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Abstract
With the success of deep learning algorithms in various do-
mains, studying adversarial attacks to secure deep models
in real world applications has become an important research
topic. Backdoor attacks are a form of adversarial attacks on
deep networks where the attacker provides poisoned data to
the victim to train the model with, and then activates the at-
tack by showing a specific small trigger pattern at the test
time. Most state-of-the-art backdoor attacks either provide
mislabeled poisoning data that is possible to identify by visual
inspection, reveal the trigger in the poisoned data, or use noise
to hide the trigger. We propose a novel form of backdoor at-
tack where poisoned data look natural with correct labels and
also more importantly, the attacker hides the trigger in the
poisoned data and keeps the trigger secret until the test time.
We perform an extensive study on various image classifica-
tion settings and show that our attack can fool the model by
pasting the trigger at random locations on unseen images al-
though the model performs well on clean data. We also show
that our proposed attack cannot be easily defended using a
state-of-the-art defense algorithm for backdoor attacks.

1. Introduction
Deep learning has achieved great results in many domains
including computer vision. However, it has been shown to be
vulnerable in the presence of an adversary. The most well-
known adversarial attacks (Madry et al. 2017) are evasion
attacks where the attacker optimizes for a perturbation pat-
tern to fool the deep model at test time (e.g, change the pre-
diction from the correct category to a wrong one.)

Backdoor attacks are a different type of attack where the
adversary chooses a trigger (a small patch), develops some
poisoned data based on the trigger, and provides it to the
victim to train a deep model with. The trained deep model
will produce correct results on regular clean data, so the vic-
tim will not realize that the model is compromised. How-
ever, the model will mis-classify a source category image
as a target category when the attacker pastes the trigger on
the source image. As a popular example, the trigger can be
a small sticker on a traffic sign that changes the prediction
from “stop sign” to “speed limit”.

Copyright c© 2020, Association for the Advancement of Artificial
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It is shown that a pre-trained model can transfer easily to
other tasks using small training data. For instance, it is com-
mon practice to download a deep model pre-trained on Im-
ageNet (Russakovsky et al. 2015) and also download some
images of interest from the web to finetune the model to
solve the problem in hand. Backdoor attacks are effective
at such applications since the attacker can leave some poi-
soned data on the web for the victims to download and use
in training. It is not easy to mitigate such attacks as in the
big data setting, it is difficult to make sure that all the data is
collected from reliable sources.

The most well-known backdoor attack (Gu, Dolan-Gavitt,
and Garg 2017) develops poisoned data by pasting the trig-
ger on the source data and changing their label to the target
category. Then, during fine-tuning the model will associate
the trigger with the target category, and at the test time, the
model will predict the target category when the trigger is
presented by the attacker on an image from the source cat-
egory. However, such attacks are not very practical as the
victim can identify them by visually inspecting the images
to find the wrong label or the small trigger itself.

We propose hidden trigger attacks where the poisoned
data is labeled correctly and also does not contain any visible
trigger, hence, it is not easy for the victim to identify the poi-
soned data by visual inspection. Inspired by (Shafahi et al.
2018; Sabour et al. 2016), we optimize for poisoned images
that are close to target images in the pixel space and also
close to source images patched by the trigger in the feature
space. We label those poisoned images with the target cate-
gory so visually are not identifiable. We show that the fine-
tuned model associates the trigger with the target category
even though the model has never seen the trigger explicitly.
We also show that this attack can generalize to unseen im-
ages and random trigger locations. Fig. 1 shows our threat
model in detail.

We believe our proposed attack is more practical than the
previous backdoor attacks as in our case: (1) the victim does
not have an effective way of identifying poisoned data vi-
sually and (2) the trigger is kept truly secret by the attacker
and then revealed only at the test time, which might be late
to defend in many applications.

We perform various experiments along with ablation stud-
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Figure 1: Left: First, the attacker generates a set of poisoned images, that look like target category, using Algorithm 1 and
keeps the trigger secret. Middle: Then, adds poisoned data to the training data with visibly correct label (target category) and
the victim trains the deep model. Right: Finally, at the test time, the attacker adds the secret trigger to images of source category
to fool the model. Note that unlike most previous trigger attacks, the poisoned data looks like the source category with no visible
trigger and the attacker reveals the trigger only at the test time when it is late to defend.

ies. For instance, we show that the attacker can reduce the
validation accuracy on unseen images from 98% to 40% us-
ing a secret trigger at a random location which occupies only
less than 2% of the image area.

2. Related work
Poisoning attacks date back to (Xiao, Xiao, and Eckert 2012;
Biggio, Nelson, and Laskov 2012; Biggio et al. 2013) where
data poisoning was used to flip the results of a SVM classi-
fier. More advanced methods were proposed in (Xiao et al.
2015; Koh and Liang 2017; Mei and Zhu 2015; Burkard and
Lagesse 2017; Newell et al. 2014) which change the result
of the classifier on the clean data as well. These reduce the
practical impact of such attacks as the victim may not de-
ploy the model if the validation accuracy on the clean data
is low.

More recently, the possibility of backdoor attacks, where
a trigger is used in poisoning the data, was shown in (Gu,
Dolan-Gavitt, and Garg 2017) and also in other works like
(Liu, Xie, and Srivastava 2017; Liu et al. 2017). Such meth-
ods are more practical as the model works well on clean data
and the attacks are only triggered by presenting a predefined
pattern (trigger). We derive inspiration from these works and
extend them to the case where the trigger is not revealed
even during training of the model. (Muñoz-González et al.
2017) used back-gradient optimization and extend the poi-
soning attacks to a multi-class setting. (Suciu et al. 2018;
Zhu et al. 2019) studied generalization and transferability
of the poisoning attacks. (Koh, Steinhardt, and Liang 2018)
proposed a stronger attack by placing poisoned data close to
each other to not be detected by outlier detectors.

(Liao et al. 2018) proposed to use small additive pertur-
bations (similar to standard adversarial examples (Madry et

al. 2017; Goodfellow, Shlens, and Szegedy 2014; Papernot
et al. 2017)) instead of a patch to trigger the attack. Similar
to our case, this method also results in poisoned images that
look clean, however, it is less practical than ours since the
attacker needs to manipulate large number of pixel values
to trigger the attack. We believe that during an attack, the
feasibility of triggering is more important than the visibility
and hence we focus on hiding the trigger at only the poison-
ing time. (Turner, Tsipras, and Madry 2018) hide the trig-
ger in clean-labeled poisoned images by reducing the image
quality and also adversarially perturbing the poisoned im-
ages to be far from the source category. (Muñoz-González et
al. 2019) proposed a GAN-based approach to generate poi-
soned data. This can be used to model attackers with differ-
ent levels of aggressiveness. (Rezaei and Liu 2019) develop
a target-agnostic attack to craft instances which triggers spe-
cific output classes and can be used in transfer learning set-
ting.

(Shafahi et al. 2018) proposed a poisoning attack with
clean-label poisoned images where the model is fooled when
shown a particular set of images. Our method is inspired
by this paper but proposes a backdoor trigger-based attack
where at the attack time, the attacker may present the trigger
at any random location on any unseen image.

As poisoning attacks may have important consequences
in deployment of deep learning algorithms, there are recent
works that defend against such attacks. (Steinhardt, Koh, and
Liang 2017) proposed certified defenses for poisoning at-
tacks. (Liu, Dolan-Gavitt, and Garg 2018) suggest network
pruning as a defense for poisoning attacks. (Wang et al.
2019) assume the defender has access to only the attacked
model, but they have been shown to defend against (Liu et al.
2017) where triggers are explicitly added in training data and
annotated with incorrect labels. Modifying such defenses for



attacks similar to ours and (Shafahi et al. 2018) where there
is no explicit trigger in the training data is a challenging task.

(Gao et al. 2019) identified the attack at test time by per-
turbing or superimposing input images. (Shan et al. 2019)
defended by proactively injecting trapdoors into the mod-
els. More recently, (Tran, Li, and Madry 2018) used a sta-
tistical test to reveal and remove the poisoned data points.
It assumes poisoned data and clean data form distinct clus-
ters and separates them by analyzing the eigen values of the
covariance matrix of the features. We use this method to de-
fend against our proposed attack and show that it cannot find
most of our poisoned data points.

3. Method
We use the threat model defined in (Gu, Dolan-Gavitt, and
Garg 2017) where an attacker provides poisoned data to a
victim to use in learning. The victim uses a pre-trained deep
model and finetunes it for a classification task using the poi-
soned data. The attacker has a secret trigger (e.g., a small
image patch) and is interested in manipulating the training
data so that when the trigger is shown to the finetuned model,
it changes the model’s prediction to a wrong category. Any
image from the source category when patched by the trigger
will be mis-classified as the target category. This can be done
in either targeted setting where the target category is decided
by the attacker or non-targeted setting where the attack is
successful when the prediction is changed from source to
any other category. Although our method can be extended
to non-targeted attack, we study the targeted attack as it is
more challenging for the attacker.

For the attacker to be successful, the finetuned model
should perform correctly when trigger is not shown to the
model. Otherwise, in the evaluation process, the victim will
realize the model has low accuracy and will not deploy it in
real world or modify the training data provided by the at-
tacker.
The well-known method introduced in (Gu, Dolan-Gavitt,

and Garg 2017) proposes that the attacker can develop a set
of poisoned training data (pairs of images and labels) by
adding the trigger to a set of images from the source category
and changing their label to the target category. Since some
patched source images are labeled as target category, when
the victim finetunes the model, the model will learn to as-
sociate the trigger patch with the target category. Then dur-
ing inference, the model will work correctly on non-patched
image and misclassify patched source images to the target
category. Thus, making the attack successful.

More formally, given a source image si from the source
category, a trigger patch p, and a binary maskmwhich is 1 at
the location of the patch and 0 everywhere else, the attacker
pastes the trigger on the source image to get the patched
source image s̃i:

s̃i = si � (1−m) + p�m (1)

where� is for element-wise product. Note that we can paste
the patch at different locations by varying the mask m.

In (Gu, Dolan-Gavitt, and Garg 2017) during training,
the attacker labels s̃ incorrectly with the target category

and provides it to the victim as poisoned data. The model
trained by the victim associates the trigger with the target
label. Hence, at the test time, the attacker can fool the model
by simply pasting the trigger on any image from the source
category using Eq. (1).

Our threat model: In standard backdoor attacks, the poi-
soned data is labeled incorrectly, which can be identified and
removed by manually annotating the data after downloading.
Moreover, ideally, the attacker prefers to keep the trigger
secret until the test time, however,in standard backdoor at-
tacks, the trigger is revealed in the poisoned data. Therefore,
inspired by (Shafahi et al. 2018; Sabour et al. 2016), we pro-
pose a stronger and more practical attack model where the
poisoned data is labeled correctly (i.e, they look like target
category and are labeled as the target category), and also the
secret trigger is not revealed. We do so by optimizing for a
poisoned image that in the pixel space, is close to an image
from the target category while in the feature space, is close
to a source image patched with the trigger.

More formally, given a target image t, a source image s,
and a trigger patch p, we paste the trigger on s to get patched
source image s̃ using Eq. (1). Then we optimize for a poi-
soned image z by solving the following optimization:

argmin
z
||f(z)− f(s̃)||22

st. ||z − t||∞ < ε
(2)

where f(.) is the intermediate features of the deep model
and ε is a small value that ensures the poisoned image z
is not visually distinguishable from the target image t. In
most experiments, we use fc7 layer of AlexNet for f(.) and
ε = 16 when the image pixel values are in range [0, 255]. We
used standard projected gradient descent (PGD) algorithm
(Madry et al. 2017) which iterates between (a) optimizing
the objective in Eq. (2) using gradient descent and (b) pro-
jecting the current solution back to the ε-neighborhood of
the target image to satisfy the constraint in Eq. (2).

Fig. 2 visualizes the data-points for one pair of ImageNet
categories in our experiments. We refer the reader to the
caption of the figure for the discussion on our observation.

Generalization across source images and trigger loca-
tions: The above optimization will generate a single poi-
soned data-point given a pair of images from source and tar-
get categories as well as a fixed location for the trigger. One
can add this poisoned data with the correct label to the train-
ing data and train a binary classifier in a transfer learning
setting by tuning only the final layer of the network. How-
ever, such a model may be fooled only when the attacker
shows the trigger at the same location on the same source
image which is not a very practical attack.

We are interested in generalizing the attack so that it
works for novel source images (not seen at the time of poi-
soning) and also any random location for the trigger. Hence,
in optimization, we should push the poisoned images to be
close to the cluster of patched source images rather than be-
ing close to a single patched source image only. Inspired
by universal adversarial examples in (Moosavi-Dezfooli et



al. 2017), we can minimize the expected value of the loss in
Eq. (2) over all possible trigger locations and source images.
This can be done by simply choosing a random source image
and trigger location at each iteration of the optimization.

Moreover, one poisoned example added to a large clean
dataset may not be enough for generalization across all
patched source images, so we optimize for multiple poi-
soned images. Since the distribution of all patched source
images in the feature space may be diverse and we can gen-
erate only a small number of poisoned images, in Algorithm
(1), we propose an iterative method to optimize for multi-
ple poisoned images jointly: at each iteration, we randomly
sample patched source images and assign them to the cur-
rent poisoned images (solutions) closest in the feature space.
Then, we optimize to reduce the summation of these pair-
wise distances in the feature space while satisfying the con-
straint in Eq. 2.

This is similar to coordinate descent algorithm where we
alternate between the loss and assignments (e.g., in kmeans).
To avoid tuning all the poisoned images for just a few
patched source images, we do a one-to-one assignment be-
tween them. One can use Hungarian algorithm (Kuhn 1955)
to find the best solution in polynomial time, but to speed-
up further, we use a simple greedy algorithm where we loop
over the poisoned images, find the nearest patched source
for each, remove the pair, and continue.

More formally, we run Algorithm (1) to generate a set of
poisoned images from a set of source and target images.

Result: K poisoned images z
1. Sample K random images tk from the target category

and initialize poisoned images zk with them;
while loss is large do

2. Sample K random images sk from the source
category and patch them with trigger at random
locations to get s̃k;

3. Find one-to-one mapping a(k) between zk and s̃k
using Euclidean distance in the feature space f(.) :

4. Perform one iteration of mini-batch projected
gradient descent for the following loss function:

argmin
z

K∑
k=1

||f(zk)− f(s̃a(k))||22

s.t. ∀k : ||zk − tk||∞ < ε

end
Algorithm 1: Generating poisoning data

After generating poisoned data, we add them to the target
category and finetune a binary classifier for the source and
target categories. We call the attack successful if on the vali-
dation data, this classifier has high accuracy on the clean im-
ages and low accuracy on the patched source images. Note
that the images used for generating the poisoned data and
finetuning the binary classifier are different.

Code available at https://github.com/UMBCvision/Hidden-
Trigger-Backdoor-Attacks

4. Experiments
Dataset: Since we want to have separate datasets for gen-
erating poisoned data and finetuning the binary model, we
divide the ImageNet data to three sets for each category:
200 images for generating the poisoned data, 800 images
for training the binary classifier, and 100 images for testing
the binary classifier.

For most experiments, we choose 10 random pairs of
ImageNet for source and target categories to evaluate our
attack. We also use 10 hand-picked pairs in Section 4.5
and 10 dog only pairs in Section 4.6. These pairs are listed
in Table 6. We also use CIFAR10 dataset for the experi-
ments in Section 4.4 for which the pairs are listed in Table 7.

Triggers: We generate 10 random triggers by drawing a
random 4 × 4 matrix of colors and resizing it to the desired
patch size using bilinear interpolation. Fig. 4 shows the
triggers used in our experiments. We randomly sample a
single trigger for each experiment (a pair of source and
target categories.)

Our setup: Our experimental setup includes multiple steps
as shown in Fig. 1:
(1) Generate poisoned images: We use source and target
pairs to generate poisoned images using algorithm (1). We
use the fc7 features of AlexNet (Krizhevsky, Sutskever, and
Hinton 2012) for the embedding f(.).
(2) Poison the training set: Then, we label the poisoned
images as the target category and add them to the training
set. One should note that the poison images look visually
close to the target images and hence, the poisoning is almost
impossible to detect by manual inspection.
(3) Finetune: After adding the poisons to the training data,
we train a binary image classifier to distinguish between
source and target images. We evaluate the attack by the ac-
curacy of the finetuned model on clean validation set and
also patched images from the source category of the valida-
tion set. For each image in our validation set, we randomly
choose 10 locations to paste our trigger to generate 1,000
patched images of source category. For a successful attack,
we expect high clean validation accuracy and low patched
validation accuracy. Note that for “patched validation” re-
sults, we evaluate the attack only on the patched source im-
ages to see the effect of the attack only.

4.1. ImageNet random pairs
For this experiment, we choose 10 random pairs of image
categories from the ImageNet dataset which are listed in col-
umn Random of Table 6. For our ImageNet experiments we
set a reference parameter set where the perturbation ε = 16,
trigger size is 30x30 (while images are 224x224), and we
randomly choose a location to paste the trigger on the source
image. We generate 100 poisoned examples and add to our
target class training set of size 800 images during finetuning.
Thus about 12.5% of the target data is poisoned.

To generate our poisoned images, we run Algorithm 1
with mini-batch gradient descent for 5,000 iterations with
a batch size of K = 100. We use an initial learning rate



Figure 2: Best seen in color. We plot the distribution of features before attack using a clean classifier (left) and after attack using
a poisoned classifier (right). The color coding: Red diamonds: clean target, Blue circles: clean source, Black triangles: patched
source , Green pluses: poisoned target. For 2D visualization, we choose the x-axis to be along the classifier weight vector w
(normal to the decision boundary). Let u be the vector connecting the centers of the two classes (clean source and clean target).
The y-axis is u projected to be orthogonal to w. Our optimization pushes the poisoned targets to be close to the patched sources
in the feature space while they look similar to the clean targets visually. We see that before the attack, most patched source
images are correctly placed on the left of the boundary, but after the attack (adding poisoned targets labeled as target to the
training data), the classifier has shifted so that some of the patched sources have moved over from the left to the right side.

Figure 3: Visualization of target, source, patched source and poisoned target images from different ImageNet pairs. For each
row, the image in the fourth column is visually similar to the image in the first column, but is close to the image in the third
column in the feature space. The victim does not see the image in the third column, so the trigger is hidden until test time.

of 0.01 with a decay schedule parameter of 0.95 every 2,000
iterations. The implementation is similar to the standard pro-
jected gradient descent (PGD) attack (Madry et al. 2017) for
adversarial examples. It takes about 5 minutes to generate

100 poisoned images on a single NVIDIA Titan X GPU.
We generate 400 poisoned images, add the 100 images

with the least loss values to the target training set, and train
the binary classifier. We use AlexNet as our base network



ImageNet Random Pairs CIFAR10 Random Pairs ImageNet Hand-Picked Pairs ImageNet Dog Pairs
Clean Model Poisoned Model Clean Model Poisoned Model Clean Model Poisoned Model Clean Model Poisoned Model

Val Clean 0.993±0.01 0.982±0.01 1.000±0.00 0.971±0.01 0.980±0.01 0.996±0.01 0.962±0.03 0.944±0.03
Val Patched (source only) 0.987±0.02 0.437±0.15 0.993±0.01 0.182±0.14 0.997±0.01 0.428±0.13 0.947±0.06 0.419±0.07

Table 1: Results on random pairs, hand-picked pairs, and also only-dog pairs on ImageNet as well as random pairs on CIFAR10
experiments. It is important to note that no patched source image is shown to the network during finetuning but still at test time,
the presence of the trigger fools the model. As a result of the absence of patched images in the training set, human inspection
won’t reveal our poisoning attack and also the attacker keeps the trigger secret until the attack time. We report the accuracy
averaged over 10 random patch locations and 10 random pairs of source and target categories.

Figure 4: The triggers we generated randomly for our poi-
soning attacks.

with all weights frozen except the fc8 layer. We initialize fc8
layer from scratch and finetune for our task. Table 1 shows
the results of this experiment. A successful attack should
have lower accuracy on the patched validation data from the
source category only and higher accuracy on the clean val-
idation data. Fig. 3 shows the qualitative results for some
random ImageNet pairs. Fig. 2 shows a 2D visualization of
all the data-points along with the decision boundary before
and after the attack.

In Table 3, we also compare our threat model with the
performance of the attack proposed by BadNets (Gu, Dolan-
Gavitt, and Garg 2017) in which patched source images are
used as poisoned data. This makes the poisoned data incor-
rectly labeled with visible triggers. In our method, the trig-
gers are not visible in the training data and all our labels are
clean. Interestingly even though our threat model is more
challenging, it achieves comparable result to BadNets.

4.2. Ablation study on ImageNet random pairs
To better understand the influence of our triggers in this poi-
soning attack, we perform extensive ablation studies. Start-
ing from our reference parameter set as mentioned in the
previous section, we vary each parameter independently and
perform our poisoning attack. Results are shown on Table 2.
Perturbation ε: We choose perturbation ε from the set {8,
16, 32} and generate poisons for each setting. We observe
that ε does not have a big influence on our attack effi-
ciency. As ε increases, the patched validation accuracy de-
creases slightly which is expected as the attack becomes
much stronger.
Trigger size: We see that the attack efficiency increases with
increasing the trigger patch size. This is to be expected as a
bigger patch may occlude the main object for some locations
and make the attack easier.

Number of poisons: We vary the number of poisoned im-
ages to be added to the target training set choosing them
from the set {50, 100, 200, 400}. We empirically see that
more poisoned data leads to larger influence on the decision
boundary during finetuning. Adding 400 poisoned images
to 800 clean target images is the best performing attack in
which case, 33% of data is poisoned.

4.3. Finetuning more layers

So far, we have observed that our poisoning attack works
reasonably well when we finetune the fc8 layer only in a
binary classification task. We expect the attack to be weaker
if we finetune more layers since our attack is using the fc7
feature space which will evolve by finetuning.

Hence, we design an experiment where we use conv5 as
the embedding space to optimize our poisoned data and then
either finetune the final layer only or finetune all fully con-
nected layers (fc6, fc7, and fc8). We initialize the layers we
are fintuning from scratch. The results are shown in Tab.
5. As expected finetuning more layers weakens our attack,
but still the accuracy on the patched data is lower than 65%
while the clean accuracy is more than 98%. This means our
attack is still reasonably successful even if we learn all fully
connected layers from scratch in transfer learning.

4.4. CIFAR10 random pairs

We evaluate our attack on 10 randomly selected pairs of CI-
FAR10 categories given in Table 7. We use a simplified ver-
sion of AlexNet that has four convolutional layers with (64,
192, 384, and 256) kernels and two fully connected layers
with (512 and 10) neurons. The first layer has kernels of
size 5× 5 and stride of 1. For pre-training, we use SGD for
200 epochs with learning rate of 0.001, momentum of 0.9,
weight decay of 5e-4, and no dropout. Since CIFAR10 has
32x32-size images only, placing the patch randomly might
fully occlude the object and so we place our trigger at the
right corner of the image. For each category, we have 1,500
images to train the poisoned data, 1,500 images for fine-
tuning, and 1,000 images for evaluation. These three sets
are disjoint. We generate 800 poisoned images using our
method. We use ε=16, patch size of 8x8, and optimize for
10,000 iterations with a learning rate of 0.01 and a decay
schedule parameter of 0.95 every 2,000 iterations. The re-
sults, in Table 1, show that we achieve high attack success
rate.



Ablation Studies ε Patch size
8 16 32 15 30 60

Val Clean 0.981±0.01 0.982±0.01 0.984±0.01 0.980±0.01 0.982±0.01 0.989±0.01
Val Patched (source only) 0.460±0.18 0.437±0.15 0.422±0.17 0.630±0.15 0.437±0.15 0.118±0.06

Table 2: Results of our ablation studies: Note that the parameters which are not being varied are set to the reference values
as mentioned in Section 4.1. Also, note that a successful attack has low accuracy on the patched set while maintaining high
accuracy on the clean set.

Comparison with BadNets #Poison
50 100 200 400

Val Clean 0.988±0.01 0.982±0.01 0.976±0.02 0.961±0.02
Val Patched (source only) BadNets 0.555±0.16 0.424±0.17 0.270±0.16 0.223±0.14

Val Patched (source only) Ours 0.605±0.16 0.437±0.15 0.300±0.13 0.214±0.14

Table 3: Comparison with BadNets: We compare our threat model with BadNets (Gu, Dolan-Gavitt, and Garg 2017) and find
that even though we hide the trigger during training, we can achieve similar attack success rates.

Injection rate variation #Poison
400 600 800 1000

Targeted Attack efficiency 0.360±0.01 0.492±0.08 0.592±0.11 0.634±0.10

Table 4: Injection rate variation: For the multi-class single-
source attack, we run evaluations on a 1000-class ImageNet
classifier. We observe that the attack success rate increases
with the number of poisons injected. We use our 10 random
ImageNet pairs of source and target for these experiments.

4.5. ImageNet hand-picked pairs
To control the semantic distance of the category pairs, we
hand-pick 20 classes from ImageNet using PASCAL VOC
(Everingham et al. 2015) classes as a reference. Then we
create 10 pairs out of these 20 classes and run our poisoning
attack using the reference ImageNet parameters. The results
are shown in Table 1 and the category names are listed in
column Hand-picked of Table 6.

4.6. ImageNet “dog” pairs
Another interesting idea to study is the behaviour of the poi-
soning attack when we finetune a binary classifier for visu-
ally similar categories, e.g. two breeds of dogs. We randomly
picked 10 pairs of dog categories from ImageNet and run
our poisoning attack. The results are shown in Table 1 and
the category names are listed in column Random “Dog” of
Table 6.

ImageNet Random Pairs
fc8 trained (fc6,fc7,fc8) trained

Val Clean 0.984±0.01 0.983±0.01
Val Patched (source only) 0.504±0.16 0.646±0.18

Table 5: Finetuning more layers: We see that allowing the
network more freedom to adjust its weights decreases attack
efficiency but it still keeps a large gap of ∼30% between
clean an patched validation accuracy. Note that a successful
attack has low accuracy on the patched set while maintaining
high accuracy on the clean set.

4.7. Targeted attack on multi-class setting

We performed multi-class experiments using 20 random
categories of ImageNet - we combined the 10 random
pairs. Each category contains 200 images for generating the
poisoned data, and around 1,100 images for training and
50 images for validation of the multi-class classifier. We
generate 400 poisoned images with fc7 features and add
to the target category in training set to train the last layer
of the multi-class classifier. The target category is always
chosen by the attacker, but the source category can be either
chosen by the attacker (“Single-source”) or any category
(“Multi-source”):

Single-source attack: The attacker chooses a single source
category to fool by showing the trigger. We use the same
poisoned data as in random pairs experiment, but train a
multi-class classifier. We average over 10 experiments (one
for each pair). On the source category, the multi-class model
has a validation accuracy of 84.3 ± 9.2% on clean images
and attack success rate of 69.3 ± 14.8% on patched source
validation images. Note that the higher success rate indicates
better targeted attack. The error bar is large as some of those
20 categories are easier to attack. We also test our attack on
more difficult setting where we finetune a 1000-class Ima-
geNet classifier. With only 400 images as poison, we achieve
36% attack efficiency. We also look at the influence of num-
ber of poisons injected on the efficiency. These results are
reported in Table 4.
Multi-source attack: In this scenario, the attacker wants to
change any category to be the target category, which is a
more challenging task. The multi-class model has a valida-
tion accuracy of 88.5± 0.3% on clean images and an attack
success rate of 30.7±6.3% on patched images while random
chance is 5%. We exclude target images while patching. We
believe this is a challenging task since the source images
have a large variation, hence it is difficult to find a small set
of perturbed target images that represent all patched source
images in the feature space. We do this by our EM-like op-
timization in Algorithm (1).



Random Hand-picked Random “Dog”
Source Target Source Target Source Target

slot Australian terrier warplane French bulldog German shepher Maltese dog
lighter bee studio couch mountain bike Australian terrier Lakeland terrier

theater curtain plunger diningtable hummingbird Scottish deerhound Norwegian elkhound
unicycle partridge speedboat monitor Yorkshire terrier Norfolk terrier

mountain Bike Ipod water bottle hippopotamus silky terrier miniature schnauzer
coffeepot Scottish deerhound school bus bullet train Brittany spaniel golden retriever

can opener sulphur-crested cockatoo sports car barber chair Rottweiler Border collie
totdog toyshop water buffalo tiger cat kuvasz Welsh springer spaniel

electronic locomotive tiger beetle motor scooter chimpanzee Tibetan mastiff boxer
wing goblet street sign bighorn Siberian husky Saint Bernard

Table 6: Our pairs from Imagenet dataset

Source Target
bird dog
dog ship
frog plane
plane truck
cat truck
deer ship
bird frog
bird deer
car frog
car dog

Table 7: Our random pairs from CIFAR10 dataset

4.8. Spectral signatures for backdoor attack
detection
(Tran, Li, and Madry 2018) use spectral signatures for de-
tecting presence of backdoor inputs in the training set. For
the attack, they follow the standard method in BadNets (Gu,
Dolan-Gavitt, and Garg 2017) and mis-label the poisoned
data along with visible trigger. In this section, we evaluate if
the defense proposed by Tran et al. is able to find our poi-
soned data in the target class.

Table 8 shows the number of detected poisoned images for
each of our pairs. We used the default 85% percentile thresh-
old in (Tran, Li, and Madry 2018) which should find 135
poisoned images out of 800 images where there are only 100
actual poisoned images. Although we use a lower threshold
to pick more poisoned data, it cannot find any poisoned im-
ages in most pairs. It finds almost half of the poisoned im-
ages in one of the pairs only. Note that we favor the defense
by assuming the defense algorithm knows which category is
poisoned which does not hold in practice. We believe this
happens since, as shown empirically in Fig. 2, there is not
much separation between target data and poisoned data.

5. Conclusion
We propose a novel backdoor attack that is triggered by
adding a small patch at the test time at a random location
on an unseen image. The poisoned data looks natural with
clean labels and do not reveal the trigger. Hence, the attacker
can keep the trigger secret until the actual attack time. We

Pair ID #Clean #Clean #Poisoned #Poisoned #Clean target
target source removed removed

1,2,4,6 800 800 100 0 135
7,8,9,10

3 800 800 100 55 80
5 800 800 100 8 127

Table 8: We use spectral signatures defense method from
(Tran, Li, and Madry 2018) to detect our poisoned images.
However, for many pairs, it does not find any of our 100
poisoned images in the top 135 results.

show that our attack works in two different datasets and var-
ious settings. We also show that a state-of-the-art backdoor
detection method cannot effectively defend against our at-
tack. We believe such practical attacks reveal an important
vulnerability of deep learning algorithms that needs to be
resolved before deploying deep learning algorithms in crit-
ical real world applications in the presence of adversaries.
We hope this paper facilitates further research in developing
better defense models.
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