrix-vector multiplication with matrix M1 and the r vector
it not necessary to actually form M1 in order to perform a matrix-vector multiplication; rather, we can do
a matrix-free linear solve.

As previously noted, if we let D be a diagonal matrix whose entries are the diagonal entries of A, −E
be the strictly lower triangular portion of A and −F be the strictly upper triangular portion of A, then
M1 =

√
ω

2−ω ( 1
ωD − E)D−1/2 [2] where ω = 2

1+sinπh [1, p.540]. To solve r = M1q for vector q, we need to
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N ‖e‖∞ Error Ratio ‖r‖2/‖b‖2 Iter Time(sec) Mem(MB)
4 1.1673e-01 N/A 1.1573e-08 7 0.01 -
8 3.9153e-02 2.9813 5.9428e-07 9 0.00 -

16 1.1267e-02 3.4748 2.4780e-07 14 0.00 -
32 3.0128e-03 3.7399 8.3630e-07 19 0.01 -
64 7.7812e-04 3.8719 5.7114e-07 28 0.04 -

128 1.9766e-04 3.9366 7.3653e-07 40 0.18 -
256 4.9811e-05 3.9683 9.2508e-07 57 1.16 -
512 1.2502e-05 3.9842 9.0263e-07 83 7.03 481

1024 3.1321e-06 3.9917 8.9577e-07 121 41.47 661
2048 7.8394e-07 3.9953 9.0626e-07 176 235.45 1,356
4096 Out of Memory
8192 Out of Memory

Table 6: Convergence Results PCGopt (A=matrix, M1=matrix, M2=transp)

invert M1 and then multiply it by vector r.

q = M−1
1 r

q =
[√

ω

2− ω

(
1
ω
D − E

)
D−1/2

]−1

r

q =

√
2− ω
ω

D1/2

(
1
ω
D − E

)−1

r

q = 2

√
2− ω
ω

(
4
ω
I − E

)−1

r

Now we note that M1 is a block N2×N2 matrix consisting of N ×N blocks, and if we let M̃1 = ( 4
ω I−E)−1,

then we get

M̃1 =


M1N

−I M1N

. . . . . .
−I M1N

−1 M1N

 , M1N =


4/ω
−1 4/ω

. . . . . .
−1 4/ω
−1 4/ω

 .
In this manner we can create one function to solve the block M1N matrices as a part of a larger function

that solves the M̃1 matrix. Then, if we multiply the vector resultant from the previous step by 2
√

2−ω
ω we

have found vector q without ever creating a matrix.
Table 7 presents the complete convergence results of using PCG and PCGopt with A and M2 as matrices

and with M1 matrix-free. In both cases, the error decreases and the iteration count, time, and observed
memory usage increase as the system size increases. Again, the convergence results for PCG and PCGopt
for each dimension N are identical and so we are assured of the accuracy of the M1 matrix-free method.
Table 7 reports a lower observed memory usage for PCGopt M1=matrix-free than for Matlab’s PCG for each
dimension N . However, even while the time required to compute the numerical solution for each dimension N
for PCGopt is slightly more than for PCG, the decrease in observed memory usage supports the declaration
of PCGopt with M1=matrix-free superior to Matlab’s PCG with M1=matrix-free. Lastly, both methods
converged for system size N = 2048, but run out of memory for N = 4096.

In this method we no longer store matrix M1 and thus we expect to see a corresponding memory saving.
In fact, a comparison of PCG and PCGopt in Table 7 with PCG and PCGopt in Table 5 where all matrices
were stored shows that both methods used less memory for each dimension N . PCG also required less time
when M1=matrix-free. Therefore, PCG with M1=matrix-free is an improvement to standard PCG.
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N ‖e‖∞ Error Ratio ‖r‖2/‖b‖2 Iter Time(sec) Mem(MB)
Matlab’s PCG:

4 1.1673e-01 N/A 1.1573e-08 7 0.00 -
8 3.9153e-02 2.9813 5.9428e-07 9 0.01 -

16 1.1267e-02 3.4748 2.4780e-07 14 0.01 -
32 3.0128e-03 3.7399 8.3630e-07 19 0.02 -
64 7.7812e-04 3.8719 5.7114e-07 28 0.07 -

128 1.9766e-04 3.9366 7.3653e-07 40 0.21 -
256 4.9811e-05 3.9683 9.2508e-07 57 1.00 -
512 1.2502e-05 3.9842 9.0263e-07 83 5.24 486

1024 3.1321e-06 3.9916 8.9577e-07 121 28.61 634
2048 7.8394e-07 3.9953 9.0626e-07 176 156.12 1,427
4096 Out of Memory
8192 Out of Memory

PCGopt:
4 1.1673e-01 N/A 1.1573e-08 7 0.00 -
8 3.9153e-02 2.9813 5.9428e-07 9 0.00 -

16 1.1267e-02 3.4748 2.4780e-07 14 0.01 -
32 3.0128e-03 3.7399 8.3630e-07 19 0.02 -
64 7.7812e-04 3.8719 5.7114e-07 28 0.06 -

128 1.9766e-04 3.9366 7.3653e-07 40 0.22 -
256 4.9811e-05 3.9683 9.2508e-07 57 1.10 -
512 1.2502e-05 3.9842 9.0263e-07 83 6.22 473

1024 3.1321e-06 3.9916 8.9577e-07 121 35.56 620
2048 7.8394e-07 3.9953 9.0626e-07 176 194.31 1,276
4096 Out of Memory
8192 Out of Memory

Table 7: Convergence Results PCGopt (A=matrix, M1=matrix-free, M2=matrix)

4.3 Matrix-Free M2

At this point, we have demonstrated that we can perform a matrix-free matrix-vector multiplication where
A is used in the Conjugate Gradient method and have eliminated the need to store M1 as a matrix by doing
a matrix-free linear solve when M1 is called. Similarly, to further optimize PCGopt, we can create another
function that removes the need to store preconditioning matrix M2 by doing another matrix-free linear solve;
the results of combining this technique with M1 matrix-free are shown in row four under PCGopt in Table 2
for N = 1024. In order to perform a matrix-vector multiplication with matrix M2 and the q vector we must
observed that preconditioning matrix M2 is upper triangular and sparse. With matrices D, −E, and −F as
defined above, M2 =

√
ω

2−ωD
−1/2( 1

ωD − F ). To solve q = M2z for vector z we must multiply both sides by

M−1
2 .

z = M−1
2 q

z =
[√

ω

2− ω
D−1/2

(
1
ω
D − F

)]−1

q

z =

√
2− ω
ω

(
1
ω
D − F

)−1

D1/2q

z = 2

√
2− ω
ω

(
4
ω
I − F

)−1

q
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N ‖e‖∞ Error Ratio ‖r‖2/‖b‖2 Iter Time(sec) Mem(MB)
Matlab’s PCG:

4 1.1673e-01 N/A 1.1573e-08 7 0.00 -
8 3.9153e-02 2.9813 5.9428e-07 9 0.01 -

16 1.1267e-02 3.4748 2.4780e-07 14 0.01 -
32 3.0128e-03 3.7399 8.3630e-07 19 0.03 -
64 7.7812e-04 3.8719 5.7114e-07 28 0.08 -

128 1.9766e-04 3.9366 7.3653e-07 40 0.29 -
256 4.9811e-05 3.9683 9.2508e-07 57 1.29 -
512 1.2502e-05 3.9842 9.0263e-07 83 6.32 484

1024 3.1321e-06 3.9916 8.9577e-07 121 34.94 608
2048 7.8394e-07 3.9953 9.0626e-07 176 189.44 1,134
4096 Out of Memory
8192 Out of Memory

PCGopt:
4 1.1673e-01 N/A 1.1573e-08 7 0.04 -
8 3.9153e-02 2.9813 5.9428e-07 9 0.01 -

16 1.1267e-02 3.4748 2.4780e-07 14 0.01 -
32 3.0128e-03 3.7399 8.3630e-07 19 0.03 -
64 7.7812e-04 3.8719 5.7114e-07 28 0.08 -

128 1.9766e-04 3.9366 7.3653e-07 40 0.31 -
256 4.9811e-05 3.9683 9.2508e-07 57 1.42 -
512 1.2502e-05 3.9842 9.0263e-07 83 7.57 462

1024 3.1321e-06 3.9916 8.9577e-07 121 41.16 582
2048 7.8394e-07 3.9953 9.0626e-07 176 230.08 1,118
4096 Out of Memory
8192 Out of Memory

Table 8: Convergence Results PCGopt (A=matrix, M1=matrix-free, M2=matrix-free)

Now we note that M2 is a block N2×N2 matrix consisting of N ×N blocks, and if we let M̃2 = ( 4
ω I−F )−1,

then we get

M̃2 =


M2N −I

M2N −I
. . . . . .

M2N −I
M2N

 , M2N =


4/ω −1

4/ω −1
. . . . . .

4/ω −1
4/ω

 .

In this manner we can create one function to solve the block M2N matrices as a part of a larger function

that solves the M̃2 matrix. Then, if we multiply the vector resultant from the previous step by 2
√

2−ω
ω we

have found vector z without ever creating a matrix.
Complete convergence results of using PCGopt with A as a matrix with M1 and M2 matrix-free are

shown in Table 8. In both cases as expected, the error decreases and the iteration count, time, and observed
memory usage increase as the system size increases. A comparison of the error, ‖e‖∞ , error ratio, relative
residual, ‖r‖2/‖b‖2 , and iteration count for each dimension N between the two methods reveals that they
have the same convergence results thus confirming the accuracy of the matrix-free algorithm. PCGopt
improves slightly on PCG in terms of the observed memory usage, but unfortunately requires more time.
Both methods converge for system size N = 2048, but run out of memory for N = 4096.

With this technique, a total savings of two preconditioning matrices is expected as M1 and M2 are
implemented matrix-free. Therefore, the results presented in Table 8, which reflect PCG and PCGopt with
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N ‖e‖∞ Error Ratio ‖r‖2/‖b‖2 Iter Time(sec) Mem(MB)
Matlab’s PCG:

4 1.1673e-01 N/A 1.1573e-08 7 0.01 -
8 3.9153e-02 2.9813 5.9428e-07 9 0.01 -

16 1.1267e-02 3.4748 2.4780e-07 14 0.01 -
32 3.0128e-03 3.7399 8.3630e-07 19 0.03 -
64 7.7812e-04 3.8719 5.7114e-07 28 0.09 -

128 1.9766e-04 3.9366 7.3653e-07 40 0.31 -
256 4.9811e-05 3.9683 9.2508e-07 57 1.27 -
512 1.2502e-05 3.9842 9.0263e-07 83 6.83 459

1024 3.1321e-06 3.9916 8.9577e-07 121 38.27 543
2048 7.8394e-07 3.9953 9.0626e-07 176 215.43 889
4096 1.9619e-07 3.9958 9.9989e-07 256 1,213.42 2,234
8192 Out of Memory

PCGopt:
4 1.1673e-01 N/A 1.1573e-08 7 0.01 -
8 3.9153e-02 2.9813 5.9428e-07 9 0.01 -

16 1.1267e-02 3.4748 2.4780e-07 14 0.01 -
32 3.0128e-03 3.7399 8.3630e-07 19 0.03 -
64 7.7812e-04 3.8719 5.7114e-07 28 0.08 -

128 1.9766e-04 3.9366 7.3653e-07 40 0.31 -
256 4.9811e-05 3.9683 9.2508e-07 57 1.43 -
512 1.2502e-05 3.9842 9.0263e-07 83 8.07 451

1024 3.1321e-06 3.9916 8.9577e-07 121 45.50 525
2048 7.8394e-07 3.9953 9.0626e-07 176 254.50 820
4096 1.9619e-07 3.9958 9.9989e-07 256 1,444.06 2,100
8192 Out of Memory

Table 9: Convergence Results PCGopt (A=matrix-free, M1=matrix-free, M2=matrix-free)

M1=matrix-free and M2=matrix-free, should be better than the results in Table 7 where only M1=matrix-
free and they are. The observed memory usage was lower for both methods for each dimension when both
preconditioning matrices were implemented matrix-free rather than just M1=matrix-free. Finally, it should
be noted that by implementing both preconditioning matrices with matrix-free methods, we are able to
decrease total observed memory from Matlab’s PCG and PCGopt in Table 5 where all matrices were stored.

4.4 Matrix-Free Implementation

Finally, Table 9 incorporates all matrix-free techniques for PCGopt in an effort to maximize efficiency
(minimize memory usage for each dimension N). Entirely matrix-free implementation of PCGopt means
that there are no matrices stored by the solver and therefore this method is expected to yield the best results
in terms of memory storage. Convergence results of using PCG and PCGopt with A, M1, and M2 matrix-
free are displayed in Table 9. In both cases, the error decreases and the iteration count, time, and observed
memory usage increase as the system size increases. Also, the convergence results for PCG and PCGopt are
exactly identical in terms of error, error ratio, relative residual, and iteration count and therefore we declare
matrix-free implementation of the Preconditioned Conjugate Gradient method to be a success at least in
terms of accuracy. Finally, it is important to observe that for each dimension N , PCGopt uses less memory
than PCG, but requires slightly more time to converge. Both method are now able to converge for a system
size of N = 4096, but run out of memory for N = 8192.

Table 9 shows the results of no longer storing any matrices and thus a memory savings is expected when
compared to the results in Table 8 where A was stored. A comparison of PCG and PCGopt in Table 9
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with PCG and PCGopt in Table 8 shows that both methods used less memory for each dimension N , but
again required more time to converge. Therefore at least in terms of memory usage, the entirely matrix-free
implementation of PCG is a success. When Table 9 is compared with Table 5 where all matrices are stored for
each dimension N , both PCG and PCGopt improve in observed memory usage. For N = 2048, the memory
usage of matrix-free PCG and PCGopt improve on standard PCG and PCGopt by approximately 40%. The
time required for convergence for each dimension for both method does increase, but not to the point of
doubling. As the matrix-free PCG and PCGopt methods use less memory than the previously described
methods, the matrix-free techniques are a sucess and the value of the memory savings is indisputable.

Finally, by incorporating all matrix-free techniques that are described in detail in section 4, a matrix-
free optimal Preconditioned Conjugate Gradient method is developed. This method performs the same
task as Matlab’s PCG function, but in an optimal way so as to use far less memory. An examination of
the convergence results in Table 9 in comparison with the original convergence results for PCG in Table
5, demonstrates concretely that the objective was achieved. The matrix-free optimized method for N =
2048 uses less memory than Matlab’s PCG function. More impressively, while standard PCG can solve
the problem for system sizes up to N = 2048, the new all matrix-free method can successfully solve the
problem for N = 4096! Though the time requirement is not inconsiderable, it cannot belie this remarkable
accomplishment.
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