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Abstract—We propose CACE (Constraints And Correlations
mining Engine) which investigates the challenges of improving the
recognition of complex daily activities in multi-inhabitant smart
homes, by better exploiting the spatiotemporal relationships
across the activities of different individuals. We first propose
and develop a loosely-coupled Hierarchical Dynamic Bayesian
Network (HDBN), which both (a) captures the hierarchical infer-
ence of complex (macro-activity) contexts from lower-layer micro-
activity context (postural and improved oral gestural context),
and (b) embeds the various types of behavioral correlations
and constraints (at both micro- and macro-activity contexts)
across the individuals. While this model is rich in terms of
accuracy, it is computationally prohibitive, due to the explosive
increase in the number of jointly-defined states. To tackle this
challenge, we employ data mining to learn behaviorally-driven
context correlations in the form of association rules; we then
use such rules to prune the state space dramatically. To evaluate
our framework, we build a customized smart home system and
collected naturalistic multi-inhabitant smart home activities data.
The system performance is illustrated with results from real-time
system deployment experiences in a smart home environment
reveals a radical (max 16 − fold) reduction in the compu-
tational overhead compared to traditional hybrid classification
approaches, as well as an improved activity recognition accuracy
of max 95%.

Keywords—multiple inhabitants, multi-modal sensing, scalable
activity recognizer, smart communities

I. INTRODUCTION

CACE focuses on the problem of determining the macro-
level activity context of individuals in a multi-inhabitant smart
home environment. Examples of such macro-level (or complex)
activities include “cooking” or “watching TV”, which can be
inferred by observing both the sequence of low-level (or micro)
activities of an individual (e.g., “walking” or ‘’sitting”) and
the location context associated with such activities. Past works
(e.g., [1], [2], [5]) have looked at the possibility of determining
such micro-activity and location context based on either on-
body (e.g., smartphone-based) or ambient (e.g., motion detec-
tors, RFID tag) sensing, or by judiciously combining both.
Typically, the problem of complex activity detection of each
individual has been viewed in isolation, without taking into
account the correlations or constraints observed collectively,
across inhabitants.

Consequently, the presence of multiple occupants is viewed
as a detriment, as it confounds the ability to associate certain

ambient context directly with a specific individual–e.g., a mo-
tion detector can detect that an individual is in the “kitchen”,
but cannot say whether it was person A or B. The limited
work (e.g., [4]) that exploits cross-individual context relations
has focused primarily on improving the accuracy of the micro-
activity or location activity context, as an intermediate step
towards computing the high-level activity of each individual
occupant. All these approaches, however, make an implicit
assumption that a specific activity is associated with a specific
location–e.g., “cooking” with the kitchen, or “watching TV”
with the living room (more specifically in the couch area). As
a consequence, the accuracy of complex activity recognition
stagnates at around 75% in presence of multiple users [9],
because, in reality, an individual’s performance of a complex
activity may naturally straddle multiple locations and include
unrelated intermediate activities–e.g., as shown in Figure 1, an
inhabitant may start “watching TV” while “cooking” and go
back and forth between the kitchen and the living room. In
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Fig. 1. Hierarchical Structure of ADLs
this paper, we extend past work in two distinct ways:

• Inclusion of Wearable Context: With the rapid consumer
adoption of wearable devices, we consider how the additional
availability of oral gestural micro-context (such as “talking”
or “laughing”) can further improve the accuracy of such
complex activity detection. We propose a 9-axis sensor fusion
based trajectory generation technique to identify and recognize
micro-level oral gestural activity.

• More Rigorous Modeling of Context Correlations and
Constraints: We believe that the presence of multiple occu-
pants in a home may in fact turn out to be an advantage,
especially if we can judiciously utilize postulated or observed
behavioral correlation and relationships among the occupants.
For example, individual B’s context may be inferred (proba-
bilistically) to be more likely “dining” (instead of “washing
dishes”) if person A is currently observed to be “dining”, and
if history suggests that the two occupants usually dine together.
Thus, we investigate how such behavioral coupling can be
formally defined, both at and across micro- and complex-
activity levels, to improve the recognition accuracy.

Unfortunately, as the number of individuals and the number



of micro-activity states (per individual) increase, the rigorous
modeling of such inter-personal constraints and correlations
becomes computationally prohibitive, due to the exponential
growth in the number of possible joint states.

Research Questions: Our research in this paper consequently
tackles the following key research questions:

•What sort of inter-user correlation aware, hierarchical activity
recognition models can we use to represent a combination
of ambient, mobile and wearable sensor data (from multiple
inhabitants)?

• How can we intelligently combine, in such a unified hierar-
chical model, both spatiotemporal constraints and correlations
across multiple users (across both micro-and-complex activ-
ity levels) so as to significantly improve the computational
tractability of the approach?

• Quantitatively (i.e., given real-world sensor traces from
multi-inhabitant environments), how much improvement does
our proposed approach offer (in terms of computational over-
head and improved accuracy), compared to the existing activity
recognition approaches?

To tackle these challenges, CACE delegates a coupled Hi-
erarchical Dynamic Bayesian Network (HDBN) model, which
organizes activity recognition in a hierarchy, with low-level
micro-activity context states being used to infer higher-level
complex activity contexts.

More specifically, we make the following key contribu-
tions:

•We first propose a generic model using a probabilistic HDBN
for a single inhabitant and extend it for multi-inhabitant cases
using a coupled HDBN model. This model both (a) incorpo-
rates postural and gestural micro-activities, as well as location
context, and (b) formally captures the different relationships
that exist at the crossroads of micro and macro-level activities
for individual and multiple inhabitants.

• Most importantly, we utilize a well-established data mining
approach (using past traces of behavioral data) to discover key
spatiotemporal constraints in the activity contexts across users,
and use these constraints to prune the overall state space of
the coupled model (loosely-coupled HDBN) during the model
training phase. Such a model effectively trades off a little
accuracy (by eliminating very unlikely state sequences) for
significant computational gain.

• We evaluate our proposed model using our smart home
collected dataset and a realistic dataset that matches best with
our scenario [9]. We run our data-driven state space pruning
miners and show that (i) a loosely-coupled HDBN model im-
proves the complex activity recognition accuracy to max 95%
(compared to ≈ 75% achieved by prior approaches [9]); (ii)
the intelligent fusion of correlations and constraints helps to
reduce the computational complexity dramatically (by a factor
of 16).

II. RELATED WORKS

The idea of combining ambient sensors along with wear-
able and smart phone sensors to recognize micro and macro
ADL in smart home environment has been investigated in the

past [1]–[4], [7], [16], [17] but very few of them explored the
problem of multiple occupant’s activity recognition in smart
home environment [4], [5], [17]. However, lack of natural-
istic data collection and additional context effect (say oral
gestural, correlations and constraints) on activity recognition
performance in prior works signify the importance of CACE.

[16] proposed a two-staged method defining multi-
inhabitant activities as combined label. SENST* [7] inferred
hidden location context by substituting expensive sensors with
inexpensive ones in inference cache which supports arbitrary
context attributes related to each other by a set of automatic
learned general association rules. ACE [1] introduced an as-
sociation rule mining approach to infer hidden micro contexts
by exploiting context correlations in an energy-efficient way.
A simple 2-step DBN approach for a single user environment
has been proposed considering context classifier’s uncertainty
into account [2]. [4] added micro context constraints among
all users in a multi-inhabitant smart home environment using
Coupled Hidden Markov Model (CHMM). Activity recogni-
tion algorithms have been proposed to classify either micro
or macro-level activities separately [3] or jointly using a
two-step classification model [4]. [5] investigated CHMM
and Factorial Conditional Random Field (FCRF) for activity
daily livings (ADLs) recognition in multi-inhabitant smart
home environment relying on multiple body-worn sensors
with multi-modal sensing capabilities. The closest work to
CACE framework is NCB [17] which exploited the coupled
behaviors among socially connected people based on their
community behaviors, mining the social links/networks. The
central difference between NCB and CACE is that former
one proposed context mining to exploit higher level contexts
coupling socially connected people. For example, social be-
haviorally connected people having office at 8.00 AM, take
shower at 6.00 AM, take breakfast at 6.30 AM and leave
home within 7.00 AM. However, we propose user context
correlations and constraints coupling residentially connected
people. For example, in two inhabitants apartment, while one
is taking shower, other may prepare breakfast or do vice versa.
Apparently they take breakfast together and talk each other dis-
playing contexts correlations and constraints. While, neither of
the existing frameworks address the multi-inhabitant complex
(macro) activity recognition cases in presence of more than
one type of micro activities (such as locomotive, postural and
gestural) nor handle their performance degradation in case of
any missing sensor values, we propose a single unified DBN-
based model to infer activities by conglomerating micro and
macro-level activities and intra- and inter-user relationships
hierarchically. While other failed to handle multiple-occupancy
identification, did not consider the correlations to speed-up
and loosen the complexity of a hierarchical model sustaining
the accuracy, CACE exploits macro contexts hierarchically for
each user in a coupled way. However, unlike ACE [1], CACE
can generate some initial rule sets through a user-friendly
smartphone user-interface.

III. TERMINOLOGIES AND OVERALL FRAMEWORK

Our proposed framework exploits different aspects of the
relations (both spatial and temporal) between the activities
of multiple individuals cohabiting a smart home. Many re-
searchers ( [1], [4], [17]) use the terms context correlations and



constraints relationships in real world scenario. We formally
define these two fundamental types of relationships:

Definition 1. Context Correlation: Correlation captures the
deterministic relationships (must or must not) between two
context states (micro-micro, macro-macro and micro-macro)
, such that the identification of one context state immediately
identifies the possible value for the other context state.

For example, in a smart home with two individuals, if
person A’s macro context is “sleeping” in the bedroom, then
the other person B’s macro context must not be “vacuuming”
in the bedroom at the same time (as ‘vacuuming’ will disrupt
person A). Similarly, if person A’s micro-context is “sitting”
on the couch, then he cannot be ‘walking’ in the next time
instant, as there must be an intervening “standing” postural
state. In past work [1], such correlations have been derived
(using association rule mining) among various micro-contexts
of an individual user. In our work, we extend this approach
to consider correlations both (i) across different users and (ii)
between and across micro and macro-level contexts.

Definition 2. Context Constraint: Constraint is a probabilistic
measure of the inter-connects and uncertainty levels among
different context states, such that the likelihood of occurrence
of one context state helps change the a-priori probability of
the concurrent occurrence of another context.

For example, if person A’s macro activity is “dining” in the
living room, then person B is more likely to be “dining” in
the living room. Similarly, if person A is “dining” at present,
then, in the next time instant, it is unlikely that person A will
be ‘jogging” in the living room. Note that our terminology
may differ a bit from the lay meaning of the terms: in our
framework, correlations are deterministic, whereas constraints
represent probabilistic relationships.

A. Overview of Our Framework

Our framework assumes a multi-inhabitant smart home that
includes (a) ambient, static sensors that capture context states
not directly linked to a specific individual, and (b) mobile and
wearable sensors that capture individual-level activity context.
As a specific exemplar, this paper considers an environment
with (i) one binary passive infrared sensor in each room, that
indicates whether a particular room is occupied by one or
more moving individuals, (ii) one binary high sensitive object
sensor on concerned objects, that indicates their possession
by one or more inhabitants, and (iii) each inhabitant carrying
a smartphone and/or smart-jewellery (in the neck), whose
sensors help detect various postural and oral gestural states.

Figure 2 explains the basic steps in our overall context
processing pipeline: (1) ‘Sensing planar’ gathers multi-modal
sensor data from smartphones and ambient motion sensors; (2)
‘Context planar’ performs feature extraction on such ambient,
mobile and wearable sensor data; (3) ‘State space creation’
is responsible for combining micro-level activity tuples (both
gestural and locomotive) with ambient context ; (4) ‘State
space reduction’ utilizes data-mined relationships (across both
micro and macro-level contexts) in the multi-user state space
to reduce the number of unknown context states; (5) ‘Loosely-
coupled HDBN’ model helps construct the probabilistic inter-
connections between the macro and micro-level activities of

TABLE I. VARIABLE REPRESENTATION

Notation Description
N No. of individuals

contextij(t) User context state at time t and m-dimensional
tuple for ith user where j = 1 (micro) and j = 2

(macro) level context state ∀m = 1, 2, . . . ,M

K No. of motion sensors, k = 〈1, ..., k〉 location

multiple users; and (6) the eventual ‘Inference engine’ infers
the most-likely sequence of macro-activities (and their time
boundaries), utilizing the well-known Expectation Maximiza-
tion (EM) algorithm for training and the Viterbi algorithm [13]
for runtime inference.

Our key innovations in this paper lie in: (a) the use of
spatiotemporal rules (both deterministic correlations and statis-
tical constraints) to the state space (step 4) to be explored and
(b) the use (step 5) of a coupled HDBN model, incorporating
both micro and macro contexts, to improve the accuracy of
context estimation.
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Fig. 2. An overview of our hierarchial activity recognition framework

IV. MULTI-INHABITANT HIERARCHICAL MODEL

Coupling of a traditional HDBN model across multiple in-
habitants helps form a unified model but ramify the complexity
of handling the exponential increase in number of state spaces.
We propose a correlation miner to prune the state spaces based
on Apriori algorithm generated association rules relying on the
context relations. We define four dependency augmentations
to incorporate our correlation and constraint miner with the
traditional coupled model of HDBN.

A. Model Variables Representation
We represent some variables in defining generic model as

stated in Table I. An important characteristic of our model is
that a subset of the M elements are ‘observable’ and can be
inferred using solely the sensors embedded within individual’s
body-worn and personal mobile device such as smartphone or
smart tag in neck. For example, the determination of micro-
activity can be made using the 3-axis accelerometer (e.g., both
postural [6] and gestural [10], [12]), ubiquitously available
in modern smartphones or wearable devices. The remaining
elements of each tuple are, however ‘hidden’; neither the
user’s location nor macro activities are directly revealed by
the smart devices’ accelerometer data. While we employed
our previously proposed techniques [4] to infer these hidden
attributes, our main focus in this work lies on exploiting the
constraints and correlation miner to handle the exponential
evolution of the state spaces across multiple inhabitants.

B. Generic Model

To define a generic model, we assume two inhabitants are
occupying a smart environment, and based on that we propose
the following types of correlation and constraint relationships
(as shown in Fig 3(a)).
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Fig. 3. (a) Context correlations and constraints (b) Single Inhabitant HDBN

Proposition 1. Intra-user spatiotemporal correlations: For a
specific user i, micro context state contextij=1(t) =(running,
livingroom) infers that macro context state is contextij=2(t)
=(jogging, livingroom) which delineates an intra-user spa-
tiotemporal correlations.

Proposition 2. Inter-user spatiotemporal correlations: For a
specific user i, micro context state contextij=1(t) = (sitting,
bathroom), infers that micro context state contextij=1(t) for
another user must not be (sitting, bathroom) as both the users
must not be in ‘sitting’ state in a single bathroom concurrently.
Similarly, for user i, if macro context state is contextij=1(t)=
(vacuuming, bedroom), then for another user macro context
state contextij=2(t) must not be (sleeping, bedroom) as in
general people cannot sleep while anyone is vacuuming at the
same room.

Proposition 3. Intra-user spatiotemporal constraints: For a
specific user i, if macro context state is contextij=1(t − 1) =
(dining, livingroom), then in the immediate next time stamp,
macro context state contextij=2(t) may not be (jogging, liv-
ingroom) as it is unusual for someone to start jogging right
after the dinner activity.

Proposition 4. Inter-user spatiotemporal constraints: For a
specific user i, if macro context state is contextij=2(t) =(din-
ing, livingroom), then, for another user macro context state
contextjj=2(t) more likely be (dining, livingroom) as it is usual
for the inhabitants to have dinner together.

C. Single Inhabitant Model

We first represent the joint probability distributions of a
single inhabitant activity model as follows.

p(oi|contextij) =
∏N
t=1 p(context

i
j(t)|

pa(contextij(t)))× p(oi|contextij(t)) (1)

where oi represents observable streams, pa(contextij(t) repre-
sents antecedents of contextij at time t and model parameters
are grouped into D levels i.e., j = 1, 2, . . . ,D.

D. Multi-Inhabitant Model

Considering N users, we generate a N-chain CHDBN
model where each chain is associated with a distinct user.
Then, we simplify N-chain couplings by considering two users
and two levels of hierarchies and represents the posterior of

CHDBN for any user as follows.

p(c
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where different users are indexed by the superscript. p
c
(nj)
t

(o
(nj)
t ) represents the emission probability given a state in

chain n at level j, p
c
(mj)
t |pa(c(mj)

t−1
)

represents the transition
probability of a state in chain m at level j given its parent
state, and πcnj

1
represents the initial state probability.

Further expansion of Eqn. 2, we have initial probabilities
(πc111 , πc121 , πc211 and πc221 ), intra-user temporal state tran-
sition probabilities (p

c
(1j)
t |pa(c(1j)

t−1
)

and p
c
(2j)
t |pa(c(2j)

t−1
)
), intra-

user spatial state transition probabilities (p
c
(1j)
t |pa(c(1j)t )
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p
c
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t |pa(c(2j)t )

), inter-user temporal state transition probabili-
ties (p
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at jth-level respectively for user i = 1 and 2. We denote the
spatiotemporal probabilities for two users as π11, π12, π21, π22,
p111, p112,p121, p122, p211, p212, p221, p222, A11 and A22 respectively,
then the posterior can be represented as follows,

p(c|o) =
π11π12π21π22A11A22

p(o)

T∏
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V. DESIGNING CONTEXT MINERS

We now discuss how our proposed loosely-coupled HDBN
model can infer hidden micro and macro context states by
exploiting specifically the context correlations within and
among multiple inhabitants.

A. Association Rules

We use rule mining techniques to generate rules gov-
erning spatiotemporal relationships among micro and macro
context attributes. Our rules have the following general form:
〈c1, c2, ..., cn ⇒ R〉 which implies that R holds whenever all
the tuples 〈c1, c2, ..., cn〉 hold, R is true. For example, the rule
〈walking=True; talking=True; kitchen=True⇒cooking=True〉
implies that if a user is in the location ‘kitchen’ with postural
context state ‘walking’ and gestural context state ‘talking’,
then he is in macro context state ‘cooking’. Apriori algorithm
is used to identify such rules, with a threshold T defined,
such that we identify the sets of micro-context states which
are subsets of at least T macro-activities. Each association rule
has a support and a confidence. For example, if a state space
model has 1000 context states, out of which 200 include both
context states A and B and 80 of these include context state c,
the association rule A,B ⇒ c has a support of 8% (= 80/1000)
and a confidence of 40% (= 80/200). The algorithm takes
two input parameters: minSup and minConf to generate all the
rules with support ≥ minSup and confidence ≥ minConf. We
assume minConf = 99% and minSup = 4% which help strike
good balance between tolerating occasional inconsistencies
and highlighting the viable rules for our hierarchical context



state space model (similar to [1]). Towards this rule generation,
we consider each context tuple consist of 94 context elements
(47 for current time t and 47 for the previous time instant t−1).
At each instant, we have 11 high-level activities, as well as,
for each user, 14 location contexts, 5 gestural contexts and 6
postural contexts, resulting in 47 total different context states.

B. Correlation Mining

We then use these mined rules to eliminate various infea-
sible state combination from the HDBN, considering relation-
ships between micro and macro-activities. (in contrast, past
work [1], [4] has considered such correlations only among
micro-activities.) To illustrate our approach, consider the state-
trellis for two users, A and B. A is assumed to have 3 possible
values for its micro tuple (i.e., postural, gestural, location) and
3 possible values for its macro tuple (i.e., high-level activity,
location) at each time instant, whereas B is assumed to have
4 such values for his micro tuple and 4 possible values for its
macro tuple. Now, assume that A’s postural activity (inferred
from the smartphone accelerometer) is “sitting”, gestural ac-
tivity (inferred from the smart tag accelerometer in neck) is
“silent” at time t− 1 while B’s postural activity is “walking”.
Furthermore, we observe that the living room infrastructure
sensor was activated at time stamp t − 1, indicating that the
living room was occupied at t − 1 by both A and B. Based
on spatial rule 〈jogging ∨ watchingTV ⇒ livingroom〉
generated from rule mining phase suggests that only ‘jogging’
or ‘watching TV’ macro activities are associated with A and
B at the same time in location livingroom. Subsequently, we
apply the rules 〈WatchingTV ⇒ {sitting, livingroom}〉
and 〈Jogging ⇒ {walking, livingroom}∨{running, living
room}〉 where ‘sitting’ is associated with ‘watchingTV’ and
‘walking’ is associated with ‘jogging’. So, we can infer
A is in “watchingTV” macro state, which helps to reduce
the possible state space to 4 distinct combinations: (A ⇒
{sitting, livingroom}, {watchingTV, livingroom},
B ⇒ {walking, livingroom}, {jogging, livingroom}).

C. Constraint Mining

After appropriate elimination of infeasible states, we have
horizontal and vertical correlated state transitions. We apply
constraint mining technique to significantly reduce overhead
incorporating a new binary-valued variable on vertical state
transitions, end of sequence marker E. At a given time each
activity level has two particular variables c

(d)
t and E

(d)
t as

shown in Fig 3(b) which control the hierarchical multi-level
activity structure. At time t, the variable c

(d)
t represents the

micro or macro context state and the binary-valued variable
E

(d)
t represents the continuation or termination point of the

dth level activity. To maintain consistency across our proposed
multi-level HDBN activity model our constraint miner defines
the following two constraints.

Blocking constraint: For user i, context state of the dth level
cannot change until the (d+ 1)th context state level has been
terminated which is represented by:

E
(d+1)
t−1 = 0→ c

(d)
t = c

(d)
t−1 ∀d < D (3)

TABLE II. DEFINITION OF SEMANTICS

Notation Description
clMa
t , clMi

t Macro & micro activity at lth-chain at t

OlMi
t Observed micro activity at lth chain at time t

nMa, nMi Number of macro and micro states respectively

ElMa,ElMi End of sequence marker (macro and micro)

SN=S1N
1:l1

, ., SLN
1:l|S|

A set of L training sequences for N users.

Si
t=(cMa

t , oMi
t ) hidden and observed variables respectively

Termination constraint: The dth context state level may not
terminate until the (d + 1)th level context state has been ter-
minated which is represented by (→ represents dependency):

E
(d+1)
t−1 = 0→ E

(d)
t = 0 ∀d < D (4)

We propose to represent these constraints using a DBN model
by adding the underlying constraints and correlations depen-
dencies and storing their values in the conditional probability
tables (CPT). The multi-level activity dependencies are speci-
fied by the following edges as shown in Fig 3(b).

c
(d)
t−1 → c

(d)
t , E

(d+1)
t → E

(d)
t , E

(d+1)
t−1 → c

(d)
t (5)

The blocking and termination constraints are enforced with the
following constraints on CPT values ∀d < D.

p(c
(d)
t = j|c(d)t−1 = i, E

(d+1)
t−1 = 0, pa∗(c

(d)
t = .) = δi,j

& p(E
(d)
t = 0|E(d+1)

t = 0, pa∗(E
(d)
t ) = .) = 1 (6)

where δi,j = 1, if i = j and 0 otherwise. (.) represents a
probabilistic value and pa∗(c(d)t ) denotes rest of macro/ micro
states associated with the macro activity state c(d)t which has
not been already appeared in the list of conditioning variables.

VI. DESIGNING MULTI-LEVEL HIERARCHICAL MODEL

We consider smart phone sensors based postural and smart
neck tag based oral gestural micro activities along with am-
bient sensor-based location contexts as observed states to
infer the hidden macro state. We build N-chained coupled
‘bare bone’ HDBN for multiple inhabitants and augment our
proposed constraint miner with the base DBN model. We list
the semantics of every level of each chained coupled-HDBN
model as shown in Table II and illustrated in Fig. 4 (observed
states are omitted). Our constraint miner based augmentations
and the conditional probability distributions are described as
follows.
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Fig. 4. Multi-Inhabitant loosely-coupled HDBN Model



Augmentation 1. End of macro-level sequence dependency
on macro-level context state and end of sequence marker of
micro-level state.

For example, end of macro state ‘exercising’ can be
happened if end of ‘cycling’ micro activity has been found.
Mathematically, for each macro-level of user l, we add the
dependencies clMa

t → ElMa
t and ElMi

t → ElMa
t , such that the

end-of-sequence marker jointly depends on the state of current
level and lower level sequence marker i.e., end of macro-
level sequence marker ElMa

t jointly depends on macro state
(clMa
t ) and micro state (clMi

t ) at time t. This completes the
dependencies for the end of the macro-level sequence, ElMa

t
giving the CPT for l = 1 user as follows:

p(E1Ma
t = 1|X1Ma

t = i, E1Mi
t = 1) = p1Ma

i=end (7)

The parameter p1Ma
i=end represents the probability of ending a

macro-level sequence given that we are at macro-level state i
and all of the previous micro-level states have ended (end-
of-sequence marker of micro-level state E1Mi

t = 1). This
parameter is used as a transition probability during the training
phase.

Augmentation 2. Each level of state dependency on prior
distribution and lower level context state (if any).

For example, macro activity state ‘sleeping’ can stay on
‘sleeping’ for next time stamp if the micro activity ‘lying’ in
the ‘bedroom’ stays still. For micro activity state ‘standing’ can
be happened if prior micro activity is ‘sitting’ or ‘walking’ as
from ‘lying’ to ‘standing’, there must be an intermediate micro
activity state ‘sitting’. Mathematically, for each macro-level
of user l = 1 and l = 2, we add the dependencies c1Mi

t →
c1Ma
t and c1Ma

t → c2Ma
t such that the macro-level state jointly

depends on the micro-level state and coupled user’s macro-
level state. This completes the dependencies for the macro-
level states, clMa

t giving the following prior probabilities for
user l = 1 and user l = 2:

p(c1Mi
t = j) = π1Mi

j &p(c2Mi
t = j) = π2Mi

j (8)

p(c1Ma
t = i|c1Mi

t = j) = πMa,j
i (9)

P (c2Ma
t = i|c2Mi

t = j, c1Ma
t = k) = πMa,j,k

i (10)

The parameters π1Mi
j and π2Mi

j represent respectively the
prior probabilities of micro-level states. The parameters πMa,j

j
represent the prior probabilities of macro-level state given
that the user is at macro-level state i, micro-level state j.
πMa,j,k
i represents the prior probability of macro-level state

given that the user is at macro-level state i, micro-level state j
and coupled user’s macro-level state k. These parameters are
initialized with probabilistic values during the training phase.

Augmentation 3. Micro-level and macro-level context states
transition probabilities dependencies on their end-of-sequence
marker and context state of coupled user.

For example, ‘dinning’ macro context state occurs only
when the coupled user’s macro context state is ‘dinning’.
Similarly, for first user’s location micro context state ‘bath-
room’ cannot be occurred if coupled user’s location context
state is ‘bathroom’. Mathematically, we can place the edges
c1Mt−1 → c1Mt , E1M

t−1 → c1Mt , c2Mt → c1Mt to the model such

Loosely-coupled HDBN (input: nMa, nMi, S; output: Most
Likely State Sequence M)
1.Procedure Model_Creation(c1Ma

t , o1Mi
t , c2Ma

t , o2Mi
t )

//Create CHDBN model coupling two hierarchical DBNs
//E1Ma

t , E1Mi
t , E2Ma

t and E2Mi
t as end-of-sequence

//markers
M← CreateCHDBNModel(nMa, nMi,SN)
2.Procedure Set_Conditions()
//Set conditional probabilities for EM algorithm

Initial Probabilities: π1Mi
j , π2Mi

j , πMa,j
i

, πMa,j,k
i

Transition Probabilities: a1Ma
i→j , π

1Ma
i→j , a

1Mi
i→j , π

1Ma
i→j

End of Sequence Probabilities:p1Ma
i=end,p

1Mi,k
j=end

3.Run EM algorithm until convergence
M← LearnParamsEM(M0, S)

return M

Fig. 5. A CHDBN based Multi-level Multi-inhabitant Activity Recognition

that transition probabilities are different if we just ended a
sequence. Here M is defined as macro or micro-level state. It
defines if a sequence has ended then the probability distribution
for starting a new sequence should be a prior distribution
instead of a normal transition distribution. This gives the
following transition model parameters for the macro-level
(CPT).

p(c
1Ma
t = j|c1Ma

t−1 = i, E
1Ma
t−1 = 0, E

1Mi
t−1 = 1, c

2Ma
t , c

1Mi
t ) = a

1Ma
i→j (11)

p(c
1Ma
t = j|c1Ma

t−1 = i, E
1Ma
t−1 = 1, E

1Mi
t−1 = 1, c

2Ma
t , c

1Mi
t ) = π

1Ma
i→j (12)

The micro-level CPT is similar, however it does not depend
on the macro-level context.

p(c
1Mi
t = j|c1Mi

t−1 = i, E
1Ma
t−1 = 0, E

1Mi
t−1 = 1, c

2Mi
t ) = a

1Mi
i→j (13)

p(c
1Mi
t = j|c1Mi

t−1 = i, E
1Ma
t−1 = 1, E

1Mi
t−1 = 1, c

2Mi
t ) = π

1Ma
i→j (14)

At macro-level context k, a1Ma
i→j is the transition probability of

going from state i to state j and π1Ma
i→j is the prior probability

of starting a sequence in state j.

Augmentation 4. Observations are assumed as multivariate
Gaussian distributions and are based on the low-level micro
context state (if any).

Consider OMi
t represents an observation vector of micro-

level context states where observations are continuous valued
feature-vector, oMi

t . We assume that a particular observation
oMi
t , is drawn from a Gaussian distribution, whose parameters

are determined by the micro-level state, i.e.,

p(OMi
t = oMi

t |cMi
t = k) = N (oMi

t ; ~µk; ~Γk) (15)

where ~µk is the mean vector and ~Γk is the covariance matrix
parameters to the multivariate Gaussian distribution of obser-
vations for micro-level context k. To select and estimate these
parameters, we use deterministic annealing clustering [8]. We
first take a large set of feature points from our training data, run
the deterministic annealing clustering algorithm to find several
representative points, represent each cluster center as a low
level state from which we can learn transition probabilities, and
finally we use the cluster results to estimate our observation
likelihoods by fitting a Gaussian to each cluster. Fig 5 shows
our loosely-coupled HDBN algorithm.



(a) (b)
Fig. 6. (a) PogoPlug Smart Home Customized Devices (from left) PIR
sensors, object sensors, Ethernet Tag Manager, PogoPlug Mobile, Simplelink
SensorTag used in the neck (top left corner) (b) Base application

VII. EXPERIMENTAL STUDY AND RESULTS

In this section, we first describe our smart home sys-
tem, activity representations, data collection methodology and
experimental setup, then present and discuss the evaluation
results obtained from a series of experiments.

A. Smart Home Setup

We develop a real testbed smart home system, PogoPlug,
as shown in Fig 7. PogoPlug consists of customized Cloud
Engine PogoPlug Mobile [19] base server, 14 wireless sensor
tag (WST) sensors (8 object sensors and 6 PIR sensors), 9
iBeacons, one Ethernet tag manager, and one router. PogoPlug
base server is placed in a corner of living room with a
continuous power supply which is associated with Ethernet tag
manager and a router. We also place 6 PIR sensors and 8 object
sensors and set the object sensors sensitivity with 55% (best
choice tested on trial and error basis) thus slightest vibration
on the object associated sensor fires without false alarm. We
divide our entire smart home into 14 sub-region to evaluate our
spatiotemporal constraints correlation model. Each participant
is given a LG Nexus 4 Android phone installed with required
apps should be placed in their pocket and a Simplelink Sensor
Tag on their appropriate neck position with sticker. We set
up three IP cameras in three appropriate places to exclusively
collect the ground truth of all concerned activities. Fig 6(a)
shows PogoPlug smart home customized devices and the
Simplelink SensorTag worn on participant’s neck.

iBeacon

Object sensor

PIR sensor

SR5

SR6

SR
7

SR8

SR9

SR1

SR2

SR3 SR4

SR10

SR11

SR12

SR13

SR14

Fig. 7. PogoPlug smart one bedroom apartment testbed with 5 PIR sensors
and 9 iBeacons creating 14 sub-regions numbered as SR1–SR14

B. Data Collection Methodology

PogoPlug smart home system is easy to deploy in multi-
ple homes and helps provide and record data with minimal
intrusiveness. We describe briefly the several applications
with our PogoPlug smart home system. wireless Sensor Tag
application which is a PHP webservice in Microsoft Azure

TABLE III. ACTIVITIES OF DAILY LIVING

Activity(#) Description
Macro(11) 1) Exercising, 2) Prepare Clothes, 3) Dining,

4) Watching TV, 5) Prepare Food, 6) Studying,
7) Sleeping, 8) Bathrooming, 9) Cooking,
10) Past Times, 11) Random

Oral gestural(5) silent, talking, eating, yawning

Postural(5) walking, standing, sitting, cycling, lying

Sub-location Area of exercise bike, couch 1, couch 2, dining table,
(SR1-SR14) bed, closet 1, reading table, closet 2, bathroom, kitchen,

porch, rest of livingroom, corridor, rest of bedroom

server that receives Ethernet tag manager (connects all WST
devices) provided WST sensor values and broadcasts to our
Cloud Engine instantly with proper time-stamp and frequen-
cies. Simplelink SensorTag application is an Android app
that integrates Simplelink SDK and smartphone for continuous
data sensing and controls sampling rate. iBeacon sensing ap-
plication integrates Estimote Android SDK that gives distance
measure (in meter) between smartphone and the Beacon. Base
Application provides a user-friendly Android application inter-
face to generate initial correlation rules. In order to define the
semantic correlation rules through our user-friendly application
interface, user needs to bring the smartphone at the center of
each pre-defined sub-regions touching the concerned object,
select/add new sub-region, select correlated low- and high-level
activities, optionally set length of regions and click ‘Set’ button
to confirm definition (Fig 6(b)). Scheduler app controls the
IP camera recordings with pre-scheduled time.

We recruit 10 volunteers in five apartments (5 pairs)
equipped with PogoPlug smart home. We choose 10 common
activities (usually performed in morning time) to be performed
in any order as shown in Table III. The rest of the recorded
activities are counted as ‘random’ activity. Participants are
allowed to turn on/off the camera any moment simply un-
plugging the power supply. Our scheduler app is integrated
with wireless IP camera which can continuously record the
video while it is turned on. We use trilateration approach
on iBeacon sensing app provided distance measure to detect
whether the carried smartphone is inside the smart home or
not (multiple occupancy detection). We set an alarm at 8.00
AM morning. After 10 minutes of the alarm, our scheduling
app automatically turn on the cameras recording. To collect
as naturalistic data as possible, we encourage the inhabitants
follow their normal activities of daily livings as listed in
Table III. If participants do any other activities in the middle,
those are counted as ‘random’ activity. We also consider the
interleaved activities as ‘random’ activity i.e., getting up from
bed to entering kitchen, the entire transition period is counted
as ‘random’ activity. We collected data over one month of
period for each home with two inhabitants (on average 2
hours of data with video per day) and recruited two graduate
students to label all contexts (macro-, gestural-, postural-level
activities, room and sub-region level occupancy) using the
video camera and users’ macro-activity log. The participant
themselves validate the macro-activity label given the videos.
We do not put any cameras in bathroom to avoid any privacy
violations.



C. Datasets

We run the experiments on publicly available dataset
CASAS and the data traces collected by us using our PogoPlug
smart home system.

CASAS dataset: We first use the CASAS smart home [9]
dataset, which consists of multi-resident ADLs obtained from
a smart home environment. The dataset consists of a total
of 26 different user pairs, from an overall sample size of
40 users. Note that this dataset contains sensor readings
from a large number of instrumented sensors and smartphone
sensor readings (no gestural activities). To mimic our assumed
environment, we consider each motion sensor firing means
the sub-location is occupied that is covered by motion sensor
range.

CACE dataset: We collect over one month of data from
our 5 smart homes for 10 users (each home is inhabited by two
users). We maintain a consistent sampling frequency (50 Hz)
for smartphone and Simplelink SensorTag for all users. This
dataset is involved with 5 gestural, 5 postural, 14 sub-locations,
6 users and 5 smart homes.

D. Micro-level Activity Representation

To recognize micro-level (gestural and postural) activity
recognition, we use microelectromechanical (MEMS) sensors,
Simplelink Sensor Tag [18]. We calculate the 3D orientation
of the device in the form of quaternion and calculate 3-
axis acceleration trajectory using 9-axis inertial measurement
units (3-axis accelerometer, 3-axis gyroscope and 3-axis mag-
netometer). We first apply high-band pass filter for both of
the IMUs (neck mounted Simplelink SensorTag and smart-
phone integrated) and compute the acceleration trajectories
[15] based on quaternion computation. We then represent 9-
axis IMUs into rotation matrix form of quaternion. We write
a quaternion q as, q = qs + qxî + qy ĵ + qz k̂ where î, ĵ
and k̂ are imaginary elements, each of which squares to 1. A
quaternion q is a unit quaternion having magnitude |q| given by√
p(q2s + q2x + q2y + q2z) = 1. We consider neck mounted IMU

as a reference point while operating smartphone (if available in
pocket) based relative trajectory computation. The position of
the smartphone w at time t with respect to the neck mounted
IMU’s frame of reference F , is computed as follows.

w = qt.w0.q
−
t 1 (16)

where w0 = 0.̂i + 1.ĵ + 0.k̂ represents the position of the
smartphone in the local coordinates based on the assumption
that the length from neck mounted sensortag to smartphone
has unit length.

E. Activity Classification

In this section, we show the results obtained from a
sequence of experiments. We also incorporate the activity
detection measure using the best interval approach [20] to
investigate the time difference between the true end of an
activity and the estimate generated by our inference model.

Micro-Level Activity Classification: We use CACE
dataset for micro-level activity classification. We calculate the
3-axis absolute acceleration trajectory based on sensor fusion

TABLE IV. SOME GENERATED RULES WITH CONFIDENCE

(t=time, U1=user 1, U2=user 2)

U1(t) : (cycling ∨ sitting) ∧ SR1⇒ U1(t) : exercising; (1)

U1(t) : (sitting ∨ lying) ∧ SR5⇒ U1(t) : sleeping; (1)

U1(t) : SR9⇒ U2(t) : ¬SR9; (1)

U1(t) : SR4 ∧ U2(t) : SR4⇒ U1(t) : dining ∧ U2(t) : dining; (1)

of 9-axis IMUs from neck-positioned Simplelink SensorTag.
A total of 32 statistical features (e.g., mean, variance, stan-
dard deviation, maximum and minimum, magnitudes, Goertzel
coefficients of 1-5 Hz etc.) are computed over each 1.5
seconds long frame (best segment achieved from trial and
error) of the absolute acceleration trajectories. We then employ
a change-point detection-based classification method towards
feature extraction and random forest classification [12] which
improved the accuracy significantly on test dataset (95.3%
accuracy with a false-positive rate 1.8%) than the current work
[10]. For postural activities, we consider neck position as a
stationary joint and use this as a reference to calculate relative
acceleration trajectory of pocket mounted smartphone. We
calculate 3-axis smartphone acceleration trajectory (Eqn 16).
We segment the data, extract features with 1.5 seconds framing
window and 50% overlap and finally classify with a Random
Forest based classifier that provides us an accuracy of ≈ 98.6%
(with a false-positive rate of 0.6%).

Macro-Level Activity Classification: We implement our
loosely-coupled HDBN algorithm in Java using WEKA 3.7.11
( [11]) and evaluate our algorithm using PogoPlug Mobile with
a 700 Hz CPU, 128 MB storage and 128 MB memory. We use
EM and Viterbi algorithm for the inference of the most likely
context state space.

In CACE dataset, at first we generate 58 unified rules on
training dataset using intra-inter spatiotemporal correlations.
Table IV shows some generated top rules which represent
the real world scenario. For example, if individual’s postural
activity becomes ‘cycling’ or ‘sitting’ in the exercise bike
area (SR1), in reality, it is more obvious that the person is
‘exercising’. We then employ these rules to prune the state
space at runtime. We find that our coupled HDBN approach
(including micro-level oral gestures, postures and sub-region
contexts) results in a macro-level activity recognition accuracy
of ≈ 95.1% (FP rate 1.5%, precision 97.3%, recall 95.1%,
weighted ROC 97.7% and PRC 98.8%). More interestingly,
our system achieves on average 99.7% accuracy on shared
activities (such as, sleeping, dining, past-times etc.), thus illus-
trating how inter-user behavioral correlation can be an asset in
activity recognition. The least performed macro-activities are
cooking, preparing food, preparing clothes etc. Fig 8(b) shows
the details of macro-level activity accuracy measure including
false positive rate, precision, recall and F-measure.

In CASAS dataset (no oral-gestural activity), we use the
association rule mining technique to generate optimized rules
for intra- and inter-user spatiotemporal correlations; redundant
(e.g., transitive) rules were subsequently merge to eventually
obtain 47. We employ these rules to prune the state space at
runtime. Overall, we find that our coupled HDBN approach re-
sults in a macro-level activity recognition accuracy of ≈ 94.5%
(FP rate 1.4%, precision 96.5%, recall 94.5% and weighted
ROC 98.6%). Our system achieves 99.3% accuracy on shared
activities (such as, Move Furniture and Play Checker). Fig 9
shows details result of classification on CASAS data.
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Fig. 8. (a) Overall accuracy, without gestural and without location context
performance for each home (5 smart home consists with one pair of inhabitants
each) (b) Precision & Recall versus False Positive rate, while adjusting the
cost function of the different classifier during training.
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95.5
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1 0.3 97.1 85.3
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3 0 99 95.1
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5 1.8 55.5 84.5
6 0 100 93.6
7 0.7 99.7 87.6
8 0 99.9 91.3
9 0 99.9 84.7

10 0.1 100 81.3
11 0 100 95.1
12 0.1 97.1 90.8
13 0.1 97.8 91.7
14 3.4 49.5 77.8
15 2.1 69.1 79.3

Overall 1.4 96.5 94.5

Fig. 9. CASAS Dataset
Macro activity classification
FP rate, precision, recall, F-
measure

In contrast, when applied to
CACE dataset, in the absence
of oral gestural data (manually
removed), the accuracy is only
89.7%; when even location (sub-
region) context (i.e., the data
from the ambient motion sensors)
is removed, the recognition ac-
curacy drops to 80.5%. Fig 8(a)
complex activity recognition ac-
curacies with or without the ges-
tural level micro activities and
location tuple for each apartment.
By observing the increased ac-
tivity recognition accuracy across
both different activities and users, we conclude that the gestural
micro activity and location are important context states and
help improve multi-user complex activity recognition accuracy.

F. Comparison with Prior Methods

We next compare our loosely-coupled HDBN approach
(including the state-space pruning technique based on mining
of correlations and constraints) with three previously-proposed
ADL approaches.

(i) the HMM [9] model which has been applied for activity
recognition in a multi-resident setting built an individual
HMM model for each user; (ii) the FCRF [5] approach dealt
with wearable sensor data to exploit the temporal constraints
across two users; (iii) the CHMM [4] approach consisted with
ambient and postural data to exploit spatiotemporal constraints
across multiple users. Note that all of the models (FCRF,
CHMM and CHDBN) cause an exponential increase in the
number of state spaces for multiple users; however, our intel-
ligent use of mined constraints and correlations help reduce
the state space by an order of magnitude (16-fold reduction
compared to FCRF). Fig. 10 compares the performance of
macro-level activity recognition accuracy of CHDBN, FCRF,
CHMM and HMM, and depicts the mean accuracy error of
macro activity recognition over a randomly chosen pair of
users for all 11 activities. We note that our proposed model
outperforms the recognition accuracy (with average accuracies
that are 20% higher than the HMM, 8% higher than FCRF and
5% higher than CHMM approaches) for all the 11 complex

activities. Note that particularly for four macro activities;
namely 2. Prepare Clothes (B), 1. Exercising and 9. Cooking
show high false positive rates with very low precision and F-
measure. We observe that macro activity 1 and 2 are mostly
happened in the sub-location ‘SR1’ and ‘SR6’, 84% and 85%
respectively but in case of misclassified instances, they occur
mostly in other locations such as ‘SR8’ or ‘SR12’. Similarly,
for activity 9 is mostly performed (84% each) in the ‘kitchen’
location while misclassified instances are mostly occurred in
the location ‘dining room’ or ‘living room’.
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Fig. 10. CACE Dataset (a) Macro activity accuracy comparison (b) FP,
Precision, Recall, & F-Measure

G. Comparison with Different Pruning Strategies

We further investigate the benefits of our proposed ap-
proach towards pruning of the state space, compared to other
plausible approaches. For comparison purposes, we consider
CACE dataset with three performance metrics: (1) accuracy:
which is defined as (true positive+true negative)/total instances;
2) computational overhead: total time required to build entire
model; and (3) start/end duration error: this is defined as the
overall error in the estimation of the duration of the activity.
An example will clarify our definition. Consider that the true
duration of “cooking” is 30 minutes (10:05 AM - 10:35
AM) and that our algorithm predicts 29 minutes (10.10 - to
10.39 AM). Then, the start/end duration error is 9 minutes
(|5 minutes delayed start| + |4 minutes hastened end|), in an
overall error of e.g., 30% (9/30=0.3).

TABLE V.
DURATION ERROR

Method duration
error

NH 16.9%
NCR 20.6%
NCS 7.72%
C2 8.1%

We consider 4 different ap-
proaches, each with varying levels
of pruning. Naive-HMM (NH): This
is the exhaustive strategy considering
traditional-HMM with all possible
states in the state space [9]. More
specifically, this approach ignores the
decomposition of a macro activity into micro activities and
directly employs macro-activity classification where the clas-
sifier is trained with traditional features (5 postural and 6
gestural features) computed over individual frames, and di-
rectly labeled with the macro activity label. Naive-Correlation
(NCR): This strategy is a two-fold approach, where we
generate association rules using rule miner and prune the
state space, but for each individual user separately (similar to
the approach adopted in [1]). Naive-Constraint (NCS): This
strategy is implemented with our proposed constraint miner
(alone) incorporating the 4 augmentations in the CHDBN
model. In this strategy, we exclude the correlation miner
and employ the constraint miner towards CHDBN model for
complex activity recognition. Correlation-Constraint (C2):



This approach is hybrid, that combines both the correlation and
constraint miner together to perform the state space pruning
before employing a loosely-coupled HDBN model for complex
activity recognition.

Fig 11(a) and Fig 11(b) plot overall performance in terms
of accuracy and computational overhead respectively of above
4 approaches on CACE dataset. We see that macro-activity
recognition is quite poor if one ignores the cross-individual
correlations: both NH and NCR report very poor perfor-
mance in terms of classification accuracy (76.2% and 73%
respectively) as well as computational overhead (4.95s and
1.5s respectively). In contrast, application of CHDBN concept
shows significant improvement in accuracy (98%) costing a lot
of computational overhead (15.96 secs. Our unified loosely-
coupled HDBN model (C2), which considers correlation and
constraint relations jointly among multi-level contexts, shows
significant additional reduction (15.96/0.96 secs= 16 fold) in
computational overhead. From the cost-accuracy performance
graphs (Fig 11), we clearly see that C2 outperforms all other 3
methods. From Table V, we can firmly say that C2 outperforms
other approaches in terms of start/end duration error too.
Fig. 12 illustrates the incremental performance characteris-
tics of our proposed hierarchical activity recognition model
as the knowledge about the state space increases with the
increase in data points. We note that i) overhead of building
model increases exponentially with the increase in sample
size segment (%); and ii) our model attains a modest activity
recognition accuracy of 83% with a minimal 30% sample
segment. However, initial rules provided by users improve both
accuracy and overhead of our CACE framework (Fig. 12).
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fication performance for NH, NCR,
NCS and C2 strategy in terms of (a)
accuracy and (b) overhead
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Fig. 12. Incremental complex ac-
tivity classification performance in
terms of accuracy and overhead

VIII. CONCLUSION

We focus on the problem of using a combination of on-
body and ambient sensor data to identify the high-level activ-
ities of individuals in a multi-inhabitant smart home. We de-
velop a loosely-coupled HDBN based model for such activity
recognition, that explicitly factors in the correlations between
the micro and macro activity states of multiple users. “State
space explosion” is the key challenge in such a rich interaction
model, we show how a rule mining algorithm, operating on
multi-inhabitant training data, can provide deterministic cor-
relation and probabilistic constraints that dramatically reduce
the state space. Experimental studies with two real world
trace-driven, dataset show that (i) the HDBN model offers
max. 95% activity recognition accuracy, compared to 75%
or lower from alternative approaches that do not exploit such
inter-person context relationships; (ii) our state-space pruning

method provides a 16-fold reduction in context overhead;
and (iii) the use of oral gestural data helps improve the
recognition accuracy of common daily activities by ≈ 20%.
We argue that, CACE model can be used as a smoother of any
online complex activity recognition framework as well. Our
current experimental results have focused on a smart home
facility with only a pair of inhabitants, but we believe that
our generic CACE framework can handle 3-4 occupants as
well. Though CACE works really well in cross-home and intra-
home correlation scenario, adapting our recognition approach
to environments with changing relationship patterns (e.g., if the
joint dining habits of the inhabitants gets modified) remains an
open challenge.
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