

This work was written as part of one of the author's official duties as an Employee of the United
States Government and is therefore a work of the United States Government. In accordance
with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. Access to
this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

Guiding Safe Reinforcement Learning Policies
Using Structured Language Constraints

Bharat Prakash1, Nicholas Waytowich2, Ashwinkumar Ganesan1, Tim Oates 1, Tinoosh Mohsenin1

1University of Maryland, Baltimore County (UMBC), 2 US Army Research Laboratory,

Abstract

Reinforcement learning (RL) has shown success in
solving complex sequential decision making tasks when
a well defined reward function is available. For agents
acting in the real world, these reward functions need to
be designed very carefully to make sure the agents act in
a safe manner. This is especially true when these agents
need to interact with humans and perform tasks in such
settings. However, hand-crafting such a reward func-
tion often requires specialized expertise and quickly be-
comes difficult to scale with task-complexity. This leads
to the long-standing problem in reinforcement learning
known as reward sparsity where sparse or poorly spec-
ified reward functions slow down the learning process
and lead to sub-optimal policies and unsafe behaviors.
To make matters worse, reward functions often need to
be adjusted or re-specified for each task the RL agent
must learn. On the other-hand, it’s relatively easy for
people to specify using language what you should or
shouldn’t do in order to do a task safely. Inspired by
this, we propose a framework to train RL agents condi-
tioned on constraints that are in the form of structured
language, thus reducing effort to design and integrate
specialized rewards into the environment. In our exper-
iments, we show that this method can be used to ground
the language to behaviors and enable the agent to solve
tasks while following the constraints. We also show how
the agent can transfer these skills to other tasks.

Introduction
Reinforcement learning (RL) has shown great success in
learning policies for complex tasks where the behaviors can-
not easily be designed a-priori, such as training an agent
to navigate a 3D environment or dextrous object manipula-
tion. Using RL, the agent learns policies that optimize fu-
ture rewards by exploring the environment and getting feed-
back from its interactions (Sutton, Barto, and others 1998).
As the environments grow in complexity, the policies that
govern agent behavior grow in complexity too. Not only do
they encompass the physics of how agents can operate in
the environment, but they also define how to do so safely.
As embodied AI agents (i.e. robots) become increasingly
more integrated in our society, it is vital that the behaviors
that these AI systems learn are safe. Reward shaping is a
method for shaping agent behavior by modifying the reward

function that the RL agent attempts to maximize. However,
it’s unclear how to effectively train safe behaviors using re-
ward shaping alone as an agent must be able to predict harm
that might occur before it takes a dangerous action, not after.
Additionally, since these AI systems will operate alongside
humans, it is important to allow for non-technically trained
people to be able to easily specify AI behavior. Current re-
ward shaping approaches require specialized knowledge to
engineer rules by hand for every task and environment the
AI needs to solve.

Conversely, humans receive instructions and guidance
through natural language while internalizing the knowledge
gained from interacting with the external world. We have
the capability to adapt our behavior, find alternate routes and
use the same warnings across scenarios (with similar condi-
tions) even when the warnings do not exist. For example, we
know how to navigate sidewalks and operate doors in build-
ings. However, when we see signs such as “sidewalk closed
ahead” or “don’t open door” we can use a different door or
find a different sidewalk and still reach our destination. Also,
we can find a different sidewalk while walking a new street
if we see that there is construction work on the street even
though a sign is not present.

In this work, we propose an architecture to train agents
who can ground structured language constraints to behavior
and learn a policy to avoid going into unsafe states. In order
to do this, we first collect a dataset of trajectory segments
and structured language constraints. These are then labeled
by a human based on whether or not violations occurred.
This data set is used to train what we call a “constraint
checker”, which is an embedding model used to provide
an auxiliary reward signal during training of the RL agent.
Using a neural network architecture, we train the constraint
checker, which maps complex behaviors to constraints using
language, to detect unsafe behaviors which might be difficult
to convey otherwise using hand written rules. This method
can then be used to train RL agents to learn safe behaviors.

In our proposed architecture, the constraint checker is
used while training the RL agent with different structured
language constraints and random task initializations. During
test time, we show that the agent performs the task while fol-
lowing the constraints provided each time. Additionally, we
test the generalization of our method and show that the same
constraint checker can be used in different environments and

Figure 1: Example scenario and system architecture. Consider a scenario where the agent needs to navigate rooms and reach
a destination. As shown on the left, there might be multiple paths to reach the destination. The agent can either use the red door
or the blue door. Now, the agent also receives a constraint in the form of language, “don’t use red door”. The agent will have to
use the blue door instead and reach the goal. Our system receives language constraints and grounds them to a behavior. To do
this, we use the constraint checker module during training which can interpret agent behavior along with the language constraint
and shape environment rewards to learn safe behaviors. HIST stores the current and n − 1 prior states. The constraint checker
receives the state sequence (from HIST) and the structured language constraint and outputs a reward Rc. The agent receives
this additional reward signal from the constraint checker along with the state and language constraint.

train the agents to follow similar constraints. We test this
on the Mini-Grid environment where we generate random
constraints in English. The experiments were done on 3 sce-
narios with different difficulty levels in terms of tasks and
language constraints.

Related Work
In most reinforcement learning and sequential decision mak-
ing problems, tasks are specified either using reward func-
tions (Sutton, Barto, and others 1998) or demonstrations
(Argall et al. 2009). Some other ways to specify tasks use
human feedback in the form of preferences as shown in
(Christiano et al. 2017) and (Gandhi et al. 2019). On the
other hand, using language instructions is a very appeal-
ing way to specify tasks and goals. It is very natural and
easy for humans to use language to convey goals and in-
tent. You don’t need to be an expert in actually performing
the task and you don’t need to manually engineer or design
reward functions. Unlike learning from preferences, natural
language specifications can encode more information about
the task and the way to perform the task.

Language can be used to specify plans, goals, and high
level requirements to each other (Gopnik and Meltzoff
1987). We humans can learn to do tasks in new environments
not only from demonstrations, but also from information
encoded using language (Tsividis et al. 2017). Traditional
Reinforcement Learning and Imitation Learning approaches
don’t really attempt to ground language and environment
features. It is important to develop intelligent agents with
the same capabilities.

In most current research, language is used in RL in two
main ways, language conditioned RL and language-assisted

RL (MacMahon, Stankiewicz, and Kuipers 2006) (Hermann
et al. 2017). Methods developed for language conditional
tasks are relevant for language-assisted RL as they both deal
with the problem of grounding natural language sentences
in the context of RL (Goyal, Niekum, and Mooney 2019)
(Bahdanau et al. 2018). Instruction following agents are pre-
sented with tasks defined by high-level (sequences of) in-
structions based on language. Most techniques focus on in-
structions that are represented by (at least somewhat natural)
language, and may take the form of formal specifications of
appropriate actions, of goal states (or goals in general), or of
desired policies. Another use of instructions is to induce a
reward function for RL agents or planners to optimize. We
will be exploring more of this type of a problem.

There has been some work in learning mappings between
language and actions or behaviors. Branavan et al. (2009)
shows a way to learn mapping between language instruc-
tions and action in reinforcement learning. They show this
on simple game tutorials and troubleshooting environments.
Chen and Mooney (2011) present a system that learns a
semantic parser for interpreting navigation instructions by
simply observing the actions of human followers and recent
work has shown the utility of natural language narrations for
guiding RL policies to learn complex tasks such as StarCraft
2 (Waytowich et al. 2019b; 2019a).

Ensuring safety in reinforcement learning algorithms is
also an important area of research. There has been a lot of
effort in building safe agents which avoid going into danger-
ous states and during training as well as inference. This is
especially true when the agent works and interacts closely
with humans. Saunders et al. (2017) show ways to use a hu-
man feedback to build a model which blocks unsafe actions

and try to learn tasks safely. Prakash et al. (2019b) extend
this work by combining model based and model free rein-
forcement learning to improve safety. Amodei et al. (2016)
and Leike et al. (2017) outline and motivate safe artificial in-
telligence research and also provide some test environments.

Background
Reinforcement learning provides a framework for decision-
making and control where an agent tries to maximize
long-term rewards by interacting with a complex envi-
ronment. This can be applied to various tasks such as
autonomous vehicles and robotics. Unlike other machine
learning paradigms, there is no supervisor and we only pro-
vide a high level objective function. The feedback might be
delayed, the data is not independent identically distributed
(i.i.d) and the agent’s actions affect the subsequent data it
receives. A policy is the agent’s behavior function or the
mapping from a state to action. A Value function is used
to evaluate how good a state is; it is the prediction of future
rewards. The dynamics model is the model of the environ-
ment or world, it is a function which predicts the next state
and reward, given the current state and action. An RL agent
can consist of one or more of these components.

Usually, reinforcement learning is formalized using
Markov Decision Processes (MDP). An MDP is defined as a
tuple (S, A, P, R, γ), where S is the state space, A is the ac-
tion space or the set of actions available to an agent, P is the
unknown transition function, R is the reward function and γ
ε (0, 1) is the discount factor. The RL agent interacts with
the environment by acting according to a policy π which is
a mapping from states to actions, or a probability distribu-
tion over actions. The goal at each step is to maximize the
discounted sum of future rewards,

∑∞
t′=t γ

t′−tRt′ , and the
quality of the policy at time t is measured by the value func-
tion Eπ(

∑∞
t γtRt+1|s0 = s), with starting state s.

We follow a similar structure described above. However,
the agent also receives a constraint or a warning in the form
of a structured language sentence C. The agent needs to
learn a policy π(a|s, C) which can perform the task while
satisfying these constraints. We define a trajectory segment,
T as a sequence of states which might represent the agents
behavior. For example, if the trajectory segment is of length
5, Ti is the trajectory segment at time step i(i > 5) which is
a sequence of 5 states Si−5...Si.

In the next sections, we will explain the architecture in
more detail along with the experiments and results.

System Architecture
The proposed architecture has two main components. The
constraint checker module and the RL policy module. The
constraint checker module is used to determine whether a
given constraint (i.e. ”do not use the red door”) was violated
or not and is used to augment the environment’s reward func-
tion or can be used as a proxy to the environment reward.
It takes a trajectory segment Ti (or a state sequence) and a
structured language constraint C and outputs a binary label
indicating violations. This output is used by the RL agent as
an auxiliary reward signal to learn safe policies.

Data Collection
The data to train the constraint checker needs to be col-
lected using human annotators. In order to train the con-
straint checker, we need samples of trajectory segments and
language constraints as input and binary label as the out-
put. This data can be collected in various ways depending
on the environment. In simulated environments, the agent
and goal positions can be randomized and the constraints
can be generated from a fixed vocabulary and grammar. The
human annotator can be presented with these pairs and be
asked to label whether or not the agent violated a constraint
as well as which constraint was violated. Likewise, the hu-
man can be presented with just the trajectories and asked to
come up with possible structured constraints. Alternatively,
it might be easier to use a human to demonstrate behaviors
themselves and then label them with structured constraints.

In this paper, we automated the process of annotating vi-
olations since we had access to the simulated environment
back end. A partially trained agent was rolled out in the envi-
ronment and random structured constraints were generated
at each episode. The data was collected to make sure we
have enough samples of all types are language constraints
and agent behaviors. In this dataset, each sample consists
of a sequence of states, S1 to Sn which corresponds to the
agent’s behavior and a binary label which denotes whether
or not a violation occurred given the random language con-
straint. Additionally, instead of labelling behaviors as vio-
lations after they happen, we set up our annotation routine
to label something as a violation just before it was about to
happen. We hypothesize that training the constraint checker
using this approach can potentially reduce the amount vio-
lations in the training phase. We validate this in the Results
section.

Constraint Checker
The constraint checker module interprets the language con-
straint C and a trajectory segment T and outputs whether
or not a violation occurred. This label can then be used to
augment the environment reward to train agents which can
avoid violations and act safely in the environment.

Inside the constraint checker are two sub-modules: the
language module and the trajectory module as shown in 2.
The language module accepts the structured language con-
straint and outputs a sentence embedding. The trajectory
module takes in as input a trajectory (sequence of states)
and generates a trajectory embedding.

The language module consists of an embedding layer of
size 32 and learns the word embeddings from the vocabu-
lary of our constraints (see Table 1). These are then passed
through a GRU layer of size 128 to get the sentence em-
bedding. The trajectory segment T is a sequence of states
as we described earlier. Each state (a 2D image in our case)
is processed by 2D Convolution layers to get a sequence of
state embeddings of size 64. This is then is passed through
a 1D Convolution to generate a trajectory embedding. The
sentence embedding and the trajectory embedding are con-
catenated and then passed through an MLP to give us the
final label representing violations. This module is trained in
a supervised fashion from the data collected earlier.

Figure 2: Architecture of the Constraint Checker . It accepts a trajectory segment and a language constraint and outputs
a binary label which denotes violations. This can can be used to shape the rewards which the agent receives. The trajectory
segment is a sequence of states the agent observes which are processed by 2d convolution layer which gives us a array of state
embeddings. This is then processed by a 1d convolution to give us a trajectory embedding. The textual constraint is processed by
an embedding layer followed by a Gated Recurrent Unit (GRU) layer to give us a sentence embedding. Both these embeddings
are concatenated and processed by a Multi-Layer Perceptron (MLP) to give us the final output label.

Reinforcement Learning Agent

The architecture of our entire model is show in Figure 1.
The RL agent receives a state S and the language constraint
C and outputs a probability distribution over the actions. It
processes the state S using 2D convolution layers followed
by a dense layer. And the constraint C is processed by a mod-
ule similar so the language module shown in the constraint
checker architecture. The reward that the RL agent receives
is a function of the default environment reward R and the
output of the constraint checker Rc. Rc depends on whether
or not the constraint checker thinks the agent behavior is bad
given the constraint. The RL policy is trained using Proxi-
mal policy optimization(Schulman et al. 2017).

Experiments and Results

In this section, we will explain the experimental setup as
well as the results. Our experiments are performed on the
MiniGrid Environment by Chevalier-Boisvert, Willems, and
Pal (2018) which is a partially observable grid world en-
vironment. The main goal of our experiments is to under-
stand how well our model can learn to interpret language
constraints and act safely in the environment. We also eval-
uate how the constraint checker can be reused in different
environments and tasks.

Environmental Setup

The environment can have multiple rooms with doors, walls
and goal objects. The doors can have multiple colors and
the agent and goal objects are spawned at random locations.
The action space is discrete which allows movement in all
4 directions, opening and closing doors and picking up and
dropping objects. The environment is partially observable,
the agent can only see an ego-centric 5 × 5 view in front
of the agent. Also, the agent cannot see through walls and
closed doors. We designed multiple scenarios in this envi-
ronment with increasing difficulty levels both in terms of
the tasks and the language constraints. We compare the per-
formance of our model with a baseline where we shape the
environment rewards directly by giving negative rewards for
violations.

The 2 Rooms scenario is shown in the Fig 3 (a). It con-
sists of 2 rooms separated by a wall and 2 doors. In each
episode, the agent and the goal are spawned at random loca-
tions and the door colors are randomly initiated. Also there
is a random language constraint generated which follows a
fixed grammar as shown in the examples in Table 1. The task
is to reach the green goal object using the minimum number
of steps while also going through the correct door (which is
specified using the language constraints).

The 2 Rooms with lava scenario is shown in Fig 3 (b).
This is similar to the 2 Rooms environment but it has an
additional cell called the Lava. It is the orange cell seen in

(a) 2 Rooms: There are 2 rooms separated by a wall and 2
doors. The agent in red needs to reach the green goal location
by using one of the doors. And the agent can only see a 5×5
area in front of it.

(b) 2 Rooms-Lava: There are 2 rooms separated by a wall
and 2 doors. There is also a lava cell which can behave in
different ways. The agent in red needs to reach the green goal
location by using one of the doors. And the agent can only
see a 5 × 5 area in front of it. Also, the agent may or may
not be allowed to use the lava cell depending on the language
constraint.

(c) 3 Rooms-Key: There are 3 rooms separated by walls and 2 doors. The first room
has a locked door and needs a key to unlock it. The agent needs to pick up the key
before opening the first door. Then, the agent can either use the door or take a longer
way to reach the goal state. Again, this depends on the language constraint.

Figure 3: Environments used in the experiments

the figure and it can behave in one of two ways depending on
the language constraint. Example language constraints are
shown in Table 1. For constraints of type 1-3, the lava acts
as a teleportation cell, the agent entering the lava will be
instantly moved right next to the agent. If the constraint is of
type 4-5, the agent entering the lava will die and result in 0
reward.

The 3 rooms with key scenario is shown in Fig 3 (c) where
the task is to again reach the goal state but the first room
is locked. The agent needs to collect the key first and then
unlock the door. The goal cell is always in the upper right
corners of the environment. If there is no restriction, taking
the second door is always the shortest path. The constraints
here are similar to the ones in 2 rooms scenario. Depending
on the constraint, using the door might be a violation and
the agent might have to use a longer route from the bottom
of the second wall.

Experimental Conditions
We compare our method with a baseline where we train the
agent with shaped environment rewards. This means that the
reward function is changed in the MiniGrid framework to

Constraints Environments
1 do not use the red door 2Rooms, Lava, Key

2 do not go through the blue door 2Rooms, Lava, Key

3 no yellow door Lava

4 do not go through the red door and
stay away from lava Lava

5 avoid blue door and no lava Lava

Table 1: Example constraints used in the 3 environments
used in our experiments

output negative rewards whenever a language constraint is
violated. This is usually called as reward shaping. In order
to do this we need access to the environment reward func-
tion (the MiniGrid framework in this case) which is not al-
ways feasible in most real-world tasks. The baseline method
uses the same RL policy architecture as ours (minus the con-
straint checker) and is also trained using Proximal policy op-
timization (PPO). In contrast, our method does not change
the default reward function in anyway and thus does not

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

10

20

30

40

50

60

Vi
ol

at
io

ns
 (%

)
Constraint Checker (Ours)
Shaped Rewards

(a) Violations: 2 Rooms

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
ea

n
Ep

iso
de

 R
ew

ar
ds

Constraint Checker (Ours)
Shaped Rewards

(b) Episode Reward: 2 Rooms

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

10

20

30

40

Vi
ol

at
io

ns
 (%

)

Constraint Checker (Ours)
Shaped Rewards

(c) Violations: 2 Rooms-Lava

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ep

iso
de

 R
ew

ar
ds

Constraint Checker (Ours)
Shaped Rewards

(d) Episode Reward: 2 Rooms-Lava

Figure 4: Violations % and mean episode rewards for the 2 Rooms (top row) and 2 Rooms-Lava (bottom row) environ-
ments. The constraint Checker is able to optimize agent behavior to reduce violations faster than the shaped rewards baseline.
Additionally, our model is able to achieve higher episode rewards on average at the end of training than the shaped rewards
method.

rely on the requirement of having access or the expertise to
change the reward function. Instead, the constraint checker
detects violations and shapes the reward which is given to
the agent. In other words, this allows for a more intuitive
means of reward-shaping through structured language. The
aim of our experiments is to show that our method can per-
form as good as the baseline in terms of performance while
also minimizing the amount of violations our agent incurs.

Results
We trained our RL agents using the proposed constraint
checker method as well as the baseline method for all three
tasks. For the constraint checker, we used 12k samples
for the 2 Room environment and 15k samples for the 2
Rooms-Lava environment. Both methods were trained for
1e7 (10 Millions) steps for all three environments. Then, we
recorded the task performance (in terms of baseline reward)
and number of constraint violations.

Figures 4 and 5 show the mean violations and rewards of

for our constraint checker approach and the reward shaping
baseline approach. In order to get these plots, we save the
model at regular intervals throughout the training process.
We then evaluate these models on 50 random episodes. The
violation percentage is the number of times the agent per-
forms a violation given the constraint and the mean episode
rewards is over the 50 random episodes. The reward the
agent receives is a reward of 1 after reaching the goal state
and discounted by the number of steps it takes to reach the
goal.

In Figure 4b, we can see that the reward shaping model
and our model reach the same performance in terms of re-
wards at the end of training. This shows that the constraint
checker was able to interpret the language constraints and
behavior and provide correct rewards that still allow the
agent to reach it’s goal. We also show that the violation per-
centage is much less in our method compared to the baseline
reward shaped model especially at the beginning of training.

The next experiment was done on a slightly more com-

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

5

10

15

20

25

30
Vi

ol
at

io
ns

 (%
)

Constraint Checker (Ours)
Shaped Rewards

(a) Violations: 2 Rooms-Lava to 3 Rooms-Key

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ep

iso
de

 R
ew

ar
ds

Constraint Checker (Ours)
Shaped Rewards

(b) Reward: 2 Rooms-Lava to 3 Rooms-Key

Figure 5: Generalization Experiment. Violations % and mean episode rewards for the 3 Rooms-Key environment. Here the
constraint checker from the 2 Rooms experiment was reused for the 3 rooms-key as a test of generalization. Again, our method
is able to optimize agent behavior to reduce violations and achieve reward performance as good as the baseline. This shows
how we can re-use the constraint checker to train an agent to perform a different task where we have similar constraints.

plex scenario (2 Rooms-Lava), both in terms of the task
and the constraint. Since this scenario has different kinds
of constraints and violations, we collected data and trained
a new constraint checker. The example of these constraints
are shown in Table 1, rows 3-5. The results from the 2
rooms-lava scenario (shown in Figure 4c-d) show that the
constraint checker achieves improved performance in terms
of episode reward over the baseline method early on. The
baseline method is able to eventually catch up and match
the performance of the constraint checker. Additionally, we
see that using the constraint checker results in drastically
lower violations during training. The reason for this, we be-
lieve is because the nature of which the constraint checker
was trained. The data used to train the constraint checker
was collected in such a way that a trajectory segment was
labelled as negative, just before the violation was about to
happen.

As a test of generalizability, we performed another exper-
iment to show the re-usability of the constraint checker on
a new MiniGrid environment. We use the same constraint
checker trained in the 2-rooms environment, but apply it to
the 3 rooms with key environment where the task and the en-
vironment are different but the constraints and violations are
the same. The results here show that we were able to re-use
the constraint checker which trained for a different scenario
(as is evident in Figure 5 with steep training curves that con-
verge quickly to maximum performance as well as to near
zero constraint violations). Again, the reward and the viola-
tion percentage of our method matches the baseline reward
shaped model. This demonstrates that we were able to take
our constraint checker, pre-trained on a different task, and
achieve high reward performance on a new task with mini-
mal violations.

Discussion
It is really important that agents acting in the real world
have the capability to understand instructions and warning
signs in the form of natural language. This work presents
an architecture which can learn mappings between simple
language constraints and agent behavior. This is then used
to train agents who can solve tasks without violating these
constraints. In order to do this, we collect a dataset of agent
behavior and language constraints and train a constraint
checker model in a supervised fashion. This is then used to
shape rewards and train agents to interpret natural language
constraints and act safely. Currently, we test this on small vo-
cabulary of structured sentences, however future work will
involve extending this to more complex state spaces and lan-
guage.

There has been similar work done where language is used
to help train reinforcement learning policies. Most of these
however, attempt to use language to tackle issues with sparse
rewards and the long term credit assignment problem. They
use language instructions as a way to guide exploration dur-
ing training and accelerate learning. In our work, we instead
focus on using language to constrain the policy instead of
simply guide it. The benefit of this is that our language con-
straints are used to train agents to avoid certain behaviors
and ultimately act safely in environments.

Saunders et al. (2017) and Prakash et al. (2019b) have
done work in safe reinforcement learning where they use a
method to learn a mapping between state action pairs and
safety. This can be useful to avoid going into bad states
during exploration. However, since it is only using state ac-
tion pairs it can be difficult to use these methods to specify
safety for more complex behaviors. Our proposed method on
the other hand, can ground a structured language sentence
in terms of agent behavior and has the potential to achieve
broader expressivity in terms of behaviors that should be ei-

ther preferred or avoided. This is a step towards building
agents who can interpret language and learn safe behaviors
using human feedback.

One limitation of this work is that it requires a way to
either generate data automatically to train the constraint
checker or a person to collect and annotate the data. In suf-
ficiently complex scenarios, it will not feasible to automate
the curating of such a dataset and must be instead be col-
lected manually. If we wanted to extend this approach to
more complex environments or real world problems, annota-
tions will have to be done by a human. Crowd-sourcing plat-
forms, such as Amazon’s Mechanical Turk (AMT), can be
used to get a large and diverse dataset for supervised train-
ing of the constraint checker. Another benefit of this type of
annotation is that the human can label more complex behav-
iors which may be too difficult to specify using hand writ-
ten rules. Future work will incorporate crowd-sourcing tech-
niques, as well as reducing the amount of human annotations
needed in the first place.

Acknowledgments
This project was sponsored by the U.S. Army Research Lab-
oratory under Cooperative Agreement Number W911NF-
10-2-0022. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein. We
also thank Sunil Gandhi for useful discussions during the
course of this project.

References
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems 57(5):469–483.
Bahdanau, D.; Hill, F.; Leike, J.; Hughes, E.; Hosseini, A.;
Kohli, P.; and Grefenstette, E. 2018. Learning to understand
goal specifications by modelling reward. arXiv preprint
arXiv:1806.01946.
Branavan, S. R.; Chen, H.; Zettlemoyer, L. S.; and Barzilay,
R. 2009. Reinforcement learning for mapping instructions to
actions. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP:
Volume 1-Volume 1, 82–90. Association for Computational
Linguistics.
Chen, D. L., and Mooney, R. J. 2011. Learning to interpret
natural language navigation instructions from observations.
In Twenty-Fifth AAAI Conference on Artificial Intelligence.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018.
Minimalistic gridworld environment for openai gym.
https://github.com/maximecb/gym-minigrid.

Christiano, P. F.; Leike, J.; Brown, T.; Martic, M.; Legg, S.;
and Amodei, D. 2017. Deep reinforcement learning from
human preferences. In Advances in Neural Information Pro-
cessing Systems, 4299–4307.
Gandhi, S.; Oates, T.; Mohsenin, T.; and Waytowich, N. R.
2019. Learning behaviors from a single video demonstration
using human feedback.
Gopnik, A., and Meltzoff, A. 1987. The development of
categorization in the second year and its relation to other
cognitive and linguistic developments. Child development
1523–1531.
Goyal, P.; Niekum, S.; and Mooney, R. J. 2019. Using nat-
ural language for reward shaping in reinforcement learning.
arXiv preprint arXiv:1903.02020.
Hermann, K. M.; Hill, F.; Green, S.; Wang, F.; Faulkner, R.;
Soyer, H.; Szepesvari, D.; Czarnecki, W. M.; Jaderberg, M.;
Teplyashin, D.; et al. 2017. Grounded language learning in
a simulated 3d world. arXiv preprint arXiv:1706.06551.
Hosseini, M.; Horton, M.; Paneliya, H.; Kallakuri, U.;
Homayoun, H.; and Mohsenin, T. 2019a. On the complex-
ity reduction of dense layers from o(n2) to o(nlogn) with
cyclic sparsely connected layers. In Proceedings of the 56th
Annual Design Automation Conference 2019. ACM.
Hosseini, M.; Paneliya, H.; Kallakuri, Uttej Khatwani, M.;
and Mohsenin, T. 2019b. Minimizing classification energy
of binarized neural network inference for wearable devices.
In 2019 20th International Symposium on Quality Electronic
Design (ISQED). IEEE.
Khatwani, M.; Hairston, W. D.; Waytowich, N.; and Mohs-
enin, T. 2019. A low complexity automated multi-channel
eeg artifact detection using eegnet. In 2019 IEEE EMBS
Conference on Neural Engineering. IEEE.
Leike, J.; Martic, M.; Krakovna, V.; Ortega, P. A.; Everitt, T.;
Lefrancq, A.; Deepmind, L. O.; and Deepmind, S. L. 2017.
AI Safety Gridworlds. Technical report.
MacMahon, M.; Stankiewicz, B.; and Kuipers, B. 2006.
Walk the talk: Connecting language, knowledge, and action
in route instructions. Def 2(6):4.
Prakash, B.; Horton, M.; Waytowich, N.; Hairston, W. D.;
Oates, T.; and Mohsenin, T. 2019a. On the use of deep
autoencoders for efficient embedded reinforcement learning.
In ACM Proceedings of the 29th Edition of the Great Lakes
Symposium on VLSI (GLSVLSI). ACM.
Prakash, B.; Khatwani, M.; Waytowich, N.; and Mohsenin,
T. 2019b. Improving safety in reinforcement learning us-
ing model-based architectures and human intervention. In
The 32nd International Conference of the Florida Artificial
Intelligence Society (FLAIRS-32). AAAI.
Saunders, W.; Sastry, G.; Stuhlmueller, A.; and Evans, O.
2017. Trial without Error: Towards Safe Reinforcement
Learning via Human Intervention.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Sutton, R. S.; Barto, A. G.; et al. 1998. Introduction to
reinforcement learning, volume 2. MIT press Cambridge.

Tsividis, P. A.; Pouncy, T.; Xu, J. L.; Tenenbaum, J. B.; and
Gershman, S. J. 2017. Human learning in atari. In 2017
AAAI Spring Symposium Series.
Waytowich, N.; Barton, S. L.; Lawhern, V.; and Warnell, G.
2019a. A narration-based reward shaping approach using
grounded natural language commands.
Waytowich, N. R.; Barton, S. L.; Lawhern, V.; Stump, E.;
and Warnell, G. 2019b. Grounding natural language com-
mands to starcraft II game states for narration-guided rein-
forcement learning. CoRR abs/1906.02671.

	ScholarWorksCoverSheet
	AAAI_RL_Workshop

