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Multi-modal data fusion using source separation:
Two effective models based on ICA and IVA and their properties
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Abstract—Fusion of information from multiple sets of data
in order to extract a set of features that are most useful and
relevant for the given task is inherent to many problems we deal
with today. Since, usually, very little is known about the actual
interaction among the datasets, it is highly desirable to minimize
the underlying assumptions. This has been the main reason for
the growing importance of data-driven methods, and in particular
of independent component analysis (ICA) as it provides useful
decompositions with a simple generative model and using only
the assumption of statistical independence. A recent extension
of ICA, independent vector analysis (IVA) generalizes ICA to
multiple datasets by exploiting the statistical dependence across
the datasets, and hence, as we discuss in this paper, provides an
attractive solution to fusion of data from multiple datasets along
with ICA. In this paper, we focus on two multivariate solutions
for multi-modal data fusion that let multiple modalities fully
interact for the estimation of underlying features that jointly
report on all modalities. One solution is the Joint ICA model
that has found wide application in medical imaging, and the
second one is the the Transposed IVA model introduced here
as a generalization of an approach based on multi-set canonical
correlation analysis. In the discussion, we emphasize the role of
diversity in the decompositions achieved by these two models,
present their properties and implementation details to enable
the user make informed decisions on the selection of a model
along with its associated parameters. Discussions are supported
by simulation results to help highlight the main issues in the
implementation of these methods.

I. INTRODUCTION

In many disciplines today, there is an increasing availability
of multiple and complementary data associated with a given
task/problem, and the main challenge is the extraction of
features that are most useful and relevant for the given task.
Examples of problems include detection of a target in a given
video sequence or sets of images such as multi-spectral remote
sensing data, indexing of audio files, e.g., according to genre,
instruments, and/or themes within, identification of biomarkers
for a disease or condition, and evaluation of treatment in
longitudinal studies using medical imaging data among many
others.

Multiple sets of data might either refer to data of the
same type as in multi-subject or multi-spectral data, or of
different types and nature as in multi-modality data, where
modality refers to a specific data acquisition framework that
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captures unique information such as function and structure
in medical imaging. While there are challenges associated
with both, fusion of multi-modality data poses a number of
major challenges as in this case, the nature, dimensionality,
and resolution of the datasets can be significantly different.
Because, in most cases, one can make very few a priori
assumptions on the relationship among different modalities,
data-driven methods based on source separation have proved
particularly useful for data fusion. By using a simple genera-
tive model, usually of the linear mixing type, these techniques
minimize the underlying assumptions and let different data
types fully interact, hence performing fusion rather than data
integration, where one modality is used to constrain another
[1]. As such, they enable useful decompositions of the data
through latent variables—components—that can help explain
interactions and relationships of different modalities and popu-
lations, provide information in complementary scales as in the
fusion of functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG) data [2], identify biomarkers
to differentiate groups [1], among others. In the first example,
the complementary information is obtained in terms of precise
temporal (with EEG) and spatial (with fMRI) information
explaining the dynamics of an experiment—auditory oddball
task—in a group of healthy individuals, and in the second
case, spatial fMRI and structural MRI (sMRI) components—
maps—are given that show how and where brain function is
affected and how this change is related to structure information
in patients with schizophrenia.

Independent component analysis (ICA) has been the most
widely used one among various blind source separation (BSS)
techniques, see e.g., [3], [4], and has proven to be quite
useful for fully multivariate data fusion as well [1], [5]. By
assuming that the observations are a linearly mixed set of
independent sources/components, ICA can recover the original
sources except for their ordering and magnitudes—and a set of
maximally independent features have been shown to be useful
for many tasks [4], [6], [7]. Independent vector analysis (IVA)
[8], [9] generalizes ICA to multiple datasets, and as shown
in [10], both ICA and IVA can be formulated using mutual
information rate such that they maximally exploit all available
statistical information—diversity—within, and in the case of
IVA, across the datasets, which is critical in fusion studies. As
such, both ICA and IVA provide a fully multivariate approach
for the analysis of multiple sets of data.

In this paper, we focus on fusion of multi-modal data
and present two decomposition methods that are both fully
multivariate and allow multiple datasets to fully interact in
a symmetric manner—i.e., let all datasets play a similar role
with the goal of extracting joint features to summarize the
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properties of all the datasets by allowing them to inform
on each other. These are the Joint ICA (jICA) model that
has been introduced for the fusion of multi-modal medical
imaging data [2] and widely used, see e.g. [1], [11]–[19] and
the Transposed IVA (tIVA) model that we introduce in this
paper for the fusion of multiple datasets. Transposed IVA
generalizes the model given in [20] using multi-set canonical
correlation analysis (MCCA) such that, with the tIVA model,
higher-order-statistics (HOS) can be taken into account. We
study the properties of jICA and tIVA for fusion, discuss
key issues in their implementation along with the advantages
and disadvantages associated with each. We also provide
guidance in the selection of a particular model and discuss
other key decisions one has to make such as algorithm and
order selection when using BSS solutions for data fusion.

The paper is organized as follows. In Section II, we review
source separation using ICA and IVA with emphasis on the
multivariate nature of the methods and the way they account
for the statistical properties—diversity—present within the
data. We also review canonical correlation analysis (CCA)
and MCCA and establish their connection to IVA. Then
in Section II-D, we formally introduce the jICA and tIVA
models, examine their properties. We also discuss the im-
portance of order selection in data fusion and highlight the
key considerations for fusion of multi-modal data. Section IV
introduces simulation results to study the key properties of
the two models, and the paper concludes with a discussion in
Section V. In the accompanying paper, [21], the two models
are applied to fusion of fMRI, sMRI, and EEG data and the
selection of a given model and the associated parameters are
considered for a practical application.

II. SINGLE AND MULTI-DATASET SOURCE SEPARATION
AND THEIR APPLICATION TO DATA FUSION

Blind source separation, and particularly ICA, which has
been the most active area of research within source separation
[4], provides an attractive framework for multivariate data
fusion. In this section, we introduce ICA and its generalization
to multiple datasets, IVA, under a broad umbrella that consid-
ers the use of multiple types of diversity in the estimation.
We provide the connection of IVA with MCCA [22], which
has been used for joint multi-set data analysis and fusion
[23]–[25]. We then address the application of ICA to the
problem of joint BSS, where the datasets can be either multi-
set or multi-modal, and present a brief overview of various
approaches. For multi-modal fusion, the focus of this paper,
we introduce feature-based fusion, which creates a dimension
of coherence among data from different modalities when their
dimensionality and nature are completely different.

In our discussion of ICA and IVA, and to highlight the role
of diversity for the two methods, we use mutual information
rate minimization as the general umbrella, which allows us to
also consider many of the algorithms introduced for ICA under
the maximum likelihood (ML) framework. ML theory enables
us to study large sample properties of the estimators and to
naturally incorporate model/order selection into the problem

definition along with comparisons of algorithm performance
using bounds. Though, we note that joint diagonalization
provides another effective approach to derive solutions for
ICA and IVA, see e.g., [4], [26]–[29]. These approaches can
naturally take sample dependence into account as in [28]–[30],
however, their computational cost significantly increases with
number of datasets and dimensionality.

A. ICA and IVA

Consider the noiseless ICA problem based on instantaneous
mixing of latent sources where there are as many sources as
mixtures. This latent variable model is written as

x(v) = As(v), 1 ≤ v ≤ V, x(v), s(v) ∈ RN , (1)

where v is the sample index such as voxel, pixel, or time and
the mixing matrix A is full rank. The estimates are given by
u(v) = Wx(v), which can be also written in matrix form as
U = WX for a given set of observations X where, u>n ∈ RV

is the nth row of U = WX, i.e., U = [u1, . . . ,uN ]>, and
X,U ∈ RN×V . Since we consider the more general case that
considers sample dependence as well and would like to keep
the notation as simple as possible, we make the following
definitions. We use x(v) ∈ RN to refer to the random vector
that contains the N mixtures xn(v), 1 ≤ n ≤ N , and xn ∈ RV

to denote the transpose of the nth row of the observation
matrix X ∈ RN×V . When the reference is to a random
quantity rather than observation, it will be clear from context.
In addition, we consider the simple noise-free ICA model in
(1) since in the applications we consider here, the problem
is typically overdetermined hence requiring a dimensionality
reduction step prior to ICA. In this step, the dimensionality
of the signal subspace—order—is usually determined using
information-theoretic criteria, discussed in Section III-C, and
the dimensionality is reduced using principal component anal-
ysis (PCA). ICA is then applied to this dimension-reduced
data-set, hence noise that is assumed to be Gaussian and
independent from the signal is discarded prior to ICA.

ICA is based on the assumption that the observations are
a linearly mixed set of independent sources/components, an
assumption that allows identification of the original sources
subject to only scaling and permutation ambiguities, and,
under rather mild conditions, for identifiability. It has been
successfully applied to numerous data analysis problems, see
e.g., [4], [6], [7], [31]–[33]. Starting with the assumption that
the sources sn in s(v) = [s1(v), s2(v), . . . , sN (v)]> are statis-
tically independent, given the mixtures (observations) x(v)—
assumed to be linearly mixed x(v) = As(v)—ICA identifies
the underlying sources (latent variables) by making use of
different properties of the sources, such as non-Gaussianity,
sample dependence, geometric properties, or nonstationarity of
the signal, i.e., diversity in some form [4, Chapter 1]. Among
those, the most commonly used type of diversity has been
non-Gaussianity—HOS—of the sources. Most of the popular
ICA algorithms such as Infomax [34], FastICA [35], and
joint approximate diagonalization of eigenmatrices (JADE)
[27] as well as many of the variants of maximum likelihood
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Efficient modeling/estimation of psn(un)

In optimization, each row of the demixing matrixW[k], where the source

estimates are u[k] = W[k]x[k] corresponds to a different estimated source
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sample dependence

source 
dependence

Fig. 1. IVA for multi-dataset analysis and the two key signal properties
available in addition to HOS: sample dependence and dependence among
sources within a source component matrix Sn

techniques with different approaches for approximating the
source density, such as [36], [37], all belong to this class. A
second important group make use of the second-order statistics
(SOS). These include the algorithm for multiple unknown
signal extraction (AMUSE) [38], second-order blind identi-
fication (SOBI) [39], and weights-adjusted SOBI (WASOBI)
[40], among others. In this case, we use a random process
rather than a random variable model for the sources, and
emphasize the need to include the sample index in sn(v).
Algorithms that only make use of HOS implicitly assume that
the samples within a source are independent and identically
distributed (i.i.d.), in which case we can also simply use sn.
An important result in terms of identifiability that must be
emphasized is that for ICA, one can identify Gaussian sources
as long as they do not have proportional covariance matrices.
The oft repeated result for ICA that states ICA can identify
only a single Gaussian source is thus only true when sample
dependence is not accounted for in the algorithm design and
one relies solely on the use of HOS, thus taking a very limited
view of ICA.

In many applications—and obviously in data fusion—not
only a single but multiple datasets with dependence among
them need to be jointly analyzed. IVA extends the ICA
problem to multiple datasets such that one can take advantage
of yet another important source of diversity, statistical depen-
dence across multiple datasets. In [10], mutual information
rate is presented as an umbrella that allows one to take
multiple types of diversity into account for IVA, and for its
special case of a single dataset, ICA. It is shown how, with
the addition of each new type of diversity, identification of the
ICA/IVA model becomes easier, enabling the decomposition
of a broader class of signals. In addition, with the addition of
each new type of diversity, the performance of the algorithm
improves achieving a better separation of the signals that are
independent—when taken into account in the design of the
algorithm.

The general IVA model [10] that takes these general sta-
tistical properties into account is shown in Figure 1 for K
datasets (observations) X[k] where the rows of matrices S[k]

are components/sources that are independent within a dataset,
and linearly mixed through the mixing matrices A[k]. Using
the random process notation, for K related datasets, each
formed from linear mixtures of N independent sources with

V samples, we write the model as

x[k](v) = A[k]s[k] (v) , 1 ≤ k ≤ K, 1 ≤ v ≤ V (2)

where A[k] ∈ RN×N , k = 1, . . . ,K are invertible matrices
and the source estimates are u[k](v) = W[k]x[k](v). We define
the nth source component vector (SCV) sn as

sn(v) =
[
s[1]n (v), s[2]n (v), . . . , s[K]

n (v)
]>
∈ RK (3)

by concatenating the nth source from each of the K datasets,
or similarly, define the source component matrix (SCM) Sn

shown in Figure 1, through concatenation of the nth row of
each S[k]. The SCV takes into account sample dependence
through the inclusion of index v in its notation—or simply
when we write it as an SCM—and more importantly, since it
is defined using corresponding sources across all K datasets,
this is the term that accounts for the dependence across the
datasets and the cost function is defined with respect to the
SCV.

IVA thus maximizes independence across the SCVs by
minimizing the mutual information rate [10]

I IVA
r (W) =

N∑

n=1

Hr (un)−
K∑

k=1

log
∣∣∣det

(
W[k]

)∣∣∣− C (4)

=

N∑

n=1

(
K∑

k=1

Hr(u
[k]
n )− Ir (un)

)

−
K∑

k=1

log
∣∣∣det

(
W[k]

)∣∣∣− C, (5)

where the (differential) entropy rate denoted with subscript
r is Hr(un) = limv→∞ [H [un(1), . . . , un(v)] /v] and the
entropy H (un) = −E{log psn(u)}. Here, W refers to the
block diagonal KN×KN weight matrix with N×N matrices
W[k] as the diagonal blocks.

Since entropy rate measures the per sample density of the
average uncertainty of a random process, minimization of (4)
makes use of both HOS—through the minimization of missing
information, entropy—and sample dependence by making the
samples easier to predict by increasing sample dependence,
i.e., decreasing the entropy rate. The term log |detW[k]| acts
as a regularization term preserving the volume across the
directions of source estimation and results when we use the
Jacobian for Hr(u). The role of diversity across datasets in
IVA is evident if we study (5), as here the second term∑N

n=1 Ir(un) accounts for the dependence within the com-
ponents of an SCV. While the goal is to decrease the entropy
rate for each SCV to minimize the mutual information rate and
increase independence, this term has negative sign, indicating
the need to increase mutual information within the components
of an SCV, to make use of the dependence—whenever it exists.
Without this second term, the IVA cost is the same as the sum
of K separate ICAs performed on each dataset. Hence, IVA
makes use of dependence across the datasets, when it exists,
and only for the components for which it does exist. Thus this
is not a requirement in general. In any case, the goal in a joint
decomposition is taking advantage of the diversity among the
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datasets. Finally, when we have a single dataset, K = 1, the
SCV un = un is a scalar quantity and IVA reduces to ICA.

For a given set of observations, one can write the likelihood
and study the performance of the ICA/IVA estimator using
maximum likelihood theory. The Fisher information matrix
tells us how informative the observations are for the estimation
of the demixing matrix and the conditions that guarantee the
positive definiteness of the Fisher Information matrix—since it
is a covariance matrix—also give the identification conditions
for the ICA/IVA model. It is shown that, both for ICA and
IVA, it is the SOS that determine identifiability—for a detailed
discussion of the conditions see [10], [41]. In the case of
IVA, one can identify i.i.d. Gaussian sources as long as they
are correlated across the datasets, an important result that
underlines the advantages of exploiting all available diversity
when jointly decomposing multiple datasets.

B. Two examples—Algorithm choice and role of diversity

We demonstrate the role of diversity in performance of
ICA and IVA and how different types of diversity can be
taken into account with two examples. First, consider the
separation of two linearly mixed sources using ICA, an
i.i.d. source drawn from a generalized Gaussian distribution
(GGD) and a second source, a first-order autoregressive (AR)
process generated by an i.i.d. Gaussian process ν(v) such that
s(v) = as(v − 1) + ν(v). For a GGD, the probability density
function (pdf) is Gaussian for shape parameter β = 1, super-
Gaussian when β ∈ (0, 1) and sub-Gaussian when β > 1.
Thus, β quantifies the role of HOS, and the AR coefficient,
a of sample dependence, with increasing role of HOS as β
moves away from 1 and sample dependence as a moves away
from 0. In Figure 2(a), we plot the induced Cramér-Rao lower
bound (CRLB) using the interference-to-signal-ratio (ISR) as
in [10]. The results are shown for 1000 samples and 500
independent runs. First note that for finite CRLB, it suffices for
one of the sources to have sample correlation—nonzero a—
when both are Gaussian. The widely referenced and repeated
condition for the real case that says “with ICA one can identify
only a single Gaussian,” hence is true only when sample
dependence is not taken into account—or is absent in that the
samples are i.i.d., which rarely is the case in practice. In the
same figure, we also show the performance of three different
ICA algorithms, efficient variant of FastICA (EFICA) [42],
WASOBI [40], and entropy rate bound minimization (ERBM)
[43], [44]. EFICA takes only HOS into account and uses a
parametric GGD model, hence is a good match for the sources
in this example. WASOBI makes use of only second-order
statistics, sample correlation, and can approach the CRLB for
stationary AR sources. Finally, ERBM uses a flexible density
matching mechanism based on entropy maximization and also
accounts for sample dependence through an invertible filter
model. As shown in Figure 2(a), only ERBM can account for
the two types of diversity that exists in this example, HOS
and sample dependence. Since it is a simple, computationally
attractive, joint diagonalization algorithm, WASOBI provides
more competitive performance when sources are correlated
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(a) Performance of three ICA algorithms against the in-
duced CRLB: EFICA that uses a GGD model and takes
only HOS into account, WASOBI that is based on use of
SOS, sample dependence, and ERBM that uses both types
of diversity with a flexible density model.
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(b) Performance of three IVA algorithms against the in-
duced CRLB: IVA-A-GGD that uses a multivariate GGD
model and takes HOS into account, IVA-G only source
correlation and SOS, and IVA-ERBM that accounts for
all three types of diversity by using a flexible density
procedure and sample dependence modeling.

Fig. 2. Two examples to demonstrate the role of diversity for (a) ICA (HOS
and sample dependence); and (b) IVA (HOS, sample dependence, and source
dependence) with respect to the induced CRLB. For both examples, note
the improvement in performance as the role of HOS increases, i.e., as shape
parameter β moves away from 1, as sample dependence, i.e., the value of AR
coefficient a, increases, and in the case of IVA, as shown in (b), as source
dependence measured by correlation across datasets ρ increases.

Gaussians (β = 1) and EFICA can only approach the bound
for the case when there is no sample correlation. While we
observe that the exact density match as in the case of EFICA
provides the best performance for the i.i.d. case, the flexible
ERBM can approach the bound as well. The properties of
EFICA, WASOBI and many others can be studied under
the mutual information rate minimization, and hence ML,
umbrella [10], [45].

In the second example, shown in Figure 2(b), we demon-
strate the role of diversity for IVA, where in addition to HOS
and sample dependence—quantified by β and a respectively as
in the previous case—we also have correlation among sources
ρ. Source correlation is introduced for the first pair of sources
that come from a multivariate GGD, and the second pair is
a first-order vector AR process with a diagonal coefficient
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matrix aI. As observed in the figure, with the inclusion of
each new type of diversity, the performance improves (the
CRLB/normalized ISR decreases). The CRLB is finite—hence
the model is identifiable, even when all sources are i.i.d.
Gaussians as long as there is correlation across the pair of
Gaussian sources, i.e., sources within an SCV.

With IVA as well, depending on the algorithm chosen,
multiple types of diversity can be taken into account, however
algorithm design is more challenging due to the multivariate
nature of sources. Both IVA-GGD that uses a fixed shape
parameter from a number of candidates [46] and its adaptive
variant IVA-A-GGD [47] can take HOS into account, but like
EFICA, they are based on the simple GGD density model,
which is limited to unimodal and symmetric distributions.
IVA-ERBM [48] uses a more flexible density model that
includes symmetric, skewed, unimodal, and bimodal marginals
for the multivariate density model and also incorporates sam-
ple dependence. In the figure we also show the performance
of three IVA algorithms, IVA with the multivariate Gaussian
model (IVA-G) [9], IVA-A-GGD, [47], and IVA-ERBM [48].
IVA-G can only account for SOS, sample and source correla-
tion, while IVA-A-GGD takes HOS into account and is a good
match for the SCVs in this example. However, IVA-ERBM
provides the best performance as it accounts for all three
types of diversity available for this problem, at the expense
of highest computational complexity, as expected.

C. CCA, MCCA, and IVA

IVA is intimately related to CCA [49] and its generalization
to multiple datasets, MCCA [22]. IVA generalizes both to the
case where not only SOS but all-order statistics can be taken
into account and where the demixing matrix is not constrained
to be orthogonal. CCA is most likely the oldest method that
enables inference from two datasets by letting them interact
in a symmetric manner, i.e., by treating the two datasets
similarly. It has been widely applied in economics, biomed-
ical data analysis, medical imaging, meteorology, and signal
processing among others [50]. Using the notation presented
in Section II-A, CCA finds pairs of weighting vectors w

[1]
n

and w
[2]
n to transform x[1] and x[2] such that the normalized

correlation between their transformations u[1]n =
(
w

[1]
n

)T
x[1]

and u[2]n =
(
w

[2]
n

)T
x[2] is maximized.

In [22], a number of extensions of CCA to multiple datasets,
all termed multi-set CCA, are described and presented under
a common umbrella. They can be introduced by using the
SCV definition in (3) as follows. In order to maximize the
correlation among the K datasets, we search for vectors w

[k]
n ,

k = 1, . . . ,K such that the correlation within an SCV un =[
u
[1]
n , u

[2]
n , . . . , u

[K]
n

]T
∈ RK where u

[k]
n =

(
w

[k]
n

)T
x[k], is

maximized. This is achieved through a deflationary approach
where one first estimates w

[k]
n for k = 1, . . . ,K, and then

proceeds to the estimation of w
[k]
n+1 for k = 1, . . . ,K such

that w
[k]
n is orthogonal to w

[k]
n+1, thus resulting in matrices

W[k] that are orthogonal.

There are five metrics introduced in [22] where each has the
goal of increasing the correlation within an SCV estimate, un,
by moving the SCV correlation matrix Rn = E{unu

T
n} close

to being singular, i.e., increasing the spread of the eigenval-
ues. Examples include MAXVAR that maximizes the largest
eigenvalue of Rn and GENVAR that minimizes the product of
eigenvalues, i.e., the determinant, of Rn. The GENVAR cost
provides the connection with IVA. If we were to assume that
a multivariate Gaussian model is used for the SCV, thus only
taking second-order statistics into account and ignoring sample
dependence by assuming i.i.d. samples, we can substitute
the entropy of a multivariate Gaussian for the nth SCV
(1/2) log

[
(2πe)K

∏K
k=1 λ

[k]
n

]
where λ

[k]
n , k = 1, . . . ,K are

the eigenvalues of Rn into (4). Given that in MCCA, the
demixing matrices W[k] are constrained to be orthogonal the
last term in (4) disappears and hence the IVA cost reduces to
the minimization of the product of eigenvalues of Rn under
a given constraint, such as on the sum of the eigenvalues.

Thus, IVA generalizes MCCA and justifies the use of GEN-
VAR within a maximum likelihood framework, additionally,
when IVA algorithms are designed using a richer class of
models for the multivariate pdfs as in [48], then one can fully
incorporate HOS, as well as sample dependence. As such, IVA
is readily applicable to all the problems for which MCCA has
proved useful, and in addition, can take HOS across multiple
datasets into account, allowing for better use of available
statistical information.

D. Application of ICA, MCCA, and IVA to joint data analysis
and fusion

ICA as well as CCA/MCCA enable joint BSS and have
been used for multivariate data fusion and analysis. In this
section, we provide a brief overview of these applications
and address how IVA provides an effective solution for multi-
set data analysis as already demonstrated with a number of
convincing examples, and can be also used for multi-modal
data fusion through the tIVA model we introduce in Section
III. In the discussion, we differentiate between multi-set data
analysis—also called fusion in certain contexts—and multi-
modal data fusion and address the two separately next.

Multi-set data refers to multiple datasets that are essentially
of the same type and dimension such as video or image se-
quences from multiple channels—e.g., RGB channels or multi-
spectra—or from multiple views, medical imaging data such
as fMRI or EEG data collected from multiple subjects, with
multiple conditions or tasks, and remote sensing data at dif-
ferent time instances, spectral bands, angles, or polarizations.
One way to analyze multiple datasets within a blind source
separation framework is by defining a single dataset through
simple concatenation of these datasets and then performing a
single ICA on this new single dataset. Two such models have
proven useful, especially with application to medical image
analysis and fusion: the Group ICA model that concatenates
multiple datasets in the vertical dimension followed by a
principal component analysis (PCA) step [33], [51] and the
jICA model that performs this concatenation horizontally such
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that each dataset is stacked next to each other [1], [2]. Group
ICA model has been typically used for analysis of data from
multiple subjects [33], [51], [52]—hence for multi-set data—
and jICA for multi-modal data fusion. However, depending on
the nature of the data and the task at hand, there are examples
of different use for each model as in [12], [53]. Another way
to perform multi-set analysis is to directly make use of the
IVA model shown in Figure 1 as it allows for full interaction
of multiple datasets without additional constraints such as the
definition of a common “group subspace” as in Group ICA
or a common mixing matrix as in the jICA model. IVA has
been successfully used in multi-set data analysis. Examples
include multisubject fMRI analysis [54]–[56], study of brain
dynamics in rest data [57], enhancing of steady-state visual
evoked potentials (SSVEP) for detection [58] among others.
Similarly, MCCA has been used for multi-set analysis, for
analysis of multi-subject fMRI data [23], [24], and Landsat
Thematic Mapper data with spectral bands over a number of
years [25].

Multi-modal data, on the other hand, refers to information
collected about the same phenomenon using different types
of modalities or sensors, where the modalities provide com-
plementary information and thus joint analysis of such data
is expected to provide a more complete and informative view
about the task at hand. Examples include functional medical
imaging data such as EEG and fMRI data that report on
distinct aspects of brain function, EEG by recording electrical
activity through electrodes placed on the scalp and fMRI by
imaging the brain hemodynamic response. In addition, one
can fuse structural MRI and/or diffusion tensor imaging data
along with functional data to incorporate structure information,
or one can also look at associations with genetic information
such as single nucleotide polymorphism (SNP) data. Simi-
larly, in remote sensing, optical and radar imagery provide
complementary information, where the synthetic radar aperture
systems complement the information optical sensors provide
for horizontal objects bypassing the limitations on time-of-
day and atmospheric conditions for the optical sensors. This
is our main focus in this article, fusion of data from multiple
modalities where the datasets are complementary to each other,
though, typically of different nature, size, and resolution.

Feature-based fusion of multi-modal data: Since our focus is
on multi-modal fusion with the goal of letting the modalities
fully interact in a symmetric manner, there are a number of
challenges that need to be overcome. A major one stems from
the fact that the nature of data from various modalities is
inherently different and the best way to treat them equally
for true fusion is thus not evident, and in addition, their
dimensionality and resolutions differ. One effective way to
overcome both of these challenges is to define a set of
multivariate features such that most of the variability in the
data is still preserved, i.e., these are not higher level features
that are simple summary statistics, but are still multivariate.
By generating such features, one can establish a dimension
of coherence that enables the creation of a link among the
multi-modal data through this common dimension.
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stillsignificant.Figure5showstheresultingmapsifthe mixingmatrixgeneratedfromtheseparateICAofAOD analysisisregressedontotheGMdatatogeneratethe spatialmaps.Thecorrelationbetweenthecorresponding mixingmatrixcolumnsoftheseparateICAanalysesandthe jointICAanalysisfortheAODandGMdatasignificant componentwere0.6and0.7,respectively. Wecanalsoexaminedirectlytherelationshipbetweenthe GMandAODregions.Inordertoexaminethejointtask activityinmoredetail,ajointhistogramwascomputedas follows.VoxelssurvivingthethresholdfortheAODpartof thejointsourceweresortedindescendingorderusingthe componentvoxelvalues(thesamewasdoneforvoxelsin theGMpartofthejointsource).Thisprocedureresultedin twosetsofvoxelscoordinates.Histogramswerethengen- eratedbypairingthesetwovoxelsets.Forexample,thefirst twopointsforindividual1arethevoxelsvaluesforthe

AODfMRIactivationdata(atthepositionthatismaximum intheAODpartofthejICAsource)vs.thevoxelvaluesfor theGMsegmentationdata(atthepositionwhichismaxi- mumintheGMpartofthejICAsource).Thesepairings wereusedtogeneratesingle-subject2-Dhistogramsofgray matterconcentrationvs.AODfMRIsignal.Thehistogram imageforeachparticipantisshowninFigure6a.Inaddition, wecomputedthewithin-groupaverageofthehistograms andsubtractedthecontrolsgroupaveragefromthepatient groupaveraged(showninFig.6b).Forthevoxelsincluded, the2-Dhistogramcanbeconsideredanestimateofthejoint distributionfunctionforthetwomodalities(e.g.,p(faod,fgm) wherefaod,gmindicatesthefMRIsignalamplitudefor theauditoryoddballtaskortherelativegraymatter concentration,respectively).Wealsocomputedthe marginalestimateddistributionsp(faod)!!gmp(faod,fgm)and p(fgm)!!aodp(faod,fgm)(Fig.6c,d).Themainfindingisthat

Figure3. Simulationandsimulationresults. Generationofhybriddataisdepicted. Resultsfromalowerandhighernoise environmentisshowninb,c.The sourcewhichrevealedthegreatest differencebetweenthetwo“groups” isshownfortheAODpartofthe jointsource(left,b,c)andtheGM partofthejointsource(middle,b,c). Loadingparametersvs.theground truthvaluesareshownonthefar rightofb,c.
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stimuluswasa500Hztone,thetargetstimuluswasa1000Hz tone,andthenovelstimuliconsistedofnonrepeatingrandom digitalnoises(e.g.,tonesweeps,whistles)(Fig.2).Tworunsof auditorystimuliwerepresentedtoeachparticipantbyacomputer stimuluspresentationsystemviainsertearphonesembeddedwithin 30dBsoundattenuatingMRcompatibleheadphones. Thetargetandnovelstimulieachoccurredwithaprobabilityof 0.10;thenontargetstimulioccurredwithaprobabilityof0.80.The

Fig.2.Auditoryoddballparadigm:auditoryoddballevent-relatedfMRItask.

Fig.1.IllustrationofjointICAfMRI/ERPdatafusion:motivatingexampleinwhich(a)portionsofthebraininthefMRIdataareshowntobeassociatedwith portionsofthetimecoursesintheERPdata.Usingjointestimationofspatialandtemporalindependencecapturesthisvariationandresultsinasetofjoint components(b)whichindicate,foreachcomponent,where(fMRI)andwhen(EEG)theactivitywasoccurring.ThematricesTandSrepresentallthetemporal andspatialcomponents,withtiandsibeingafusedspatialandtemporalpairfortheithcomponent.Oncethecomponentsareestimated,onecanrecombine theminordertoexaminethedynamicinterplaybetweenspaceandtime(c).
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stillsignificant.Figure5showstheresultingmapsifthe mixingmatrixgeneratedfromtheseparateICAofAOD analysisisregressedontotheGMdatatogeneratethe spatialmaps.Thecorrelationbetweenthecorresponding mixingmatrixcolumnsoftheseparateICAanalysesandthe jointICAanalysisfortheAODandGMdatasignificant componentwere0.6and0.7,respectively. Wecanalsoexaminedirectlytherelationshipbetweenthe GMandAODregions.Inordertoexaminethejointtask activityinmoredetail,ajointhistogramwascomputedas follows.VoxelssurvivingthethresholdfortheAODpartof thejointsourceweresortedindescendingorderusingthe componentvoxelvalues(thesamewasdoneforvoxelsin theGMpartofthejointsource).Thisprocedureresultedin twosetsofvoxelscoordinates.Histogramswerethengen- eratedbypairingthesetwovoxelsets.Forexample,thefirst twopointsforindividual1arethevoxelsvaluesforthe

AODfMRIactivationdata(atthepositionthatismaximum intheAODpartofthejICAsource)vs.thevoxelvaluesfor theGMsegmentationdata(atthepositionwhichismaxi- mumintheGMpartofthejICAsource).Thesepairings wereusedtogeneratesingle-subject2-Dhistogramsofgray matterconcentrationvs.AODfMRIsignal.Thehistogram imageforeachparticipantisshowninFigure6a.Inaddition, wecomputedthewithin-groupaverageofthehistograms andsubtractedthecontrolsgroupaveragefromthepatient groupaveraged(showninFig.6b).Forthevoxelsincluded, the2-Dhistogramcanbeconsideredanestimateofthejoint distributionfunctionforthetwomodalities(e.g.,p(faod,fgm) wherefaod,gmindicatesthefMRIsignalamplitudefor theauditoryoddballtaskortherelativegraymatter concentration,respectively).Wealsocomputedthe marginalestimateddistributionsp(faod)!!gmp(faod,fgm)and p(fgm)!!aodp(faod,fgm)(Fig.6c,d).Themainfindingisthat

Figure3. Simulationandsimulationresults. Generationofhybriddataisdepicted. Resultsfromalowerandhighernoise environmentisshowninb,c.The sourcewhichrevealedthegreatest differencebetweenthetwo“groups” isshownfortheAODpartofthe jointsource(left,b,c)andtheGM partofthejointsource(middle,b,c). Loadingparametersvs.theground truthvaluesareshownonthefar rightofb,c.
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Fig. 3. Two models for multi-modal data fusion for multiple datasets—shown
for K = 2. Note the change in the role of sources and mixing matrix columns
for the profiles and components.

This is the approach that has been used in the fusion of
medical imaging data with the jICA approach [1], [2] and in
MCCA [20], as well as their variations, such as parallel ICA
[11], linked ICA [59], and MCCA + jICA [60]. A natural
example is the use of features extracted for multiple subjects
where the subject profiles/covariations provide the common
dimension over which the modalities are linked. For data
acquired during an event-related task, these can be task-related
contrast images for fMRI data, event-related potentials for
EEG, and when there is no task, e.g., when working with rest
data, fractional amplitude of low frequency fluctuations could
provide the features for fMRI and EEG. For structural MRI
when fused with functional data, making use of segmented
gray matter images is meaningful since the activity would be
expected to be connected to gray matter only. Besides subjects,
the common dimension can be defined using different condi-
tions, trials, or time instances at which the multimodal data
are acquired. In all of these cases, we can look for underlying
components that have similar (dependent) covariations across
the multivariate features. We provide specific examples in [21],
but first, in the next section, define the two models based on
ICA and IVA to effectively link such datasets.

III. THE JOINT ICA AND TRANSPOSED IVA MODELS FOR
MULTI-MODAL FUSION AND THEIR PROPERTIES

Given K ≥ 2 datasets that have a common dimension
N , we define two models: the jICA and the tIVA models
to fuse multi-modal feature data, or multiple datasets with at
least one dimension of coherence. We show the two models
in Figure 3. An application example would be multivariate
features extracted from fMRI, EEG, sMRI, and SNP data (or
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a combination of those) for N subjects where the common
dimension is the subjects and associations across modalities
are achieved through subject covariations, i.e., profiles. The
jICA model is introduced in [2] where it is applied to construct
chronometry of auditory oddball target detection from EEG
and fMRI data in healthy subjects and is implemented in the
Fusion ICA Toolbox (FIT, http://mialab.mrn.org/software/fit/)
for application to medical imaging data. The tIVA model
generalizes the model introduced in [20] where MCCA is
used to maximize profile correlations across modalities to
the case where HOS and dataset dependences are also taken
into account. Next, we first provide an overview of the two
methods and then discuss the choice of an algorithm for each,
emphasizing the role of diversity, and consider the problem of
order selection and validation.

A. Comparison of the two models

In order to compare the two models shown in Figure 3, we
first establish the terminology, especially in reference to com-
ponents vs profiles. As an example, consider a case where we
have multivariate features extracted from N different subjects
and the connection among the two datasets is established by
subject covariations. Let the multi-modality datasets be formed
by stacking features from the two groups once after another,
then if we are looking for differences between the groups
then the subject covariations correspond to the profile that
indicates a difference between the groups as in the example
case considered in Figure 4. Or, alternatively if we are studying
a single group and looking at similar components, these would
be profiles that exhibit small variations among its entries.

By transposing the datasets in tIVA, the role of samples and
observations is reversed with respect to jICA, if we define
the matrices as the number of observations by samples. In
addition, while in jICA the independent sources correspond
to components, e.g., fMRI spatial maps, ERP or sMRI com-
ponents, that are linked across a common profile, in tIVA,
the independent sources become the profiles, i.e., the subject
covariations. Hence, we prefer to use profile and component
as shown in Figure 3 within the context of fusion, which,
depending on the model used, can refer to either sources—
that are independent—or columns of mixing matrix/matrices,
which are close to being orthogonal even when not constrained
by the algorithm as in FastICA. This is due to the role of
the last term log |detW[k]| in the the ICA/IVA cost (4) that
acts as a regularizer, which is maximum for orthogonal W
and minimum when any two rows of W are co-linear. Below
we summarize the properties of the profiles and components,
which play an important role in the decision of how to choose
one model over another. For jICA in Figure 3, the associated
components are
• constrained to have the same profile across modalities,

and
• independent among themselves;

while the profiles—a single set for all modalities—are close
to being orthogonal among themselves. For tIVA, however, it
is the profiles that are

• maximally dependent across the modalities (for corre-
sponding profiles), and

• independent among themselves within a modality

while the components are close to being orthogonal within a
modality.

Since even for a representation at the feature-level, the nature
of datasets is still typically very different, the link is estab-
lished by finding components for which the covariations across
the datasets are similar. In the case of the jICA model, we
constrain these to be exactly the same across the modalities,
and for tIVA, maximally statistically dependent, as in this case,
a given profile across the modalities corresponds to a single
SCV defined in Section 3. IVA makes use of dependence that
exists across the datasets when achieving the decomposition
hence making the tIVA model more flexible than jICA. Thus,
when there are components that are common across only a
subset of the datasets, IVA will be able to identify those
while the performance of jICA will suffer as there is a strong
mismatch to the underlying model for jICA. Similarly, when
the strength (correlation) of connections among components
across the modalities are significantly different, tIVA will again
outperform jICA. However when the noise and uncertainty
is an important concern, an approach that imposes strong
constraints like jICA can be preferable as we demonstrate
with examples. The tall nature of the data matrices in Fig-
ure 3 makes it clear that IVA needs to be performed after a
dimension reduction step where the selected order is less than
N , a topic we address in Section III-C. Because for tIVA, the
samples refer to N , e.g., number of subjects rather than the
samples within features as in jICA, the tIVA model requires a
significant number of samples N to have sufficient statistical
power.

These differences in the properties of the profiles and
components imply additional considerations. An important
application for both of these models is the identification
of biomarkers between groups of subjects—or conditions.
In these cases, the subject dimension N includes subjects
from M classes such that N =

∑M
m=1Nm and components

that report on differences across groups of subjects can be
identified by detecting differences in subject covariations—
values in the profile coefficients for corresponding groups—
through a statistical test, such as a simple t-test. When applied
to differences between two groups as in [11], [24] the profiles
assume a step type response, and one can identify only one
such component with tIVA and up to two with jICA as sample
size tends to infinity. When the goal is identifying differences
in more than two groups of subjects, then both models show
limitations as neither orthogonality nor independence can be
satisfied for such profiles, and certain extensions need to be
considered, which we discuss in Section V. However, it is
important to note that such considerations are of concern when
we have very large sample sizes, and hence will depend on
the number of samples, e.g., subjects available for the study.
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B. Algorithm choice

Besides model choice, the algorithm used for achieving
the independent decomposition plays an important role in the
final results. For example, all of the results we are aware
of and are discussed in [21], use the Infomax algorithm
in their jICA implementations. As in the case of ICA of
fMRI data, Infomax has been the first algorithm applied to
fusion of medical imaging data, and has been the default
choice in the toolbox implementing the method, FIT. This
might explain the bias in its choice in the literature. However,
Infomax uses a fixed nonlinearity, one that is matched to
super-Gaussian sources, and hence Infomax source estimates
tend to be all highly super-Gaussian, thus also sparse. This
is also the case for FastICA, in particular with the most
commonly used kurtosis nonlinearity. An algorithm like EBM
that uses a flexible density model, or like ERBM that takes
multiple types of diversity into account makes better use of the
statistical properties that are available and finds sources from
a wider range of distributions leading to better maximization
of independence as we also demonstrate with examples in this
paper. In addition, in the jICA model, associated components
are assumed to come from the same pdf, thus use of an ICA
algorithm with a more flexible source pdf is more desirable
since it allows for a richer model for the joint pdf.

For the tIVA model, the only fusion examples reported to
date have used CCA and MCCA, and primarily the MAXVAR
cost, which yields robust estimates, but of course as with all
other MCCA solutions, can only take SOS into account, and
thus can only find uncorrelated profiles not those that are
independent within a dataset like tIVA. With IVA, as discussed
in Section II-B, multiple types of diversity can be taken into
account depending on the algorithm chosen such as HOS and
source dependence using IVA-GGD [46] or its adaptive version
[47], source and sample dependence in addition to HOS using
IVA-ERBM [48] at the expense of increased computational
complexity.

With the tIVA model, since the independent sources corre-
spond to the profiles, use of HOS and of diversity across the
datasets provides multiple advantages. Thanks to this diversity,
one can identify profiles that are i.i.d. Gaussians as long
as they are dependent across the datasets, and that is the
case one is interested in for fusion since these correspond
to components—columns of mixing matrix in tIVA—that are
linked across the multi-modal datasets. In addition, a profile
that corresponds to a difference between two groups will
assume a step-like shape, hence will have a distribution where
HOS and sample dependence play an important role.

Finally, the “approximately orthogonal” property for the
demixing matrices discussed in Section III can be made more
strict, and can be imposed during the estimation as is the
case in FastICA and EFICA algorithms, and also for MCCA,
which can be used for tIVA model. In this case, for the given
number of (finite) samples, the orthogonality property will
be more closely satisfied for the profiles in the jICA model
and the components in the tIVA model, and this determines
the nature of multiple profiles or components estimated by

each, just like the independence assumptions as discussed in
Section III. A cautionary remark here is regarding the role of
whitening of the data prior to ICA, as sometimes mistakenly
noted, this whitening is not sufficient to limit the search space
for W to orthogonal matrices. This becomes true only when
the sample size tends to infinity, or when it is imposed in the
estimation procedure as in FastICA and MCCA. Thus, it is
important to remember that IVA with the multivariate Gaussian
model, IVA-G, and MCCA using GENVAR are equivalent
only when the demixing is constrained to be orthogonal
for IVA-G, and otherwise IVA-G includes a wider search
space than MCCA with GENVAR. Orthogonality provides
certain advantages such as enabling easier density matching,
however its advantages can be preserved through a decoupling
procedure [61] without constraining W to be orthogonal, and
is implemented in a number ICA and IVA algorithms including
EBM, ERBM, IVA-GGD, and IVA-ERBM.

C. Order selection and validation

As in most source separation problems, determining the
order of signal subspace M where we let x = Axsx + nx

with x,nx ∈ RN and sx ∈ RM , M ≥ N , and performing the
fusion in the signal subspace improves the generalization abil-
ity, and hence provides robustness. This model also justifies
the use of noiseless ICA model for the mixing as the noise
is removed prior to fusion. For jICA, since it is performed
after concatenation of multi-modal data, we treat the resulting
N ×∑K

k=1Nk dimensional dataset as one, one can directly
proceed with order selection as in ICA of overdetermined
problems, see e.g., [23]. The development in Section II-A
allows us to work directly within the maximum likelihood
framework through the equivalence of entropy rate and maxi-
mum likelihood by the asymptotic equipartition property and
to make use of the desirable large sample properties of max-
imum likelihood. The formulation for order selection in [62]
assumes a multivariate Gaussian model for sx and the penalty
function to balance the increasing likelihood with complexity
can be chosen from a number of options such as Akaike’s
information criterion (AIC) [63], Bayesian information crite-
rion (BIC) [64], or the minimum description length (MDL)
[65]. When writing the likelihood term in this formulation
however, the inherent assumption is that the samples are i.i.d.,
which is not true for most signals. For example in fMRI
data, there is inherent spatial smoothness due to the point
spread function of the scanner. The hemodynamic process
also has some inherent smoothness. Furthermore, smoothing
is a common preprocessing step used to suppress the high
frequency noise in the fMRI data and to minimize the impact
of spatial variability among subjects. Similarly in EEG data,
there is strong temporal correlation among the samples. As a
result, the order is usually highly overestimated when these
criteria are used directly as in [62] and the samples are not as
informative due to sample dependence. One practical solution
to the problem uses entropy rate to measure independence
among samples and determines a downsampling depth for the
samples [66]. In [67], the problem is addressed by jointly
estimating the downsampling depth and the order. However
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downsampling decreases the effective sample size thus limiting
the ability of maximum likelihood estimator to achieve its
optimality conditions. A more recent approach [68] addresses
this issue by using a formulation based on entropy rate, i.e.,
by directly modeling the sample dependence structure to write
the likelihood. In addition, the consistency of the MDL/BIC
criterion is established for the given formulation.

In all of these cases, one typically uses singular value
decomposition (SVD) to perform PCA and reduce the dimen-
sionality to the order suggested by the selected information-
theoretic criterion. Using SVD rather than eigenvalue de-
composition allows handling the two models, transposed and
regular, i.e., tIVA and IVA, similarly, and obviously the
singular values for both X ∈ RN×V and XT are the same.
Hovewer, when determining order of multiple datasets as in
tIVA or the regular IVA model, it is important to remember
that one is usually interested in identifying the dimensionality
of the subspace of components that are common across the
datasets, rather than those that are specific to each. Hence,
keeping the largest variance for each dataset—the common
practice in most order selection steps—might not yield the
desired solution. A number of possibilities exist to address
this problem among which we can include being conservative
with the PCA step and keeping most of the variability in
the data is one, or using joint analysis approaches such as
CCA [69], MCCA/IVA, and higher-order generalized SVD
[70] to explore the nature of correlation/dependence across
the datasets. An important point in such analyses relates to
the effect of sample size. As studied in [71] for CCA, i.e., for
two datasets, when the number of samples is smaller than
the sum of the ranks of two data matrices, the estimated
canonical correlation coefficients can be estimated as unity.
For the tIVA model since typically N � Vk, all pairwise
canonical correlation coefficient estimates are expected to be
close to 1 and hence uninformative. The solution proposed in
[72] for two datasets uses a linear mixing model as in [62]
and uses a reduced rank version of a hypothesis test to address
this issue, and hence is a promising solution for this scenario
as well.

One practical approach to determine the order has been to
test the stability of the results for different orders and choose
a number within a range where it is stable [18], [24]. This has
been mostly an empirical study, where the goal has been to see
whether the estimated components provide significant change
across orders measured by simple correlation type measures.
For validation, one can take advantage of the ML framework
and evaluate conditional likelihood given various estimators
for different models considered as in [73], and when looking
at group differences, increase in the detected differences, the
results of pairwise t-statistics is another possibility as we
discuss in [21] within the context of the selected application,
fusion of medical imaging data.

IV. SIMULATION EXAMPLES

In this section, we present two sets of simulations to demon-
strate scenarios where tIVA might be preferable over jICA and
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Fig. 4. Generative model for the simulations.

vice versa. The generative model used in the simulations is
demonstrated in Figure 4 where for each dataset, we generate
10 sources each with 500 i.i.d. samples drawn from a zero
mean Laplacian distribution with a standard deviation of 4,
which are linearly mixed using a 50×10 matrix where the first
column has a step-type characteristics to simulate a difference
between the two groups—a control and a patient group—each
with 25 samples (subjects). The remaining nine columns of the
mixing matrix are i.i.d. samples from a Gaussian distribution.
The mixing matrix column with the step response, a1 ∈ R50,
establishes the link among the datasets, i.e., results in the
component that demonstrates the group difference. Thus we
have a1 = c + n1 and ai = ni for i = 2, . . . , 10. Here, c is
the step profile shown in Figure 4, and the standard deviation
σni

of the zero-mean Gaussian noise for ni, i = 2, . . . , 10 is
adjusted such that it matches the standard deviation of a1 for
each case we consider. The number of samples that correspond
to subjects is chosen as 50, a relatively low value, to consider a
case similar to the examples with real data. The first simulation
example shown in Figure 5 considers two datasets, and a
second one with results given in Figure 6, fusion of three
datasets. We tested the performance of jICA using EBM, and
tIVA using IVA-G and MCCA using MAXVAR and GENVAR
for three datasets, and using IVA-G and CCA for two datasets.
Since the sources are Laplacian, jICA-Infomax is expected to
perform similarly, and for tIVA we used only second-order
algorithms available for two datasets as the total number of
samples (subjects) is relatively small, only 50. Identifiability
condition for tIVA-G/CCA/MCCA is satisfied for only one
component (profile), while for jICA for all as the sources
are independent Laplacians. For jICA, the datasets are simply
concatenated and dimension is reduced to 10—the true order—
yielding X ∈ R10×1000 for the case with two datasets and
X ∈ R10×1500 for three datasets, and for tIVA, each dataset is
reduced in dimension resulting in

(
X[k]

)T ∈ R10×50. Results
are the average of 100 independent runs. In the figures, we
show the average correlation of the estimated component
whose estimated profile had the highest average t-statistic
(between the groups of 25 subjects each) and the original
component which had the step-type profile.

In the first set of simulations, we consider two datasets
and control the correlation (link) between the two datasets by
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Fig. 5. Estimation performance for the common component with two datasets
as (a) the height of the step in the profile changes, (b) the noise level added
to the step profile changes, and (c) the number of subjects increases with a
fixed noise and height level.

either changing the height of the step in c or by keeping the
height constant (at 1.5) and changing σn1 . Hence, we study the
performance of the two models when the underlying common
structure between the two datasets becomes weaker as well
as when it is strong but the level of noise increases. For the
results shown in Figure 5(a), σn1

= 0.3 and the height of
the step is changed as 0.1 + 0.1k where k = 0, . . . , 14,—
resulting in correlation values in the range [0.1,1]—and for
the results shown in Figure 5(b), we have σn1

= 0.1 + 0.1k
where k = 0, . . . , 10—resulting in correlation values [0.3, 1].
For the first case, when the connection becomes weaker due to
the change in the underlying structure—step height—tIVA-G
provides better performance than jICA. For the second case,
jICA performs better as the noise level increases since the
underlying structure is strong—the step size is kept constant
at 1.5—and jICA tends to average out the effect of noise. It is
also worthwhile noting the degradation in performance with
CCA compared to IVA-G due to the orthogonality constraint
for CCA that limits the search space for the optimal demixing
matrices. Additionally, as the step size decreases, the mixing
matrices become closer to being orthogonal resulting in an

initial improved performance for CCA. In Figure 5(c), we
show the change in performance as the number of subjects
increase for σn1

= 0.3 and identical step responses of 1.5.
The results demonstrate the advantages for tIVA model as the
number of subjects increase.

The second set of simulations considers three datasets,
again with one common component across all three. We first
study the effect of decreasing correlation for one dataset by
decreasing the step height for this one component while the
step for the other two are kept constant at 1, and σn1

= 0.3. In
Figure 6, we show trends in the t-statistic and the estimation
performance measured with correlation of the estimate to the
original for the components for which the step size is altered.
A couple of points need to be emphasized. First, note that the
significance for the component in terms of group difference
estimated by jICA tends to increase while the estimation of
the component itself—its correlation with the original—starts
to decrease. On the other hand, the tIVA model yields reliable
estimates for the t-statistics and correlation values for the for
the component that has the weak connection to the other two
as shown in Figure 6(a). For the other two components whose
step sizes are kept constant—results not shown,—however,
jICA in general yields higher values and closer to the truth
for the t-statistic than the tIVA solutions but its correlation
for these two components is lower than those of tIVA. In
this example, since the demixing matrix is closer to being
orthogonal—especially when the step height decreases,—the
performances of tMCCA-MAXVAR and tMMCA-GENVAR
are slightly better than tIVA-G, as these are more efficient
solutions to the problem, especially in the case of MCCA-
MAXVAR algorithm. Finally, in Figure 6(c), the step height
for the third modality is kept at 0.3 while the other two are 1
for σn1

= 0.3 as the number of samples (subjects) is increased.
The increasing sample size improves the performance of all
approaches including jICA, though as expected, its perfor-
mance suffers for the estimation of the component with weak
correlation as shown, and its estimation for the components
with the stronger link is higher—around .75—while those of
tIVA solutions are close to 1—results not shown. Finally, the
estimates for the t-statistics for both jICA and tIVA solutions
are reliable for the components with the strong link, and with
tIVA for the weak component as well while it is over-estimated
with jICA—again, figures not shown.

V. DISCUSSION

In this paper, we considered techniques based on blind
source separation for data-driven fusion of multiple sets of
data, with focus on two models for multi-modal fusion, the
jICA and the tIVA models. The jICA model has been intro-
duced for fusion of medical imaging data, and tIVA extends
the model introduced using MCCA—again within the context
of medical imaging—to incorporate HOS. However, both of
these are general models that enable multivariate fusion in a
symmetric manner and can be applied to fusion of multi-modal
data in fields outside medical imaging through appropriate
definition of the features. Even though the focus of the current
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Fig. 6. Estimation performance for the common component with three
datasets as the connection of one dataset—the height of the step—decreases
in terms of (a) t-statistic for the most significant component, (b) correlation of
the most significant component to the original, and (c) when the connection
of one dataset is kept low and the number of subjects increases.

paper is on the fusion of multi-modal data, both models can
be used for fusion/analysis of multi-set data as well, which is
addressed in Section II-B in terms of role and use of diversity
in ICA and IVA decompositions. Depending on the problem,
the multi-set data can be concatenated horizontally as in the
jICA model, or vertically as in Group ICA [51], or we can use
IVA as in the tIVA model, or without the transposed version,
as originally defined in (2).

On algorithm choice: By specifically focusing on two separate
models for multi-modal fusion, our goal has been to review
their properties and elucidate the key considerations in their
application. Along with the model choice, other decisions such
as algorithm to use and the order of the signal subspace,
all have an impact on the final results. For example, for the
jICA model, which is now quite widely used, Infomax has
been the main algorithm of choice in all the publications we
have cited—the only exception is [74] which uses COMBI, a
combination of EFICA and WASOBI algorithms [75]. Infomax
is also the default algorithm in the Fusion ICA Toolbox [76],
which implements the method. However, as we show, the use

of a more flexible ICA algorithm such as EBM significantly
improves the performance. Since in jICA, concatenation of
multiple datasets leads to a richer distribution than that of each
modality alone, the underlying distribution of the common
components cannot be effectively captured by the Infomax
algorithm, which uses a simple fixed nonlinearity. In addition,
since this nonlinearity provides a match to sources that are
super-Gaussian, it naturally emphasizes estimation of sources
that are more sparse.

Sparsity vs independence: The discussion on the usefulness of
either of the two assumptions, independence versus sparsity,
in data-driven analysis has been a topic of discussion in
various fields including the analysis of fMRI data [77], [78].
Dictionary learning, for example, can be used to achieve fusion
by promoting sparsity [79]. However, dictionary learning, like
most matrix decomposition methods requires the definition
of additional constraints with appropriate weighting factors
to enable uniqueness and solutions that are interpretable. On
the other hand, for most BSS decompositions and ICA, we
can obtain unique solutions subject to rather mild conditions,
and without the need to define additional constraints. In
addition, estimates obtained using ICA or IVA are naturally
smooth and hence physically easy to interpret. This has
been another reason for the desirability of solutions based
on BSS. It has been this simplicity that contributed to the
popularity of ICA, especially with the introduction of the
Infomax algorithm [34]—especially when implemented using
relative/natural gradient updates [80], [81]—along with the
FastICA [35] algorithm, that they could be applied to many
problems easily. However, it is important to note that there
are now a number of ICA algorithms to choose from, and
by selecting one that uses a flexible nonlinearity like EBM,
we can better make use of HOS to maximize independence.
We can also take additional types of diversity such as sample
dependence into account to better maximize independence and
approach the induced CRLB as demonstrated by Example 2(a).
As we demonstrate in [21], for multi-modal data fusion, the
use of a flexible algorithm like EBM better optimizes the
ICA criterion—as measured through mutual information—and
leads to estimates that are easier to interpret, suggesting that
independence is indeed a very useful objective.

Importance of diversity, ML framework, and order selection:
When performing data fusion, a key source of diversity is
dependence across datasets as shown for IVA in Example 2(b).
Working within the ML framework enables performance eval-
uations by studying performance of a given algorithm against
the CRLB as shown in these examples, and provides additional
advantages such as performance evaluations using conditional
likelihoods as in [73]. Perhaps more importantly, working
within ML framework allows us incorporate model order se-
lection naturally into the analysis through use of information-
theoretic criteria. Order selection plays an important role in
the performance of the final fusion results, and also presents
an effective means to perform exploratory analysis of multi-
modal data by enabling us to determine orders of both specific
and common signal subspaces across multiple datasets. As
we note in Section III-C, for the sample poor case, the
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estimation of signal subspace order is a difficult problem, one
that requires special care. This problem is recently addressed
for two datasets when performing CCA [72], and has provided
meaningful results for the cases considered. Its extension to
multiple datasets along with the use of methods such as
higher-order generalized SVD [70] hold much promise for
the exploratory analysis of multi-modal data since the order
of common signal subspaces provides a direct measure of
the link that exists across the datasets. A reliable method for
determining the order can guide the choice of a model, features
to use, and in what form, among others.

As we have noted, there are already a number of extensions
of the jICA model discussed here. While extensions are always
useful, we should first clearly understand the properties of
a given model and the variables that affect its performance
to make sure we are making full use of the advantages the
model has to offer. This has been our main objective in this
article, to provide such a guidance. Obviously the cases one
might consider in simulated examples are very broad, and
we have chosen to concentrate on examples that parallel the
problem represented with the example that uses real data in
the accompanying paper [21] where the goal is identifying
components (biomarkers) that correspond to group differences.
When searching for components that reflect differences in
more than two groups for example, the limitations posed by
the models such as independence and orthogonality of the
components or profiles will require extensions to the ICA
and IVA such that they enable decompositions of independent
subspaces rather than independent components as in [82]–
[85]. Another important case arises when the goal is trying to
find underlying components that help explain the data rather
than identifying group differences, as in the study of multi-
modal data from only a healthy group, which was the original
application for the introduction of jICA [2]. For this problem,
tIVA model is particularly attractive as the profiles in this
case correspond to sources and can be identified even when
they are Gaussian as long as they are dependent across the
subjects—and, these are the sources that yield the components
of interest given by the columns of the mixing matrices. In
all the simulation examples as well as the results with real
data [21], we have used second-order IVA algorithms, IVA-
G and MCCA since the examples included cases with low
sample sizes. But as shown in the simulations, the tIVA model
has advantages when the number of samples—subjects, in the
cases we considered—increases. When the number of samples
increases, using IVA algorithms that take HOS statistics into
account such as IVA-GGD [41], [47], or one that takes both
sample dependence and HOS into account as in IVA-ERBM
[48] will be more desirable.

Our paper, we hope, highlights the main issues that need to
be taken into account in the application of fusion methods
based on BSS, which has offered an attractive solution to
the problem. By addressing the main issues and trade-offs
involved in their use, our goal has been not only to provide
guidance but also to emphasize topics of research that will
significantly extend the power of these methods. Even though
our focus has been on two models, which provide useful

decompositions of data that are also easy to interpret, most
of the issues we addressed arise in the application of other
data-driven models, in particular those based on matrix and
tensor decompositions, and hence would also benefit from a
closer look of the topics we addressed such as order selection
for multiple sets of data.
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