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Abstract—Adversarial attacks attempt to disrupt the training,
retraining, and utilizing of artificial intelligent and machine
learning models in large-scale distributed machine learning
systems. This causes security risks on its prediction outcome.
For example, attackers attempt to poison the model by either
presenting inaccurate misrepresentative data or altering the
models’ parameters. In addition, Byzantine faults including
software, hardware, network issues occur in distributed systems
which also lead to a negative impact on the prediction outcome.
In this paper, we propose a novel distributed training algorithm,
partial synchronous stochastic gradient descent (ParSGD), which
defends adversarial attacks and/or tolerates Byzantine faults. We
demonstrate the effectiveness of our algorithm under three com-
mon adversarial attacks again the ML models and a Byzantine
fault during the training phase. Our results show that using
ParSGD, ML models can still produce accurate predictions as if
it is not being attacked nor having failures at all when almost half
of the nodes are being compromised or failed. We will report the
experimental evaluations of ParSGD in comparison with other
algorithms.

Index Terms—Data security, Byzantine-resilient SGD, Dis-
tributed ML

I. INTRODUCTION

Adversarial attacks against AI and ML attempt to disrupt

the training and retraining process by either injecting inac-

curate misrepresentative data samples or altering the models’

parameters. In distributed machine learning, each participant

trains the global model using its own local data and shares

the model’s updates only with central servers or one server.

An adversary may compromise workers during the training

phase with malicious data samples such as false labels or input.

For example, attackers can compromise the mobile devices by

sending the junk gradients and parameter updates to the server

which severely impact the predicted outcome of the model.

Distributed Machine Learning (ML) or Federated Learning

(FL) [18], [23] provides solutions for scaling ML models when

training with real-world big data. Usually, with traditional

single-data center or distributed data across a range of geo-

graphic places, multiple computation parties include the cluster

of CPUs, multiple GPUs, or TPUs are aggregated for speed-

up and collaboratively train a global model. For advanced

distributed ML, the frameworks like Parameter Servers [22],

MapReduce [12], Graph-parallel [19], and All-reduce [4] are

widely used in popular open-source machine learning library

including Tensorflow [2], Horovod [31], Pytorch [28], Spark

[37], etc.

In distributed training, synchronous and asynchronous

modes are used in the above frameworks for data parallelism.

Most approaches use stochastic gradient descent (SGD)

based algorithms [7], which are the iterative algorithms

for optimizing loss functions to train ML models. For the

synchronous method, all workers train the same target model

using the different portions of the dataset then take the

average of gradients at each iteration (epoch) via All-reduce

communication. In asynchronous mode, all workers train the

model using their local batch of data independently, then send

the updates to a parameter server asynchronously. Several

security concerns arise in such a distributed environment

since malicious attacks or failures are involved.

Previous works have been studied to mitigate the adversarial

attacks in collaborative and distributed learning, [36], [6], [24],

[11], [34], [35], [9], [26], and [15]. As we said, in distributed

training settings, workers will send updates (gradients) to the

server, the server will aggregate all the gradients, calculate the

updates, and then return the updated value to all the workers

for the next round of training. Workers can be compromised

by malicious adversaries or are vulnerable to failures such as

software, hardware, and network faults (Byzantine failures).

What’s more, the averaging aggregation rule like Federated

Averaging (FedAvg) [23], can not tolerate even one outlier

because a Byzantine worker can simply tamper its gradient

with a wrong direction, leading the averaging vector far away

from the correct direction. Current approaches like Krum [6]

are easy to tolerate outliers if the bad gradients are far away

from the correct ones. But usually, the malicious workers

may pretend they are correct nodes among the system. Some

algorithms are not efficient to tolerate the bad gradients that

are hidden among the correct ones. To sum up, building

a privacy-preserving and Byzantine-resilient distributed

machine learning system becomes extremely important and

challenging.

In this paper, we analyze and address three main questions:

(i), are there any reasonable solutions to tolerate at most

half Byzantine workers in a proper and explainable way?

(ii), if some of the workers are to be crashed, how can we

http://arxiv.org/abs/2109.02018v1


Byzantine-resilient GARs Fault Tolerance Mode Assumption Time Complexity

Median and Trimmed-mean [36] n >= 2f + 2 # weak assumption O(n · d)
Krum [6] n >= 2f + 1 # strong assumption O(n2 · d)

multi-Krum [10] n >= 2f + 3 # strong assumption O(n2 · d)
Bulyan [24] n >= 4f + 3 # strong assumption O(n2 · d)
Kardam [11] n >= 3f + 1  strong assumption O(d+ n · f)

Zeno [34] unbounded # weak assumption O(n · d)
Zeno+ and Zeno++ [35] unbounded  weak assumption O(n · d)

Draco [9] n >= 2f + 1 # strong assumption O(n · d), run twice

Hogwild! [26] unbounded  strong assumption O(n · d)

ByzSGD [15]
n >= 2f + 1
n >= 3f + 2

 strong assumption O(n2 · d)

ParSGD n >= 2f + 1 G# weak assumption O(n · d)

TABLE I: Comparison of Byzantine-resilient GARs. # synchronous  asynchronous G# partial synchronous.

detect and extract them from the total gradients so that the

ML models can converge resiliently during the training?

(iii), some Byzantine-resilient gradient aggregation rules

(GARs) have been proposed and tested under the strong or

weak byzantine assumption, but we found some of them may

reach good accuracy in strong assumption and bad in weak

assumption, and vise versa. Can we create a new aggregation

rule which works in both strong and weak assumptions?

We propose a new GAR solution which is based on the

mean of f nearest neighbors to the median among all gradients

submitted by workers. We will show that this solution can

tolerate at most f ≃ n
2 −1 Byzantine workers and degrade the

time complexity from O(d·n2) to O(d·n) in comparison with

Krum, Multi-Krum and so on. Our GAR, ParSGD, can find g
as a new median when f ≤ n−1

2 workers are attacked. After

finding this new median, we try to find f gradients closest

to this new median and return the mean of f + 1 gradients

(including the median) as a new parameter for the next

epoch training. We define both strong Byzantine resilience

and weak Byzantine resilience based on the ParSGD and

the formal definitions are listed in Section IV. In short, if f
nodes are Byzantine workers and their gradients are far away

from the median, we define it as strong Byzantine resilience

because the aggregation rule will never choose the Byzantine

gradients. However, if some Byzantine nodes are pretending

to be correct workers and mix up with correct ones, we define

it as weak Byzantine resilience. Accuracy will be used as a

performance metric for evaluating our ParSGD in comparison

with other algorithms. We also propose to use an unknown

bounded time δt for excluding the crash workers compare the

results to other solutions.

Contribution. In summary, the three primary contributions

of this work are as follows:

• We propose a new aggregation rule, named ParSGD, to

tolerate Byzantine failures in distributed ML systems. Our

experimental results show that the accuracy of ParSGD

can reach near f ≃ n
2 − 1 Byzantine workers among n

workers with O(n · d) time complexity. Compared with

Mean, Median, and Krum, we get the best accuracy under

three common attacks with two different datasets.

• Theoretically, we redefine strong and weak Byzantine re-

silience definitions based on ParSGD, and proved ParSGD

can reach a relatively stable accuracy under both of these

two assumptions.

• Our ParSGD is a new partial synchronous GAR based on

an unknown bounded time δt which can efficiently exclude

crash workers to make the training converge faster. Both

theoretical and experimental analyses are also provided.

Paper Organization. Section II discusses related work. Sec-

tion III introduces the motivations and some background defini-

tions. Section IV introduces our new proposed aggregation rule

ParSGD, definitions of strong and weak Byzantine resilience in

partial synchronous SGD, time complexity analysis, and proof

of its Byzantine resilience. Section V analyzes the convergence

of a distributed SGD using ParSGD. Section VI presents our

experimental evaluation of ParSGD and some discussion. We

summarize our conclusion in Section VII.

II. RELATED WORK

A. Byzantine fault tolerance.

In previous studies on Byzantine fault tolerate (BFT), sev-

eral consensus protocols and systems have been proposed to

tolerate arbitrary faults in distributed system (e.g., PBFT [8],

Raft [27], BFT-Smart [5], Honey Badger [25], Chios [13],

etc). All of them need to make a consensus before delivery;

however, it is costly in terms of communication overhead for

employing consensus in distributed ML architecture. Because

it may have thousands of workers processing very large

datasets and all workers need to reach a consensus. On the

other hand, the design of ParSGD is inspired by the concept

of BFT to tolerate Byzantine workers which may submit

malicious updates. However, we do not directly adopt BFT

since we achieve a slightly different goal: BFT achieves the

total order of events while we seek to tolerate malicious

updates from the workers.

B. Byzantine-resilient SGD.

To tolerate the outliers, robust statistics have been proposed.

We summarize them in Table I. Yin et al. [36] proposed



Median 1 and Trimmed-mean solutions, in which the server

sorts all of the gradients and takes median as the global

parameter for next round training, same as the Trimmed-

mean which needs to remove a percentage of outliers after

sorting the gradients. However, a recent paper proved that the

Median aggregation rule is still under an order-optimal error

rate [16]. Blanchard et al. [6] proposed Krum for selecting

a valid vector update. This rule has local time complexity

O(d · n2) which makes it relatively expensive to compute

when the d and n are large. If Krum can fully tolerate

Byzantine workers, time can be a good trade-off; however, the

Krum assumes only one neighbor pretends as a valid vector

among the correct vectors, and in each iteration, the algorithm

chooses n−f−2 neighbors which are not reasonable because

Byzantine workers may corrode more workers to pretend they

are correct. What’s more, Chen et al. [9] proposed Draco

which leverages a gradient-coding based algorithm for robust

learning. EI Mahdi et al. [24] proposed a strong Byzantine

algorithm, named Bulyan, which needs n >= 4f + 3 for

tolerating fewer Byzantine workers and convergence requires

strong assumptions. To preserve training convergence, Sohn

et al. [32] proposed a voting-based authentication to tolerate

inaccurate training results. Alistarh et al. [3] utilize historical

information to achieve the best sample complexity of training.

Xie et al. [34] proposed Zeno to tolerate the cases where the

majority of workers are not fully trusted during training. Xie

et al. [33] also demonstrated that Median and Krum exhibit

poor performance. Other asynchronous algorithms also have

been proposed (e.g., Zeno++ [35], Kardam [11], Hogwild!

[26], ByzSGD [15]), but inevitably the lack of information on

the descent directions will cause a low training accuracy since

asynchronous models do not depend on strict arrival times of

messages for reliable operations.

III. PROBLEM SETTINGS AND BACKGROUND

We consider a large-scale distributed machine learning

system with Byzantine-resilient GARs. At the core of our

proposed gradient aggregation rule (GAR) ParSGD is to find

a new vector g as correct medians after f ≤ n−1
2 workers are

attacked in d-dimensional vectors. And calculate the mean of f
gradients near the median. To better understand our algorithm,

in this section, we first compare available approaches of

Byzantine-resilient GARs. Then we describe problem settings,

relevant attacks, and some background definitions of our

ParSGD.

A. Byzantine-resilient GARs.

Several distributed ML aggregation rules F (·) have been

proposed to tolerate Byzantine faults. We summarize some

of them in Table I. Median [36] and Krum [6] have become

the most efficient and effective ones for tolerating Byzantine

faults. Authors showed that in theory, both of them can tolerate

at most 1
2 Byzantine workers, we say their breakdown points

[17] can reach 1
2 . We will show that the sample median is

1In the paper, we define the uppercase Median as a GAR solution and the
lowercase median as the middle value.
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Fig. 1: (a) the number of correct gradients larger than Byzan-

tine gradients, (b) some Byzantine gradients pretend they are

correct, B becomes the one closest to the barycenter among

n gradients, (c) f gradients close to median.

an unbiased estimator which can also reach the breakdown

point in Section 4. Krum proposed a solution using n− f − 2
squared-distance-based GAR to find a vector that is closest to

the barycenter2 among n vectors. The algorithm is resilient

under random Gaussian attack when the f vectors are far from

the correct vectors with a small variance. Fig1(a) shows f
Byzantine workers are at a distance far away from the correct

workers. As long as the number of correct workers is more

than Byzantine workers, then the Krum can always find a

correct gradient and sum up its nearby n − f − 2 neighbors

to find a minimum vector among the correct workers. But it

can hardly tolerate the Bit-flipping attack which may change

all the gradients to opposite directions when there are 50%

Byzantine workers. Fig1(b) shows under Bit-flipping attack

where B can never find enough correct neighbors and would

to count Byzantine gradients instead, and Krum will return B
as the final vector for next round training. Our ParSGD will

find the median first, then take the mean of f gradients near

the median, as shown in Fig1(c). The Median solution has

the same issue, if n > 2f , and the variance is large enough,

the real median still can be changed to an imprecise gradient

even there is only one Byzantine worker, although the new

median is among the correct workers. In addition, both Krum

and Median are just in search of one optimal vector among

n vectors and this vector is vulnerable to be attacked. We

will show that these two solutions are not available and have

not enough training accuracy under around 1
3 of Byzantine

workers in the evaluation section, even both of their breakdown

points can reach 1
2 as shown in Section 6. Furthermore, none

of these synchronous GARs can tolerate crash-stop failure.

Except one of the GARs, named Hogwild! [26], employs a

coordinator to monitor the number of workers which is time-

consuming.

2https://en.wikipedia.org/wiki/Barycenter



B. Problem settings

We consider the problem of minimizing an loss function

that has the form of a sum, Q(w) = 1
n

∑n
i=1 Qi(w). Each

of function Qi is associated with the i-th training set. The

sum-minimization problem also arises for empirical risk min-

imization (ERM) [38]. In this case, Qi(w) is the value of

the loss function, and Q(w) is the empirical risk. When used

to minimize the above function, a standard gradient descent

method would perform the following iterations:

wt+1 := wt − γ∇Q(wt) = wt − γ

n

n∑

i=1

∇Qi(w
t) (1)

where t is the index of epoch, γ is learning rate, and the

aggregation rule F = 1
n

∑n

i=1 ∇Qi(w
t).

We assume that α fraction of the n workers are Byzantine

and 1 - α fraction are correct workers. The Byzantine workers

will not obey the rule of GARs by sending arbitrary messages

or pretending they are valid among n correct workers. In

addition, correct workers can be crashed down due to software,

hardware, or communication issues. In our assumption, we

assume that a system can only tolerate at most 50% of

Byzantine workers. If f workers are Byzantine, then n − f
correct workers must be larger than f , we then get n > 2f .

When n ≤ 2f , the GARs still can choose the minority group

of gradients and aggregate them for an update, but the result is

not under Byzantine resilience assumptions because it breaks

the principle of minority versus majority. Under this premise,

median is the most appealing unbiased estimator, however, it

can be maliciously altered to a new one and no longer be

accurate.

C. Relevant Attacks

1) Crash-stop failure: A crash failure [30] occurs when a

node suffers from an omission failure once, and then continues

to not respond.

2) Bit-flipping Attack: Bit-flipping attack [29] is an attack

which the attacker can change the ciphertext to result in a

predictable change of the plaintext.

3) Random Gaussian Attack: Random Gaussian Attack also

known as Gaussian Noise [1], it’s a statistical noise having a

probability density function equal to normal distribution.

D. Relevant Definitions

We introduce the coordinate-wise median and some other

relevant definitions as follows, which serve as cornerstones

for our algorithms.

Definition 1 (Coordinate-wise median): For vectors

Vi in R
d, i ∈ [1, n], the coordinate-wise median

g = med{Vi : i ∈ [1, n]} is a vector with its k-th
coordinate being gk = med{V k

i : i ∈ [1, n]} for each k ∈ [d],
where med is a one-dimensional median and gk is one

column of k medians.

Definition 2 (Bounded variance) ∀i ∈ {1, .., n},

diag(E[(EVi − µ)(EVi − µ)T ]) ≤ σ2.

Definition 3 (Absolute skewness): For one-dimensional

random variable X , define the absolute skewness as γ(X)

= E[(X−µ
σ

)3] = E[(X−µ)3]
σ3 = E[(X−µ)3]

(E[(X−µ)2])3/2
= K3

K
3/2
2

,

and let Sk be the skewness of random distribution, say

Sk = m3

m
3/2
2

=
1

n

∑i=n
i=1

(xi−x̄)3

[ 1n
∑

i=n
i=1

(xi−x̄)2]3/2
, where x̄ defined as sample

mean, m2 as the second central moment(variance), and m3

defined as third central moment.

Definition 4 (Lipschitz continuity): ∀(w,w′), h is L-Lipschitz

if ‖h(w)− h(w′)‖ ≤ L‖w − w′)‖2
Definition 5 (Smoothness): h is L′-smooth if and only if

∀(w,w′), ‖h′(w) − h′(w′)‖2 ≤ L′‖w − w′)‖2
Definition 6 (Strong convexity): h is µ-strongly convex if and

only if ∀(w,w′), h(w′) ≥ h(w) + h′(w)⊤(w′ −w) + µ
2 ‖w′ −

w‖22.

IV. PARTIAL SYNCHRONOUS BYZANTINE-RESILIENT SGD

We now introduce our partial gradient aggregation rule,

ParSGD, which satisfies both weak and strong Byzantine

resilience. The detailed distributed synchronous SGD is shown

in Algorithm 1.

In a normal distribution, the median equals to mean.

Namely, if |gk − µk| is relatively small, then we can achieve

good training accuracy. Theorem 1 proved that the breakdown

point of median can reach 50%, but it doesn’t mean it will

always be 50% because it can easily be altered if Byzantine

workers are pretending. In this section, we proposed two

corollaries, Corollary 1&2, which help explain why to take the

mean of closest gradients near median is an excellent solution.

Theorem 1. With the fraction of Byzantine workers as

α and the sample median as the estimator, the asymptotic

breakdown point [17] for α is 1/2.

Proof. If we have m data points and we let a minority of

⌊m−1
2 ⌋ points become outliers leaving the rest of the fixed

points, and the median stays with the majority. Usually median

may change, but it does not become arbitrarily bad, then the

sample breakdown point is

⌊m−1
2 ⌋
m

= ⌊m− 1

2m
⌋

⇒ 1− 1
m

2
,

the more m we have, the breakdown point will be closer to

one-half. The asymptotic breakdown point is one-half.

A. Important Notations

The notations used in this paper is summarized in Table 2.

B. Partial Synchrony

We first consider timing assumption in partial synchronous

SGD. In a synchronous system, there is a known fixed upper

bound δt3 on the time required for a message to be sent

from one worker to another. In an asynchronous system, no

3We define t represents the index of an epoch, and δt represents a bounded
time.



Notation Meaning

i index of worker

n number of total workers

T number of epochs

t index of epochs

δt unknown bounded time

c number of crash workers

f number of Byzantine workers

γ learning rate

V all vector of d-dimensional gradients

Uf+1 f vectors near median, including the median

Ū take the mean of Uf+1

gk the value of median in k-th dimension

g a vector of selected median

µk average value in k-th dimension

F gradient aggregation function

TABLE II: Important Notations

Algorithm 1: Partial Synchronous Byzantine SGD

Workers: i = 1, ..., n
for t = 1, ..., T do

Waiting and receive wt from the server;

Training, compute, and send the new gradients

V t+1
i = ∇Qt

i(w
t) to the server

end

Server:

input: δt (Empirically and manually initialize a enough

time δt) ;

for t = 1, ..., T do

Broadcast wt to all the workers;

Wait only 2 ∗ δt bounded time for n− c gradients

{V t
i : i ∈ [n− c]} arrive;

Recalculate and update the δt if all the gradients

are being collected;

Calculate f as defined in Definition 7, f = n−c−1
2 ;

Compute Ū as defined in Corollary 1 and 2;

Update the parameter wt+1 = wt − γtŪ ;

end

fixed upper bound δt exists. And partial synchrony [14], fixed

bound δt exists, but it’s not known a priori4.

Proposition 1. If a trusted GAR executes aggregation

F (·) during a bounded and not-a-priori time δt, then n − c
active vectors are eventually collected, where n refers to the

number of workers, and c refers to the crash nodes.

In this proposition, the server only needs to initialize an

estimated time δt which is enough for collecting all the

gradients in one round. In the rest of the epochs, the GAR

will recalculate the aggregation time δt, and only wait for

2 ∗ δt bounded time which is not known a priori.

Proof. We initially set an unknown bounded time 2 ∗ δt to

4https://en.wikipedia.org/wiki/A_priori_and_a_posteriori

collect n− c active workers, the proof is simple and straight-

forward. We assume c number of workers may be crashed or

compromised by malicious failures (crash-stop failure is also

a kind of Byzantine failure). In this case, Byzantine workers

may spend more training time than normal workers because of

the extra time for Byzantine infection. Simply, we only wait

for 2 ∗ δt time in aggregation for the crash nodes, eventually,

n − c vectors will be collected. We exclude c crash workers

which may be caused by network delay, malicious attack, or

arbitrary system failures.

C. Byzantine Resilience

We introduced strong and weak Byzantine resilience in

Section 1. In order to explain how our ParSGD work both

in strong and weak Byzantine resilience, we formally define

our strong and weak Byzantine resilience GARs in partial

synchronous SGD and two Corollaries as follows.

Definition 7 (Weak Byzantine Resilience): Given a system

of n components, b of which are Byzantine workers, including

c random crash-stop vectors as C1,...,Cc and f malicious

workers pretending as corrects ones as B1, ...,Bf , where 0 ≤
b ≤ n, b = f + c, and b, c, f ∈ N. Let V1,...,Vn−b be the

independent identically distributed(i.i.d.) random in R
d, Vi

∼ N (µ, Σ), and with EV k
i = µk, k refers to dimensional

index. F is said to be weak Byzantine resilience if it satisfies

F = F (

n−c
︷ ︸︸ ︷

V1, ...,B1, ...,Bf ,
︸ ︷︷ ︸

f

...,Vn−f−c,C1, ...,Cc
︸ ︷︷ ︸

c

)

︸ ︷︷ ︸

n

(i) n > 2f + c, and{

f = 0, c = 0 if Byzantine free

0 ≤ c < n, 0 ≤ f ≤ ⌈n−c−1
2 ⌉ if f + c > 0

(ii) |gk−µk| ≤ ǫ, where ǫ is negligible, gk refers to the median.

Definition 8 (Strong Byzantine Resilience): F is said

to be strong Byzantine resilience if it satisfies condition (i)

and (ii) in Definition 7, and (iii) |gk − V far
i | < |gk −Bclose

j |,
where gk is the median, V far

i refers to the farthest correct

gradient, and Bclose
j refers to the closest Byzantine gradient.

Theorem 1 proved Median is an unbiased estimator which

can tolerate at most 1
2 Byzantine workers. Even there are

f ≃ n
2 − 1 Byzantine workers, Median can still find a new

correct gradient as the new median to tolerate the arbitrary

gradients attack. Based on Theorem 1 and Definition 7 and 8,

we get two corollaries below.

Corollary 1: Under the assumption of Definition 7,

8 and Theorem 1, suppose we have random vectors

Ṽi ∈ R
d, i ∈ [1, n − c] containing normal gradients

and malicious ones. The set of f -neighbor vectors

of g is defined as Uf+1 := {{V̂i}fi=1, g}, where

{V̂i}fi=1 = argmin
∑f

i=1

∑d

k=1 |V k
(i) − gk|, for different

V k
(i) ∈ V k

j , i ∈ [1, f ], j ∈ [1, n − f − c]. Here Uf+1 is



obtained by comparing the distance between each vector and

median per dimension. We can conclude that none of the

vectors in Uf+1 contains Byzantine values. The estimator to

update the gradient is Ū := 1
f+1 (

∑f+1
i=1 V̂i + g).

Proof. Suppose we have a set S :=
{V1, ...,Vn−f−c,B1, ...,Bf} taking value in R

d. In the

k-th dimension, let V k
1 , ..., V k

n−f−c and Bk
1 , ..., B

k
f be the

reordered gradients such that |V k
1 − gk| ≤ ... ≤ |V k

n−c − gk|
and |Bk

1 − gk| ≤ ... ≤ |Bk
f − gk| , where gk refers to the

sample median. Under the assumption of Definition 7 and 8,

|gk − V far
i | < |gk −Bclose

j |, meaning that

|V k
1 −gk| ≤ ... ≤ |V k

n−f−c−gk| ≤ |Bk
1−gk| ≤ ... ≤ |Bk

f−gk|
(2)

Definition 7(i) limits the f must smaller than n− f − c. We

defined

n > 2f + c ⇒ n >= 2f + c+ 1

then, f <= ⌈n− c− 1

2
⌉

We take the largest f in n workers,

n = 2f + c+ 1

n− f − c = f + 1

Here, f + 1 equals to n − f − c, we get the first n − f − c
correct gradients and append them to the Uf+1.

Corollary 2: Under the assumption of Definition 7 and Theo-

rem 1, suppose we have random vectors Ṽi ∈ R
d, i ∈ [1, n−c]

containing normal gradients and malicious ones. The set of

f -neighbor vectors of g is defined as Uf+1 := {{V̂i}fi=1, g},

where {V̂i}fi=1 = argmin
∑f

i=1

∑d
k=1 |V k

(i)−gk|, for different

V k
(i) ∈ V k

j , i ∈ [1, f ], j ∈ [1, n− f − c]. We can conclude that

V k
(i) may contain Byzantine vector elements, but all the vectors

in Uf+1 still move in the bounded deviation direction to make

the training converge. The estimator to update the gradient is

Ū := 1
f+1 (

∑f+1
i=1 V̂i + g)

Proof. Since some Byzantine workers pretend to be correct

ones, the median vector g is important for the gradient

direction. As we know the breakdown point of α is 1
2 , we will

show the E[g] = µ. Because we perform the median selection

per coordinate, the proof only needs to show E[gk] = µk, on

the k-th dimension, with k ∈ [1, d], k ∈ N.

Considering a set of i.i.d normal variable {Xj}mj=1 and

Xj ∈ R, µ and σ2 are the mean and variance respec-

tively. Let Xj:n be the j-th order in the a sorted sequence

{X1:m, ..., Xm:m} = {Xj}mj=1. Suppose m is odd, the median

of the set is M := Xm−1

2
:m, which has the probability density

of this order statistics as:

fodd
med(x) =

m+ 1

2

(
m

m−1
2

)

f(x)(F (x)(1 − F (x)))
m−1

2 (3)

where f(x) and F (x) are the density and cumulative dis-

tribution functions respectively. Since the normal distribution

is symmetric, F (x) = 1 − F (2µ − x), we can easily get

fodd
med(x) = fodd

med(2µ− x), namely

E[Xm−1

2
:m] = µ (4)

When m is a even number, the median is M :=
1
2 (Xm−1

2
:m+Xm−1

2
:m). So the joint probabily density function

is:

feven
med (x1, x2) = (

m

2
)2
(
m
m
2

)

f(x1)f(x2)(F (x1)(1 − F (x2))
m−1

(5)

Again, using the symmetric property, we have

E[M ] = E[2µ−M ] (6)

which means E[M ] = µ, still. From eq.(4) (6), we know

that the sample median of a normal distribution is an unbiased

estimator. When Byzantine samples existing, provided that

α < 1
2 , we can easily see the sample median as the unbiased

estimator still holds.

We then prove the weak Byzantine resilience. Under the

assumption of Definition 7(ii) |gk − µk| ≤ ǫ, where ǫ is

negligible. The Vi in a probability distribution is symmetric

about the mean, presuming that data near the mean are more

frequent in occurrence than data far from the mean. Even

some Byzantine workers pretend they are correct among V k
i ,

they still have high likelihood values with a given normal

distribution, and we say the sample mean of the set Uf+1

still in the right direction.

D. Complexity Analysis

Computing the median of a list of n of unordered elements

takes O(n) time with standard selection algorithms for a 1-

dimensional vector, and the time complexity to get the median

which is only O(1). ParSGD has one more step than Median,

which is to find f closest gradients, and the time complexity

of this step is O(n). Usually, there are d-dimensional vectors,

so the overall time complexity is O(d · n).
V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the SGD

using ParSGD algorithm defined in Section 4. All vectors

in Uf+1 are in the normal distribution, and all the elements

of the vectors are from correct values in strong Byzantine

assumption. The absolute value between k-th dimension of

Ū and µk is bounded in a small value (η) which will help

lead a right direction of gradient descent. Same as the weak

Byzantine assumption, some workers may pretend they are

correct gradients in Uf+1, but the f + 1 gradients in Ṽi are

pre-selected through f closest neighbors near the median,

and we proved median is an unbiased estimator which can

tolerate at most 1
2 Byzantine workers. In Proposition 2, we

bounded η and found it is only related to the maximum of

covariance σ and f .



Proposition 2. Suppose we have random vectors

Ṽi ∈ R
d, i ∈ [1, n − c] containing normal gradients

and malicious ones. We assume that Vi be any independent

and i.i.d d-dimensional vector, Vi ∼ N (µ,Σ), and gk refers

to the median of Ṽ k
i . σ is the upper bound of the variance

under Definition 2. If n − c > 2f and |gk − µk| ≤ ǫ, let

uk = Ūk be the k-th dimensional sample mean of Uf+1. We

defined η by

E(uk − µk)
2 =

fσ2

(f + 1)2
, η =

√
fσ

f + 1
≤ σ

2

Proof. Under strong Byzantine resilience, Ṽi only composes

of Vi. All the computation is under a normal distribution

condition. The bounded variance can be written as

E(V k
i − µk)

2 ≤ σ2 (7)

E((V k
i )2 + µ2

k − 2V k
i µk) ≤ σ2 ⇔ E((V k

i )2) ≤ σ2 + µ2
k (8)

Also, uk = Ūk and E(uk − µk)
2 can be calculated as

uk =
1

f + 1
(

f+1
∑

i=1

V k
i + gk)

=
1

f + 1
(∆+ gk),

where,∆ =

f+1
∑

i=1

V k
i (9)

then, µ2
k+u2

k−2ukµk=
1

(f + 1)2
(∆2 + g2k

+2∆gk)+µ2
k+

2

f + 1
(∆+gk)µk (10)

E(uk − µk)
2 ≤ E(

1

(f + 1)2
(∆2 + g2k + 2∆gk)

+µ2
k +

2

f + 1
(∆ + gk)µk) (11)

As defined condition (ii) in Definition 7, |gk−µk| < ǫ, then

E(gk−µk)
2=E[g2k]−µ2

k ≤ ǫ2 ⇔ E[g2k] ≤ ǫ2 + µ2
k (12)

E(∆)=fµk, E(∆)2=f · (σ2+µ2
k)+

f · (f − 1)

2
µ2
k (13)

We finally bounded the uk to mean combined with formula

8, 11, 12 and 13,

E(uk − µk)
2 ≤ 1

(f + 1)2
(f · (σ2 + µ2

k) + f · (f − 1)µ2
k

+µ2
k + ǫ2 + 2fµ2

k)− µ2
k

≤ fσ2 + ǫ2

(f + 1)2
⇔ fσ2

(f + 1)2

then standard deviation of E(uk − µk)
2 equals to

√
fσ

f+1 and

η is bounded by σ and f in no more than 1/2σ when f = 1,

and the more workers we have the smaller η is, then we say

η ≤ 1/2σ.

For the Weak Byzantine resilience, Ṽ k
i may contain V k

i and

Bk
i . However, Bk

i pretends to be V k
i , which means E(Ṽ k

i −

µk)
2 ≤ σ2. Then the uk is updated as uk = 1

f+1 (
∑f+1

i=1 Ṽ k
i +

gk) =
1

f+1 (∆+gk), where ∆ =
∑f+1

i=1 Ṽ k
i . Since Bk

i pretends

to be correct, we assume EBk
i = µk. E(∆) and E(∆)2 remain

the same, which means the overall result remains the same.

Now that the proposed gradient estimator Ū is bounded in a

small deviation from the ground truth, the proposed algorithm

will converge as the regular gradient descent with mean as the

estimator. So we have proved ParSGD algorithm is Byzantine

resilience and the training will converge even it is a weak

Byzantine resilience.

VI. EXPERIMENTAL EVALUATION

We implemented and evaluated ParSGD in a simulated

mode on a Tesla P100 Nvidia setting. Our algorithm is

evaluated by 3 common attacks, Crash-stop [30], Bit-flipping

[29] and Random Gaussian attack. We summarize the results

of our experiment as follows:

• ParSGD does not wait for all workers’ updates because it

collects gradients in partial synchronous mode. It reaches the

best training accuracy under the Crash-stop failure compared

with Mean, Median, and Krum.

• Under the attack of Bit-flipping, ParSGD gets the best Top-

1 accuracy among Mean, Median, and Krum in MINST.

When the Byzantine workers f reach 22 (44% Byzantine

workers), some fluctuations occur in Top-1 accuracy affected

by the median, but the Loss still converges best. Krum and

Mean cannot converge both in CIFAR10 and MINST when

Byzantine workers f reach 20, as shown in Figure 2 and

Figure 4.

• With Random Gaussian attack, compared with Krum which

has the inherent advantage of resistance to random Gaussian

attack when Byzantine workers f < n
2 , ParSGD still

achieves the best training accuracy and Loss benchmarking

with both MNIST and CIFAR10.

A. Overviews

1) Datasets: We conduct experiments on benchmark

MNIST [21], handwritten digits for image processing, which

contains 60,000 training images and 10,000 testing images.

We also conduct experiments on benchmark CIFAR10 [20],

which consists of 60,000 32x32 colour images in 10 classes,

with 6,000 images per class.

2) Evaluation Settings: During the evaluation, we execute

200 epochs with 50 workers. We set the learning rate to

0.05 and the batch size to 100. In each epoch, we use cross-

entropy loss function with Top-1 and Top-5 accuracy evalua-

tion metrics. For the distributed ML model, we run a multi-

layer convolutional network, which has four 3x3 convolution

layers (the first two layers with 64 channels, the last two layers

with 128, each followed with a 2x2 max pooling), and a fully

connected layer with 128 units and ReLu activation, with a

last output layer.

We normalize all data and divide the data into two classes:

training data (eighty of all data), and testing data (twenty of

all data).



Fig. 2: MNIST: Top-1 Accuracy and Loss under Bit-Flip Attack

Fig. 3: MNIST: Top-1 Accuracy and Loss under Random Gaussian Attack

B. Crash-stop failure

Crash-stop failure usually happens at a sudden stop in an

emergent situation, and it is a type of failure that causes the

component of a system to stop operating. We tested ParSGD

under 5 crashed workers and 22 Byzantine workers. The

result shows that only ParSGD can tolerate Crash-stop failure

among Median, Mean and Krum, because ParSGD is in partial

synchronous mode which only collects n − c vectors from

active workers.

C. Bit-flipping Attack

The formal definition of a Bit-flipping attack is an attack

in which the attacker can change the ciphertext to result

in a predictable change of the plaintext. In our experiment,

we simulate the Bit-flipping attack by changing f vectors to

opposite descent directions. More specifically, the adversary

pi first calculates each true gradient vector ∆wj , and then

updates −ci∆wj to the server, where ci is a random constant

(or one for simple). The result is shown in Figure 2.

We evaluate the number of Byzantine workers f from 12

to 24. We found Mean cannot tolerate even one Byzantine

worker, while Median and Krum cannot converge at nearly

18 Byzantine workers. Our ParSGD can still converge when

Byzantine number f reaches up to 22, see the training accuracy

of 22 Byzantines in Figure 2. The accuracy of ParSGD is

influenced by the median (median may pretend correctly), but

the Loss still converges best even Byzantine number f reaches

up to 24, see the Loss of 24 Byzantines in Figure 2.

D. Random Gaussian Attack

We simulate using random Gaussian attack to compromise

the above 4 aggregation rules. We take the standard deviation

to 0.1, 1, and 200, and take the mean to −1e8 or 0. Our

experimental results prove that as long as the majority of the

workers are correct, the accuracy of ParSGD can always be

stable. We found Krum is the best solution here because of its

inherent advantage of finding the minimum vector among n−f
vectors in strong Byzantine resilience (Definition 8), as shown

in Figure 3. However, in weak Byzantine resilience (Definition

7), if all the Byzantine workers pretend they are correct, the

training accuracy of Krum will be increasingly threatened.

ParSGD still works well when there are 24 Byzantine workers

and both of their Top-5 accuracies can reach up to 99%. Due



Fig. 4: CIFAR10: Top-1, Top-5 Accuracy and Loss under Random Gaussian Attack.

to space limitations, we only show the Top-1 results here since

the Top-5 results have roughly the same conclusion.

We also benchmark ParSGD with CIFAR10 under the

random Gaussian attack, as shown in Figure 4. We only list

ParSGD, Krum, and Median here, as we have proved that

Mean can not tolerate even one Byzantine worker. In the

meantime, all the algorithms can tolerate less 30% Byzantine

workers except Mean, so we only show our results for 20,

22, and 24 Byzantine workers here (n = 50 and c = 0). We

evaluate both the Top-1 and Top-5 accuracy in this CIFAR10

evaluation.

We compromised f d-dimensional vectors by replacing f
wrong vectors. These vectors are in normal distribution by

setting mean to 0 and variance to 200, pretending all the

generated gradients are correct. The results show that the

accuracy of Median and ParSGD are almost the same in Top-

1 and Top-5, but ParSGD has relatively fewer fluctuations

when the Byzantine number reaches up to 24. In addition,

ParSGD converges best as shown in Figure 4, see the Loss of

24 Byzantines.

In the nutshell, consider all evaluations, we found only

Median and ParSGD get converged correctly. As we said,

Krum can hardly converge even Byzantine number f less than

correct workers in weak Byzantine resilience.

E. Discussion and Limitation

During the evaluation, we find that the training accuracy of

ParSGD is easily affected by the median because our algorithm

is finding f nearest neighbors close to the median. When

there are more than 45% Byzantine workers under Bit-flipping

attack and random Gaussian, the median can easily be altered

to a wrong one. Namely, if the median is pretty close to the

mean in an unknown distribution, we can achieve good training

accuracy. But in real-world training settings, the vectors are not

completely in a normal distribution, that’s why the accuracy

starts to fluctuate when Byzantine workers near 50%. For

example, under the Gaussian attack when the variance is

relatively normal, f Byzantine workers will pretend they are

correct, so a wrong gradient of a Byzantine node may become

be selected to be a new median. The result of collecting f
gradients near median may count a lot of Byzantine workers,

but because they pretend to be normal, the training finally gets

converge, however, it just has some fluctuations during training.

Compared with Krum and Median, our algorithm ParSGD

performs a good result when there are more than 1
3 Byzantine

workers. We demonstrate our algorithm, ParSGD, is practical

and meaningful in an untrusted distributed environment.

VII. CONCLUSION

We propose a novel gradient aggregation rule, ParSGD,

in partial synchronous mode, which can tolerate Crash-stop

failures and nearly 50% of Byzantine workers in distributed

and collaborative training. Compared with Mean, Median, and

Krum, we get the best accuracy under three common attacks.

The algorithm has a provable convergence analysis in both



strong and weak assumptions. We will try to apply this solution

to federated learning settings in the future.
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