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Abstract. While riparian habitat alterations from urban stream syndrome are known to affect vegetation
establishment and survival, the degree to which riparian seed delivery by hydrochory is affected by urban-
ization is unclear. We hypothesized that (1) there would be a reduction in the overall number of seeds
deposited by streams as watershed urbanization increased; and (2) in the most urbanized watersheds,
seeds deposited by water would be predominantly from species with traits favoring dispersal in general,
including tall stature and high seed production, and favoring deposition by water in particular, including
large seed size and the presence of a dispersal appendage. Nine riparian forests, selected using a stratified
random approach, were studied along a gradient of watershed impervious surface area (1–41%) in the
Portland, Oregon, USA, metropolitan region. Seeds deposited by water were collected using turf traps four
times over a 15-month period that spanned both wet and dry seasonal conditions. Along the urbanization
gradient of increasing total impervious area, there was a significant decrease in the total number of seeds
deposited by hydrochory (adjusted R2 = 0.74; P < 0.01). Deposition of seeds from shade-tolerant and
native taxa by water decreased as surrounding urbanization increased (adjusted R2 = 0.57; P < 0.05).
Deposition of non-native seeds increased as urban development within 500 m from the riparian area
increased (adjusted R2 = 0.79, P < 0.01). The findings demonstrate that seed dispersal patterns in riparian
areas are altered by urbanization. During higher rainfall seasons, flashy hydrology and stream bank scour
appear to alter seed delivery in highly urban watersheds. While the urban stream syndrome contributes to
altered dispersal, other urbanization pressures that affect source populations, such as vegetation removal,
also limit seed delivery to riparian sites. Overall, our results suggest that urbanization can limit the regen-
eration processes that maintain vegetation communities in riparian forests.
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INTRODUCTION

Many local and landscape-level variables are
known to be correlated with urban riparian vege-
tation composition (Metzger 2000, von Behren
et al. 2013); however, the mechanisms through
which these variables act to affect vegetation in

urban riparian areas are not entirely clear. Recent
studies suggest that urban land use alters disper-
sal processes, contributing to altered urban vege-
tation patterns. Forest fragmentation has been
found to lead to dispersal limitation of forest spe-
cies (Ehrlen and Erikkson 2000, Honnay et al.
2002, McEuen and Curran 2004) and to alter
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dispersal patterns for animal-dispersed species
(Alados et al. 2010). It is less clear how hydro-
chory (water dispersal) is affected by surround-
ing urbanization.

In riparian areas, hydrochory can be a major
factor shaping vegetation communities (Merritt
et al. 2010, Moggridge and Gurnell 2010, Nilsson
et al. 2010, Fraaije et al. 2015). Hydrochory can
connect otherwise fragmented habitats by
depositing seeds in sites that could not be
reached by wind or animal dispersal alone (Vogt
et al. 2004, H�erault and Honnay 2005, Merritt
et al. 2010). In urban areas with heavily altered
streams, however, the role of hydrochory is
unclear. Streams in urbanizing regions frequently
display signs of urban stream syndrome, includ-
ing higher peak flows, incised channels, and
stream bank scour (Groffman et al. 2003, Walsh
et al. 2005, Yeakley 2014).

It also is unclear whether, and to what extent,
dispersal of species with varying life-history
traits and seed morphologies may be differen-
tially affected by watershed urbanization. Spe-
cies with tall mature height and high seed
production rates are more likely to have seeds
reach streams for further transport than those
lacking these features (Willson and Travaset
2000, Boedeltje et al. 2003). Seeds that have dis-
persal appendages, such as wings or hooks, often
have enhanced floating ability, as well as an
increased likelihood of catching on leaves, twigs,
or other objects along stream banks (Goodson
et al. 2003, Chambert and James 2009). Large
seed size can also facilitate deposition (Samuel
and Kowarik 2013). In the challenging deposi-
tional environments of urban stream banks, these
features may make seed dispersal and deposition
more likely.

To date, most studies of hydrochory have
involved heavy monitoring on two to three
streams to evaluate seasonal deposition patterns
and relationships with stream hydrology (Merritt
and Wohl 2002, Fraaije et al. 2017), or releasing
seeds or artificial seeds to investigate relation-
ships between seed traits and travel and deposi-
tion patterns (Engstrom et al. 2009, Cunnings
et al. 2015). Few studies have evaluated hydro-
chory on a larger number of streams across a
broad urban region or have examined relation-
ships with landscape-level features. The goal of
this study was to determine how seed deposition

patterns by hydrochory change with increasing
levels of urban development throughout a water-
shed. We hypothesized that (1) there would be a
reduction in the overall number of seeds depos-
ited by water as watershed urbanization
increased; and (2) in the most urbanized water-
sheds, seeds deposited by water would be pre-
dominantly from species with traits favoring
dispersal in general, including tall stature and
high seed production rate, and favoring deposi-
tion by water in particular, including large seed
size and the presence of structure or appendage
to facilitate water dispersal.

METHODS

Site selection
Nine forested riparian areas were selected in

the Portland, Oregon metropolitan area (45.5° N,
122.6° W), along a gradient of watershed total
impervious surface area (TIA; e.g., Morse et al.
2003, Chadwick et al. 2006) using a stratified ran-
dom approach. Eligible sites had permanent sec-
ond- to fourth-order streams, had at least 1 ha of
forested area, and had 100 m of accessible stream
bank. We used data from the USGS National
Hydrography Dataset (https://www.usgs.gov/c
ore-science-systems/ngp/national-hydrography)
to select all permanent second- through fourth-
order streams within 5 km of the Portland metro
area urban growth boundary. Stream order was
manually delineated in ArcGIS version 10.4
(ESRI 2014). Land cover data from the 2011
National Land Cover Database (NLCD; Homer
et al. 2015) were used to identify riparian sites
along these streams with at least 1 ha forest
cover. From these sites, watersheds were delin-
eated using the USGS Streamstats tool (https://
streamstats.usgs.gov). Watershed TIA was calcu-
lated by clipping the NLCD impervious surface
area raster layer to delineated watersheds, and
potential sites were assigned the following TIA
categories: 0–5%, 5–15%, 15–30%, and >30%.
These categories were established based on evi-
dence of thresholds of impact at different levels
of TIA (May and Horner 2000, Booth et al. 2002,
Randhir and Ekness 2009). Two sites were
selected in each category, using random selection
for TIA categories with more than two possible
sites, giving eight study sites. One additional site
with >15% TIA (either 15–30% or >30%) and one
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with <15% TIA (either 0–5% or 5–15%) were ran-
domly selected from the remaining viable sites.
Permission to access sites was obtained from all
landowners. Study sites were established in
December 2014. Of the 10 selected sites, one was
lost to beaver activity and another to vandalism,
leaving eight sites. One site was replaced in
March 2015, giving a total of nine sites (Table 1,
Fig. 1).

Field methods
Turf mats with 3.81-cm artificial grass blades

were used to sample seeds deposited by streams
(Wolters et al. 2004). Six pairs of 20 9 20 cm turf
mats were fixed to the stream bank at each site.
Six stream bank surfaces with slope <30° were
randomly selected along a 100-m stream transect.
At each sample location, mats were placed at
two elevations; the upper mat was located just
below the high-water mark, with the lower mat
closer to the stream, up to a 50 cm distance along
the bank from the upper mat. Stream bank
topography varied across depositional sites, and
as a result, the distances between the traps in
each pair also varied, ranging from 5 to 50 cm.
The vertical distance between the water surface
and the lower edge of each trap was measured in
the summer and winter. Seed traps were col-
lected at the end of each of four collection peri-
ods: December 2014–mid-March 2015 (Win1),
mid-March–July 2015 (Spr), July–November 2015
(Sum/Fa), and November 2015–March 2016
(Win2).

To measure stream water level, one Onset
HOBO water-level data logger (Onset Computer
Corporation, Bourne, Massachusetts, USA) was
installed in each stream. The logger was placed
in the location where it could best be secured,
and position along the 100-m transect varied by
site. A t-post was pounded into the stream bed
~0.5 m deep and a 1 m long PVC tube attached
to the t-post with hose clamps. The data logger
was attached with waterproof tape to an alu-
minum rod, which fit snuggly inside the PVC
tube. The logger was positioned at the bottom of
the PVC tube, at the level of the stream bed. Log-
gers recorded pressure every 15 min. Daily
atmospheric pressure data measured at the Port-
land International Airport from the National Cli-
matic Data Center (https://www.ncdc.noaa.gov)
were used to convert data logger pressure mea-
surements to water depth.
Vegetation was surveyed in all sites during the

summer of 2016. The line-intercept method was
used to map trees (woody vegetation taller than
1.5 m) to the nearest decimeter along three tran-
sects extending perpendicularly from the stream
bank 60 m, or to the edge of the forest patch
(minimum 15 m). Vegetation transects were
located at 25, 50, and 75 m along the stream tran-
sect. Percent cover of herbs and shrubs (woody
plants shorter than 1.5 m) was estimated in one
1-m2 quadrat centered on each of the 12 seed
traps. Vegetation was identified to the species
level using Hitchcock and Cronquist (1973) and
Meyers et al. (2015).

Table 1. Watershed characteristics of nine study sites.

Site Name Site Owner Stream
Watershed
area (Ha)

Watershed
TIA (%)

Watershed forest
cover (%)

East Bliss Butte (EBB) Metro Kelley Creek 172.0 1 62
Dabney State Recreation Area Oregon State Parks Bonnie Brook 132.6 2 33
Clackamas Clackamas County Water

Environment Services
Rock Creek 1690.7 8 29

Pecan Creek Metro Pecan Creek 154.8 12 20
Wilson Creek Metro Wilson Creek 490.0 13 28
Butler Creek Trail City of Gresham Butler Creek 320.9 24 35
Jordan Woods Tualatin Hills Parks and

Recreation
Cedar Creek 576.3 28 17

Metzger Park City of Tigard Ash Creek 774.8 34 8
Foley-Balmer Natural Area (FB) Portland Parks and

Recreation
Tryon Creek 372.8 41 6

Notes: The study sites were located on nine different streams with 6 different landowners, all public agencies. The water-
sheds of study sites ranged from 154.8 ha to 1690.5 ha in size. Watershed TIA (total impervious surface area) ranged from 1%
to 41%, and watershed forest cover ranged from 6% to 62%. There was a significant, negative relationship between watershed
TIA and watershed forest cover (adjusted R2 = 0.56; P < 0.05).
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Laboratory methods
The seed extraction method was used for seed

identification as it has been found to allow for the
identification of a wide range of forest taxa (Brown
1992). Turf traps were rinsed in tubs of water to
remove seeds and sediment. This material was
poured through two sieves: a 2-mm mesh sieve
stacked on top of a 0.125-mmmesh sieve. Material
trapped in the 2-mm mesh sieve was mostly
organic and was kept for analysis. For material
caught in the 0.125-mm sieve, a chemical extrac-
tion method was used to separate seeds and other
organic matter from inorganic particles (Malone
1967). To disaggregate the sample, it was divided
into approximately 100-g batches of sample mate-
rial; each of these was added to a solution of
200 mL water, 40 g sodium hexametaphosphate,

20 g magnesium sulfate, and 100 g sodium bicar-
bonate. The material was thoroughly stirred into
the solution and left to rest for several minutes,
allowing organic matter to float to the surface.
This organic material was decanted into a 0.125-
mm mesh sieve. Each batch of sample material
was mixed in solution and decanted three times.
Extracted material was placed in a drying oven at
65°C and left until thoroughly dry. The material
was then examined under a dissecting microscope,
and all complete, unbroken seeds were identified
and counted. Seeds were identified to species level
when possible by comparison with a reference
seed collection and with images from Cappers
et al. (2006), the USDA PLANTS Database
(https://plants.usda.cov), Bonner et al. (2008), and
Wilson et al. (2014).

Fig. 1. Nine study sites in the Portland, Oregon metropolitan area. The nine study sites ranged from 1% to
41% watershed TIA. Data from five HYDRA rain gages (https://www.or.water.usgs.gov/non-usgs/bes) were used
to characterize rainfall across the region.
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Analysis
Landscape metrics were calculated for each

site at three scales using ArcGIS. Buffer circles of
250 and 500 m were clipped to delineated water-
shed boundaries, giving 250- and 500-m cones
upstream of each site (Sonoda et al. 2001). Cover
of all NLCD categories was calculated in these
cones, as well as in the entire watershed of each
site. Rainfall data from the City of Portland
Bureau of Environmental Services HYDRA net-
work (https://or.water.usgs.gov/non-usgs/bes)
were analyzed to verify that rainfall was similar
across study sites. The nearest gage to each site
was identified (Fig. 1), and mean daily rainfall
across gages was calculated, as well as the per-
cent difference from the daily mean for each
gage.

We used water-level data to construct a flashi-
ness index based on high pulse count (Wenger
et al. 2010). For each collection period, the num-
ber of high pulse occurrences, defined as a series
of water-level readings greater than twice the
mean water level for the collection period, was
tabulated for each stream. Additionally, the
hydrographs for streams were visually compared
for each collection period. Streams with higher
numbers of high pulse counts, as well as taller,
more narrow peaks in hydrographs, were con-
sidered flashier streams.

Taxa collected in seed traps were placed into
trait classes related to seed dispersal and deposi-
tion (Appendix S1: Table S1; e.g., H�erault and
Honnay 2005, Fraaije et al. 2017). For traits with
continuous variables (seed weight and length,
plant height, seed output), four to five classes
were created based on natural breaks in the data,
as well as metrics reported in the literature to be
ecologically meaningful. Three traits were
hypothesized to interact with streamflow and
affect deposition by hydrochory: seed weight,
seed length, and presence of a dispersal appen-
dage. For taxa identified only to genus, mean
values of seed weight and length for species pre-
sent in the region (based on Christy et al. 2009)
were calculated. Dispersal appendages included
hairs, beaks, hooks, wings, or other structures
that may facilitate water dispersal. Only struc-
tures attached to the unit dispersed by water
were included; fleshy fruits were not included, as
it was assumed that most seeds reach streams
after passing through animal guts (Hampe 2004).

Additional traits were not expected to interact
with streamflow patterns to result in seed sorting
but were expected to affect the likelihood of
seeds reaching a stream for secondary transport:
growth habit, primary dispersal vector, maxi-
mum plant height, and seed output. Three addi-
tional traits, species origin, shade tolerance, and
wetland indicator status, were not expected to
relate to dispersal, but rather to surrounding
development and forest cover.
We created an additional dataset including

only taxa that represented potentially new spe-
cies introductions to a trap microsite (Moggridge
et al. 2009). For each seed trap pair, we defined
potentially new herbaceous and shrub taxa as
those found in seed traps but not in the standing
vegetation in the 1-m2 plots surrounding either
trap in the pair, to eliminate seeds that may have
fallen from directly overhanging vegetation.
Because of the much larger expanse of tree
crowns compared to herbs or shrubs, new tree
taxa were defined as those found in seed traps,
but not identified in any vegetation transects in
the site. The resulting dataset (New dataset) was
analyzed in parallel with the dataset containing
all seeds (All dataset).
Generalized linear mixed models were used to

explore effects of trap position (upper or lower)
and collection period on number of seeds found
in traps (Bolker et al. 2008, Fraaije et al. 2017).
The function glmer in the R package lme4 (Bates
et al. 2015) was used to run models using the
Gauss-Hermite quadrature approach with a neg-
ative binomial distribution. Trap position, collec-
tion period, and the interaction between them
were initially included as independent variables,
with site treated as a random effect. Forward
selection was used to select final variables, using
Akaike’s information criterion (AIC) evaluate
model fit. Model variables were retained if their
addition resulted in a decrease in AIC of at least
2. For nested models within 2 AIC, the simpler
model was retained. Wald F tests were used to
test the null hypotheses of no model effect. Lin-
ear mixed-effects models were used to evaluate
the relationship between vertical trap-to-water
distance and number of seeds in traps. The R
function lmer was used, with vertical distance as
the fixed effect and site as a random effect.
We used linear regression to analyze deposi-

tion patterns along the TIA gradient. To evaluate
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deposition throughout the whole study, cumula-
tive mean seed density was calculated for the
eight sites with data across this period (all but
the Dabney site; Fig. 1). For each site, the mean
seed density (seeds per trap, n = 12) for each col-
lection period was calculated, and then, the
means for all four collection periods were
summed. Differences across the gradient in
deposition of seeds in different trait classes were
also examined.

We used nonmetric multidimensional scaling
(NMDS) based on rank similarity of sites using
the Bray-Curtis index to explore relationships
between landscape variables in upstream cones
and assemblages of seeds deposited in turf traps.
Nonmetric multidimensional scaling was chosen
because of its compatibility and robustness with
species data (Kenkel and Orl�oci 1986, Minchin
1987). The function envfit in the R package vegan
(Oksanen et al. 2012) was used to map landscape
variables as vectors onto the ordination. Land-
scape variables with a significant association
with the ordination (P < 0.05) were selected for
further investigation of their relationships with
seed deposition patterns. Ordinations were con-
structed based on cumulative mean seed deposi-
tion in each site from Win1 through Win2, using
both All and New seed datasets. All statistical
analyses were conducted in R version 3.4.2 (R
Development Core Team 2017).

RESULTS

Land use composition
Watersheds ranged from 1% to 41% TIA

(Table 1) and from 5% to 94% total development
cover (sum of cover by the four NLCD develop-
ment types). Total watershed forest cover ranged
from 6% to 62%. There was a significant, nega-
tive relationship between TIA and forest cover at
the watershed scale (adjusted R2 = 0.56;
P < 0.05). Within a 500-m cone upstream from
each site, total development cover ranged from
2% to 99%, and forest cover from 0% to 78%.
Within a 250-m cone, development ranged from
0% to 100%, and forest cover from 0% to 86%.
There was a significant, negative relationship
between total development cover and forest
cover at both the 500-m scale (adjusted R2 = 0.71;
P < 0.01) and the 250-m scale (adjusted
R2 = 0.79; P < 0.01).

Rainfall and stream hydrology
Five HYDRA rain gages were found to repre-

sent rainfall across the study region (Fig. 1). A
mean of 168 cm of rain fell across the entire
study area over the study period, with a mean of
44.5 cm in Win1 (December 2014–March 2015),
15.6 cm in Spr (March–July 2015), 16.7 cm in
Sum/Fa (July–November 2015), and 91.2 cm in
Win2 (November 2015–March 2016). The daily
rainfall means at each of the gages were within
20% of the overall daily mean. Four of the five
gages were within 10% of the overall daily mean.
We found a general relationship between

watershed TIA and stream flashiness. Hydro-
graphs showed an evident increase in stream
flashiness as watershed TIA increased (Appen-
dix S2: Fig. S1, S2, S3, and S4). The number of
high pulse events per collection period generally
increased with increasing watershed TIA, but
there were some exceptions and variations across
collection periods. Foley-Balmer, the highest TIA
site (41%), only had the highest number of high
pulse events during one collection period, Win1
(December 2014–March 2015), and moderate
hydrograph peaks (Appendix S2: Fig. S1).
Hydrology, based on hydrograph patterns and
high pulse count, was flashier at Butler (24%
TIA) and Metzger (34% TIA), sites that had lower
watershed TIA than Foley-Balmer, but that had
higher development within a 250-m cone.

Standing vegetation
All study sites had mixed conifer and hard-

wood canopy. Across sites, 113 species were
identified in the standing vegetation. More than
95% of transect length was covered by tree
canopy in all sites. Shrub cover around seed
traps ranged from 22% to 73%, with Rubus spp.
cover ranging from 2% to 30% (including R.
spectabilis, R. bifrons, and R. parviflora). Under-
story cover ranged from 17% to 42%. Sites varied
in richness and Shannon diversity in the
understory, shrub, and canopy layers, but all
had the highest richness in the understory, and
eight sites had the lowest richness in the shrub
layer.

Seed deposition patterns
Seed traps were occasionally lost due to van-

dalism, animal damage, or large storms. Trap
recovery rate averaged 87% across sites and
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collection periods. A total of 11,250 seeds were
found across the study, representing 67 taxa.
Potentially, new seeds accounted for 38%
(n = 4267) caught in traps. Thirteen taxa made
up 98% of seeds caught, with seeds that could
not be identified making up 1% (Table 2). Rubus
spp. was the taxon most represented, accounting
for 42% (n = 4727) of seeds caught. Rubus spp.
was found in both turf traps and the standing
vegetation at all sites. The species of Rubus could
not be determined from seed, but much of the
seed was likely Rubus spectabilis (salmonberry),
as this species was present in all sites in the
standing vegetation. Rubus spp. was present as a
potentially new taxon to the microsite at five
study sites. There was no relationship found
between Rubus spp. seed density in turf traps
and Rubus spp. cover in the standing vegetation
in trap microsites. Alnus rubra (red alder)
accounted for 18% (n = 2060) of seeds caught.

Generalized linear mixed model results
showed that for both All and New seeds, collec-
tion period was a significant predictor of total
number of seeds caught in traps, with signifi-
cantly fewer seeds deposited in Sum/Fa than in
Win1 (P < 0.001). Inclusion of trap position on
the stream bank did not significantly improve
model fit (Appendix S3: Table S1). Linear mixed
model results showed no significant relationship
between vertical water-to-trap distance, mea-
sured in either summer or winter, and total num-
ber of seeds caught in any collection period
(Appendix S3: Table S2).

Seed collection patterns across the TIA gradient
Across the entire study period, there was a sig-

nificant negative relationship between watershed
TIA and cumulative mean seed density in traps
(y = �2.87 + 191.95; adjusted R2 = 0.74;
P < 0.01; Fig. 2). During Win1, Spr, and Win2,
there was a negative relationship between TIA
and mean seed density (Fig. 3), though Win2
was the only individual period when this rela-
tionship was significant (y = �1.28x + 70.11;
adjusted R2 = 0.42; P < 0.05). In Win1, there
appeared to be higher seed density in sites below
15% TIA than sites above 15% TIA (Fig. 3), but
results of a Wilcoxon rank-sum test were incon-
clusive (0.05 < P < 0.1). In Sum/Fa, the period
with the fewest total seeds collected at seven of
the sites, there was a significant positive relation-
ship between TIA and total seeds collected
(y = 0.21x + 9.57; adjusted R2 = 0.39; P < 0.05;
Fig. 3). For New seeds, there was no detectable
relationship between TIA and total seed deposi-
tion in any individual period, or cumulatively
across the study.
The deposition pattern of All Rubus spp. seeds

mirrored that of total seed deposition. In Win2,
there was a significant, negative relationship
between TIA and Rubus spp. density
(y = 6.83x � 0.11; adjusted R2 = 0.60; P < 0.01),
after square-root transformation. During Win1, a
Wilcoxon rank-sum test showed that there were
significantly more Rubus spp. seeds in the four
low TIA sites than the four high TIA sites
(P < 0.05). For New seeds, there were no

Table 2. Top taxa found in turf traps.

Taxon Common name Number of seeds % of seeds caught

Rubus spp. Blackberry species and salmonberry 4727 42
Alnus rubra Red alder 2060 18
Tellima grandiflora Fringecup 525 5
Carex leptopoda Slender-foot sedge 500 4
Betula pendula European birch 336 3
Acer spp. Maples 376 3
Urtica dioica Stinging nettle 206 2
Solanum dulcamara Bittersweet nightshade 173 2
Poaceae Grasses 172 2
Unknown taxa n/a 153 1
Lapsana communis Nipplewort 151 1
Scirpus microcarpus Small-fruited bulrush 150 1
Cardamine oligosperma/hirsuta Little western bittercress/hairy bittercress 145 1
Physocarpus capitatus Pacific ninebark 114 1

Note: Thirteen taxa made up 98% of seeds caught across the study, with unknown seeds accounting for an additional 1%.
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Fig. 2. Cumulative seed density in turf traps across the TIA gradient. y = �2.87x + 191.95; adjusted R2 = 0.74;
P < 0.01. Dashed lines indicate the 95% confidence interval. Across all four collection periods, there was a signifi-
cant decrease in cumulative mean number of seeds deposited as TIA increased. TIA = total impervious surface
area. Mean seed density for each site was calculated as the sum of the mean number of seeds/trap (n = 12) in each
collection period.

Fig. 3. Mean seed density in turf traps in four collection periods across the TIA gradient. For Sum/Fa and
Win2, there was a significant change in mean seed density as TIA increased. Sum/Fa: y = 0.21x + 9.57; adjusted
R2 = 0.39; P < 0.05. Win2: y = �1.28x + 70.11; adjusted R2 = 0.42; P < 0.05. Sum/Fa was the only collection per-
iod when seed density increased with TIA. In Win1 and Spr, the total number of seeds appears to decrease as in
Win2, but the relationship between TIA and mean seed density was not statistically significant for these periods
(P > 0.05). Abbreviations are TIA, total impervious surface area; Win1, December 2014–mid-March 2015; Spr,
mid-March–July 2015; Sum/Fa, July–November 2015; Win2, November 2015–March 2016.
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relationships between TIA and total Rubus spp.
deposition.

Across the entire study, there was a significant
negative relationship between TIA and density of
All seeds with no dispersal appendage
(y = �1.97x + 120.69; adjusted R2 = 0.49;
P < 0.05). The No Appendage class contained
Rubus spp., and the relationship was not signifi-
cant when Rubus spp. was removed from analy-
sis. However, the relationship between TIA and
cumulative Rubus spp. density over the entire
study was also not statistically significant
(0.05 < P < 0.1), indicating that Rubus spp. alone
cannot entirely account for the significant relation-
ship between TIA and density of seeds lacking an
appendage. There was no significant relationship
between TIA and density of All seeds with a dis-
persal appendage, or between TIA and density of
New seeds with or without an appendage.

There was a significant negative relationship
between TIA and density of New native seeds in
Win2 (y = �0.11x + 5.46; adjusted R2 = 0.55;
P < 0.05). There were no significant relationships
between TIA and native seed deposition for other
collection periods or cumulatively across the

study. There was a significant, positive relation-
ship between TIA and New non-native seed den-
sity during Win1 and Spr (Win1: y = 0.12x + 0.66;
adjusted R2 = 0.79; P < 0.01; y = 0.10x + 0.12;
adjusted R2 = 0.56; P < 0.05; Fig. 4).

Land cover and seed deposition patterns
No landscape variables were significantly

associated with the ordination of sites when All
seed data were used in NMDS. When New seed
data were used, five landscape variables were
significantly associated with the ordination
(P < 0.05): medium-density development and all
development within a 250-m cone, medium-den-
sity development and all development within a
500-m cone, and medium-density development
within the entire watershed. These landscape
variables were highly correlated with each other
(correlation coefficient 0.79 and higher); all devel-
opment within a 500-m cone had the highest cor-
relation with other variables and was selected for
further analysis with seed deposition data.
There was a significant, positive relationship

between all development within a 500-m cone
and cumulative density of New non-native seeds

Fig. 4. New non-native seeds in turf traps in four collection periods across the TIA gradient. During Win1 and
Spr, there was a significant increase in density of non-native seeds in turf traps as TIA increased. Win1:
y = 0.12x + 0.66; adjusted R2 = 0.79; P < 0.01. Spr: y = 0.1x + 0.12; adjusted R2 = 0.62; P < 0.05. TIA = total
impervious surface area. New seeds were those from taxa found in turf traps but not in the standing vegetation
in the 1 m2 surrounding the turf trap (herbs and shrubs) or encountered along vegetation transects (trees). Win1,
December 2014–mid-March 2015; Spr, mid-March–July 2015; Sum/Fa, July–November 2015; Win2, November
2015–March 2016.
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in turf traps (y = 16.47x + 4.23; adjusted
R2 = 0.47; P < 0.05). There was also a significant,
negative relationship between all development
within a 500-m cone and ln-transformed density
of New shade-tolerant taxa across the entire
study period (P < 0.05; Fig. 5), and during Win2
(y = �1.3x + 2.6; adjusted R2 = 0.57; P < 0.05).

DISCUSSION

Our results demonstrate that stream hydrology
changed with watershed TIA, consistent with find-
ings from other studies (Morse et al. 2003, Chad-
wick et al. 2006). In addition, other landscape
factors measured at finer scales contributed to
stream hydrology responses. For example,
although the flashiest stream did not have the high-
est watershed TIA, it did have the highest develop-
ment cover within a 250-m cone. This result is
consistent with the finding that directly connected
impervious surface area surrounding a site is a bet-
ter predictor of urban stream hydrology than total
impervious surface area (Lee andHeaney 2003).

We found strong support for our first hypothe-
sis that seed deposition by water would decrease

as watershed urbanization increased. Though the
relationship between TIA and seed density var-
ied by collection period, over the entire study
there was a strong, negative relationship
between watershed TIA and cumulative mean
seed density. While seed density did increase
with TIA in the summer (Sum/Fa), this was the
collection period with lowest stream water levels
(Appendix S2: Fig. S2) and lowest overall seed
deposition. The winter periods, Win1 and Win2,
contributed the most to overall seed deposition
across the study and had the highest rainfall and
water levels. The observed decrease in seed
deposition with increasing TIA during these
periods (particularly Win2) suggests that impacts
of urbanization on riparian seed deposition are
most pronounced during periods of high rainfall.
We found limited support for our second

hypothesis that in the most urbanized water-
sheds, seeds deposited by water would be pre-
dominantly from species with traits favoring
dispersal in general and dispersal by water in
particular. The negative relationship between
TIA and density of seeds with no dispersal
appendage suggests that such an appendage

Fig. 5. Cumulative mean density of New shade-tolerant taxa in turf traps along a gradient of development
within a 500-m upstream cone, on a natural log scale. Across the entire study, density of New shade-tolerant taxa
decreased in turf traps as development within 500 m increased. y = �1.3x + 2.6; adjusted R2 = 0.57; P < 0.05.
Dashed lines indicate 95% confidence interval. All development was determined by summing the cover of the
four National Land Cover Database development types within a 500-m upstream cone from each riparian site.
New seeds were those from taxa found in turf traps but not in the standing vegetation in the 1 m2 surrounding
the turf trap (herbs and shrubs) or encountered along vegetation transects (trees).
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could be assisted with deposition, though this
pattern did not hold when potentially new taxa
were analyzed. We found little evidence that dis-
persal by hydrochory of taxa with different seed
sizes, mature heights, wetland indicator status,
or seed production rates is differentially affected
by watershed development.

Several of our findings are suggestive of the
role of increased stream bank scour in highly
urbanized watersheds. Due to the negative rela-
tionship between TIA and total seeds deposited
for All seeds, but not for New seeds, we suggest
that during winter high-flow events, additional
seeds in low TIA sites were coming from local
sources and not traveling long distances. For the
most part, however, these seeds were not
dropped directly from parent plants, as they
were deposited in the largest numbers during
Win1, Spr, and Win2, largely outside of the fruit-
ing season for most species. While the highest
deposition of Rubus spp. seeds in turf traps
occurred in the winter periods, Win1 and Win2,
this finding contrasted with deposition patterns
in traps on the same sites collecting seeds depos-
ited by wind and gravity, in which the highest
densities were found during the summer (von
Behren and Yeakley, unpublished data). The
absence of a significant relationship between
Rubus seed density and Rubus in the standing
vegetation further demonstrates that the high
density of collected Rubus seeds in Win1 and
Win2 was not dropped directly from parent
plants. Rather, the additional All seeds in low
TIA sites were likely present on the ground near
turf traps, having been initially deposited the
previous summer and autumn. During large
winter storms, these seeds were likely remobi-
lized by stream overbank flows and deposited in
nearby turf traps when water receded, similar to
dynamics observed by Gurnell et al. (2008). With
higher, scouring peak flows in the high TIA sites,
seeds near turf traps may have been picked up
by overbank flows, with many carried away
from by the stream instead of being immediately
deposited in turf traps, as they were in the low
TIA sites. In Sum/Fa, a period with lower stream-
flow and less opportunity for scour, All seed
deposition did not decrease with TIA as it did in
the other seasons. High, scouring winter peak
flows in the highest TIA sites could also explain
observed relationships between TIA and taxa

with no dispersal appendage. With higher peak
flows picking up local seeds in high TIA sites,
lack of a dispersal appendage could inhibit
immediate deposition more than it does in low
TIA sites where peak flows are not as high.
Our findings demonstrate that urban stream

syndrome affects riparian seed dispersal, but
other urbanization pressures play an important
role as well. The reduction in All native seed den-
sity as TIA increased, as well as the increase in
New non-native seeds, reflects the prominence of
native and non-native species in likely source
pools of the study watersheds. Other studies have
shown an increase in non-native propagule pres-
sure with urbanization (Roy et al. 1999), as well
as a decrease in native seed source pools as a
direct result of loss of native riparian vegetation
(Ehrlen and Erikkson 2000, Mendoza et al. 2009).
Likewise, decreased deposition of shade-tolerant
species with increasing development within a
500-m cone reflects the composition of nearby
source pools. In a study of 30 small-stream ripar-
ian forests in the Portland metro area, cover by
non-native species was significantly higher in sites
surrounded by high amounts of urban develop-
ment than in sites surrounded by forest (von Beh-
ren et al. 2013). The finding that deposition
patterns reflect surrounding source pools is con-
sistent with studies that linked a decrease in
prevalence of shade-tolerant species to increasing
forest fragmentation and loss of connectivity
(Metzger 2000, Burton et al. 2009).
This study demonstrates that urbanization

impacts patterns of seed dispersal by hydrochory
in urban riparian areas. While the symptoms of
urban stream syndrome are clearly contributing
factors, our findings demonstrate that other
urban drivers that alter propagule pressure also
play a role. Specifically, the combination of
increased stream bank scour and alteration of
seed source pools may inhibit the regeneration
capacities of some riparian plant species and
markedly alter the plant species compositions of
riparian forest communities.
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