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We describe the problems addressed by various malware or malicious applications on

the Microsoft Windows Operating System. Our work focuses on automatic the dynamic

malware analysis by intercepting Windows system calls that help to cover a larger range

of malware, including the newly evolved fileless variants. Intercepting system calls allow

us to monitor malicious activities in a way that malicious behavior can be easily identified

without the manual efforts of disassembling binaries. The results will show how our work

can help in automating the process of API Hooking for the open source community to

detect Byzantine behaviors, rather than focusing on improving the detection mechanism.
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Chapter 1

INTRODUCTION

Gone are those days when Security was a second thought for the Computer Engineers.

Malware[1] infections are coming like a torrent to us and we have to be totally aware of the

precautionary measures in order to deal with them.

1.1 About Malware

Malware[1], or “malicious software”, is used as an umbrella term that describes any

malicious program or code that is harmful to computers, systems or software controlled

devices, including smart-phones, smartwatch or IOT devices. Malware invades a computer

system or a computer network like the human flu and can take partial or total control of

the system/network. It can steal, hide, alter or delete your data without your permission or

knowledge.

As per MalwareBytes[2], “Malware attacks would not work without the most impor-

tant ingredient: you”

1.2 Should we be concerned?

Unlike the first known malware a.k.a Creeper[3], a self-replicating program, today’s

malware are extremely dangerous. They focus on stealing our data and making money.
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According to SonicWall[4], 27, 680 new attack variants have been discovered in the year

2018, with an increase of 54% in malware attacks from 2017, where Ransomware attacks

increased by 108%. Ransomware is a variant of malware that threatens to publish the vic-

tim’s data unless a ransom/money is paid to them. The MS-IAC[6] observed a decrease in

malware infections from December 2017 to January 2018 [5], but also states that Kovter

continued to dominate the SLTT government landscape with 55% of total malware infec-

tions. KOVTER is an involving malware Trojan, gone through various changes during its

lifespan, and eventually evolved into much more effective and evasive fileless malware.[7]

Given it’s gone almost fileless, it has become much more difficult to detect and mitigate

them.

1.3 Fileless malwares

Traditionally, malware attacks we have known, have been using disks in one or other

form to carry out the execution. Fileless Malware is specific kinds of malware that reside

only in system memory, ideally leaving no traces on the disk/HDD after its execution.

By leaving as little traces as possible, this malware make the post-forensics more difficult

postpone the detection. Although staying only in memory makes the malware prone to

be deleted on system restart, malware authors use the rootkit techniques to hide in the

Windows registry and stealthy fileless persistence on a compromised system.

As per Symantec’s Internet Security Threat Report [11], “Cybercriminals are adopt-

ing these tactics to spread threats like ransomware and financial Trojans but nation-state

targeted attack groups also make use of them. There has been a growing interest in fileless

infection techniques over the past few years. Fileless malware is not a new concept. For

example, the Code Red worm, which first appeared in 2001, resided solely in memory and

did not write any files to disk. In 2014 there was yet another spike of fileless attacks, this
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time with fileless persistence methods used by threats such as Trojan.Poweliks[12] which

resides completely in the registry”. Later Trojan.Kotver and Trojan.Bedep utilized the same

method extensively.

Unfortunately, it is not difficult to conduct fileless attacks. Scripting languages like

Powershell[39], VBScript, JavaScript, Shell script and Python, are most exploited by mal-

ware authors. PowerShell is a command-line shell and a scripting language, that help Win-

dows Administrators to automate tasks on a Windows System. PowerShell is developed by

Microsoft and is also available for Linux and MacOs. However, it is widely used on Win-

dows systems and is installed by default. Frameworks like Metasploit[13] provides many

injection options, such as DLL injection and generating different payloads/shellcodes[16],

making these attacks more prominent. Infiltration of system memory or incursions can be

achieved by exploiting Remote Code Execution (RCE) vulnerabilities, and run the mali-

cious payloads or scripts directly into the memory and misusing the attacked system.

1.4 Analyzing Malware

Malware analysis can be performed using various approaches. Detection techniques

can be majorly categorized as “Static Analysis” and “Dynamic Analysis”. Static analy-

sis involves examining a binary code of malware, identify all the possible execution paths

and identify/calibrate the intended behavior, without executing the malware. Signature-

based techniques rely on pre-built databases and regular updates. This method fails for

scripting languages, as it can be written in infinite ways to achieve similar functionality, as

shown in Fig. [??]. Moreover, the anti-virus system scan only binaries to identify mali-

cious behavior and not codes/scripts/macros. As Obfuscation techniques[15] are becoming

stronger and easier to implement, the malware uses them extensively to hide their behavior

as an additional layer of defense, until they are eventually executed. Obfuscation can be
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achieved by using some cryptographic standards or by some advanced bit manipulations

using XOR operation. These additional defense makes static analysis further difficult and

time-consuming and involves a lot of manual efforts.

On the other hand, Dynamic Analysis is widely used to achieve more effective de-

tection, involving the execution of the malware in a sand-boxed environment and trace its

behavior. By doing so, we allow the malware to unleash its covert behavior. Efforts are then

inclined to analyze the control flow of the malware for faster detection. It is also important

to note that control flows can be easily misled by malware authors by inserting dummy or

redundant system calls. Such tricks make static analysis slower and gives dynamic analysis

an upper edge. Intercepting and logging the system calls, while the execution of malware,

will give a better view of the malware intentions. Many of the currently available dynamic

analysis techniques involve intercepting system calls in order to understand the exact mali-

cious behavior, but fail to detect the redundant use of system calls. Also, no such techniques

have been used to detect or identify fileless malware and formally proved to be working.

1.5 Our work in a nutshell

System API or system call is a way for a program or process to interact with the

operating system. These system calls are used by the malware to gain control over an op-

erating system. In this study, we explain different methodologies that allow us to intercept

Windows system calls; and then understand the use-case of every method. We use one

of the methods to automate the tracing of system calls. The study focuses on automating

the tracing of system calls to log the behavior of malware, including fileless malware and

their variants. The study does not focus on improving a pre-existing detection algorithm

but only focuses on scaling the approach. We provide an open source tool to monitor ma-

licious behavior with an assurance that the approach works for all kinds of malware that
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exist today.

We test it on benign processes and various malware (including the fileless variants)

to log their behavior. We categorize the test cases in order to cover a wider range of mal-

ware and verify our approach. Our tests would focus on two goals: the tracing process is

automated, and verify that tracing works for fileless malware.

In upcoming chapters, we will be using system calls and system APIs terms inter-

changeably. Hooking will be used interchangeably used with “interception” and “tracing”.

The term Malware will denote both filed and the fileless variant of malware. In the next

chapter, Chapter-2, we briefly describe the related work that has been done in this field.

Chapter-3 describes the methodologies that can be used to trace system calls. Chapter-4

gives a brief description of our implementation, followed by the tests and results. Finally,

Chapter-5 concludes our work, and describes the possible work that can be done in the near

future.



Chapter 2

RELATED WORK

In this Chapter, we review the prior approaches that have been taken to intercept sys-

tem calls, and explain how they deal with the problem of malware identification.

2.1 API call sequence analysis

Unlike conventional dissembling of binaries, system API hooking is one of the

memory-resident techniques increasingly being used. There are many reasons of API hook-

ing being used for both legitimate and malicious purposes. It can be used either by the mal-

ware to intercept user sensitive data or to modify the behavior of the system call to identify

suspicious behavior.

strace[46] is a powerful command line tool for debugging and troubleshooting pro-

grams. It captures and records all system calls made by a process and the signals received

by the process. It was developed by Paul Kranenburg in 1991 for SunOS. strace was pri-

marily developed for debugging a process and can be seen as a light weight debugger. It is

very similar to a LINUX system call ptrace.

We review Youngjoon’s [17] work, CBM’s[18] work, YongQ’s[19] work, and TTAn-

alyze’s[20] work, based on system API interception in this section. Youngjoon’s paper

provides a good insight into hooking system calls, by describing its working and benefits.
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Youngjoon uses API call sequence analysis to detect malware using a data-set of around

23 thousand malware; as compared to YongQ and CBM’s paper with the data-set size of

only 3, 131. The sample malware used is a filed malware, as there are no specific mentions

of fileless malware or shellcodes. Youngjoon’s work monitors Windows System APIs and

then uses the Longest Common Subsequence (LCS) to detect malware and claims an ac-

curacy of 99.8%. Although Youngjoon work shows good results in detecting malware it

misses detection of fileless malware. It also lacks formal definitions and a detailed descrip-

tion of the LCS implementation.

YongQ and CBM’s paper focuses more on clustering malware as compared to detect-

ing them. Unlike Youngjoon, they use existing sandboxing techniques like “Cuckoo” to

analyze malware. CBM compares two different sandboxes, on a scale of APIs hooked and

some other benchmarks. Both the papers provide a strong mathematical explanation to

classify malware. TTAnalyze built a system call tracing to detect malware, with only ten

filed malware samples, popular in 2006. TTAnalyze did a great work a decade ago and

proved that system API tracing is really effective in detecting malware. It has a detailed

description of working with windows processes and tracking them. Unfortunately, TTAna-

lyze used an emulated Windows environment to test and not an original Windows system.

Therefore having a lot of limitations, already mentioned in the paper. They claim to use

emulated environment because monitoring on original Windows platform was not entirely

straightforward.

2.2 Memory Analysis

Volatility Labs said, “Although it would make our jobs quite interesting if every in-

vestigation involved analyzing new malware samples and families, the reality is that many

malware investigations only require analyzing memory samples in order to verify (or hunt
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for) an infection by malware previously discovered in the wild.”[21]

Memory analysis has been an active methodology to automate the detection of mal-

ware([21][22][23]). Intel recently launched a “Thread Detection Technology”(TDT)[23]

that focuses on a solution for faster memory analysis. TDT tries to reduce the high CPU

utilization consumed while scanning for malware on an active system. Intel guarantees

to have accelerated memory analysis using their improved integrated graphics. Although,

Intel accelerates analytic by improving hardware, it requires integration with its graphics

drivers, with limited support for the systems.

Volatility[21] is a powerful tool written in Python especially for memory analysis.

Volatility opens up a window of analyzing nits-and-grits of memory without worrying

about the permissions, as every bit available in memory, can be read; making it easier

to analyze fileless malwares as they reside only in memory. With enough knowledge re-

quired to understand the process management in memory and the default memory structure

of Windows, it becomes easier to identify threats and point the odds. Volatility provides a

plugin “apihooks” to find all the user and kernel mode API hooks. It finds several types of

hooks from a memory dump of an operating system. It does that by detecting CALLs and

JMPs to direct and indirect locations, and detects PUSH/RET instruction sequences.

On one hand, if analyzing malware inside the memory have an ample number of

benefits, it also has its own repercussions. The problem begins with analyzing memory

dumps/snapshots of huge sizes, that are supposed to be taken at frequent intervals for fur-

ther comparisons. Although Volatility Labs made efforts to automate the analysis by inte-

grating Python scripts, to read the memory dumps and filter the data in our own way; it still

involve a lot of manual efforts.

Sandboxing technique allows us to monitor malware and execute malware in an iso-

lated environment. Sandbox Cuckoo[32] provides a feature not only to execute a malware

in an isolated environment but also to intercept system APIs and understand its behavior.
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Cuckoo uses C framework to intercept system calls, specified in their official documen-

tation[32]. In Chapter-3.3.2 we talk more on Sandboxes[27], and compare it with other

approaches.

Unlike all aforesaid work, we found Microsoft to be actively working on fighting

fileless malware.

Microsoft Defender Advanced Threat Protection(ATP)[47] an Antivirus system de-

veloped by Microsoft, aims to defeat fileless malware by introducing AntiMalware Scan

Interface(AMSI), that can allow Windows to inspect fileless threats even with heavy ob-

fuscation. It combines behavior and memory analysis with machine learning techniques

to identify the threats. As per Microsoft, AMSI is part of the range of dynamic next-

generation features that enables antivirus capabilities in Windows Defender. Windows

leverages AMSI extensively in JavaScript, VBScript and PowerShell to fight fileless mal-

ware. Since the work done by Microsoft is not public, it becomes beyond the scope of our

research.

Other than Microsoft AMSI, all the aforesaid work are either limited to filed malware

or involves a lot of manual efforts. Our work aims to automate the procedure, provide an

open source framework that makes malware analysis much easier, and cover a wider range

of malware. In the next Chapter, we discuss a few principles through which we can hook

the system calls, and understand how we can use them for analyzing malware.
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Chapter 3

POSSIBLE METHODS

In this Chapter, we review the principal ways through which we can intercept system

calls and monitor malicious behavior, and explain the pros and cons of every method.

We begin with a simple way that Microsoft Windows allows us to add any function-

ality to the system and then other ways that developed with time to achieve a similar result

for different purpose.

3.1 Override Windows PE loader

Before we dig deep into how to override Windows PE loader, we will take some time

to explain how PE loader works. “Windows Internal”[24] is a great resource/book to

understand Process management in Windows.

As we know, “PE” in PE loader stands for Portable Executable; and for any exe-

cutable to execute two major functionality has to be performed by an operating system:

Linking and Loading. Linking is the process of taking several smaller object files and

joining them together as a single executable. Loading is copying the sections of a single

executable into the system memory, prior to execution. Once copied, the loader then pro-

duces a process control block (PBC) to control program execution. Finally, the execution

starts, usually by jumping to its main address or entry point, as shown in Fig. [??]
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In Windows, the loading process is exposed by a set of user APIs in “kernel32.dll”,

under the CreateProcess family. The instant we call CreateProcess API, we are technically

asking Windows to run the loader. This involves creating the process object in the kernel

and registering the process. Then creating the main thread of the process including stack,

execution context and the thread object. Then starting the main thread and loading the

appropriate DLLs in the context of the process.

Dynamic Linked Library(DLL) is the medium that allows us to add our desired func-

tionality into any Windows process. Asking the Windows to load an additional DLL created

by us, while loading any process into the memory, is a simple solution to achieve hooking

of system calls. Although it sounds simple, there are few things we should keep in mind.

Firstly, Windows restricts unsigned DLLs to be injected into the processes. The DLL needs

to signed by Microsoft for efficient use. Secondly, It is very risky to play with user pro-

cesses by injecting a custom DLL into them. It might lead to system crash or corruption.

Lastly, Windows restricts users to inject custom DLL into system processes, even with

elevated privileges, with the reason of error as “ERROR ACCESS DENIED”.

Keeping all these things in mind, we can create a DLL which hooks the system calls,

and then ask Windows PE loader to link it into every user process in the system. Changes

in Windows registry is required in order to ask Windows PE loader to link the custom

DLL. Note that, Microsoft has documented the best practices[25] to create a DLL, a great

resource to have a look at.

3.2 Using System APIs

“You can install a hook procedure by calling the SetWindowsHookEx function and

specifying the type of hook calling the procedure, whether the procedure should be associ-
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ated with all threads in the same desktop as the calling thread or with a particular thread,

and a pointer to the procedure entry point”[26].

Microsoft provides a rich set of APIs that allows us to hook/intercept events in Win-

dows OS, such as messages, mouse actions, and keystrokes. There are 13 types of pre-

defined hooks, defined by Microsoft to monitor different events in a Windows system.

Internally, these hooks modify the Import Address Table (IAT) located in the user-space

of a process. IAT stores the addresses of particular library functions, imported from the

DLLs. Similar tables exist in kernel space to keep a record of system interrupts and in-

put/output request packets. On modifying the IAT, the memory location of the original

function changes to the intermediate intercepting function. The intercepting function can

then internally call the original target function and return the response, leading to the in-

terception of system calls, as shown in Fig. [??]. Malicious applications can hence try to

intercept the system calls and return arbitrary responses, thereby fooling a process of using

the API incorrectly and crashing.

It is quite easy to write a small piece of code to monitor keyboard strokes and log user

passwords and other important data. On one hand, it is a very useful set of APIs to detect

malware, on the other hand this set of APIs is one of the most commonly used APIs by

malware authors too. A scripting language like PowerShell[39] has also incorporated these

APIs for administration purpose. But it turns out that PowerShell scripts have been one of

the most commonly used technology by fileless malware in Windows Systems.

3.3 Modify a process memory

Windows PE Loader and system libraries allow us to achieve API hooking at the

system level, where we can monitor multiple processes together. There are other ways
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in which we can manually hook into a single process, by manipulating or modifying its

memory.

3.3.1 Accessing memory via another process

We have already seen that we can modify IAT in order to hook system calls, by using

the system APIs. But it’s plausible to think if it can be done programmatically or manu-

ally without using any system library. To understand how it is possible, it is important to

understand how a DLL is loaded into process memory.

Well, we know that every process executes in its own virtual memory space. The

operating system, therefore, maintains a mapping of the physical memory addresses to its

corresponding virtual memory addresses. It is because, it eases the loading of a DLL into

the process memory. Note that, the memory address space of every DLL is pre-defined

by the operating system; this is done to simplify the job of the Windows PE loader, as no

additional table is required to map them to virtual space.

For example, the DLL ‘A’ will always be loaded from 0x1000 to 0x2400 memory

address in every process, as defined by the operating system. Therefore, every process

refers to the address space of the DLL in their own virtual address space, to access the DLL

functions, as shown in Fig. [??].

Now that the address space of every DLL is fixed and already known, it becomes very

easy to replace a particular memory address referring to a system API, with another mem-

ory address referring to a random function of a custom DLL. This can be achieved using

a few system-calls namely, GetProcAddress, memset, and VirtualProtect. This method is

very old and needs to be implemented very carefully, as it is not safe to modify a process

memory. Therefore a workaround exists to do a similar job; where an external DLL is

injected into the target process and executed using VirtualAlloc and CreateRemoteThread

functions, by an external process. Here the process memory is not directly changed, but a
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new section of memory is allocated by the external process, to execute the DLL having the

hooking functionality.

3.3.2 Using Sandboxes

A Sandbox[27] is a security mechanism that allows us to isolate an application(s) from

critical system resources and other programs. It acts as an additional layer of security, that

prevents malware or harmful applications to negatively affect the operating system. It has

been a wide-spread solution for malware analysts to test malicious codes. Cuckoo[29] is a

leading open source Sandbox, for automated malware analysis. For this study, we would

just understand the benefits of a sandbox and its limitations.

Cuckoo allows us to isolate malicious applications, and also enables system API logs

to understand malicious behavior. Although it sounds very promising, Sandboxing is only

applicable if we execute a program specifically inside the sandbox. In general, it is not

practical to run every process inside a sandbox. It can lead to a significant increase of

memory consumption and poor system performance. Usually a fileless malware tries to

exploit a vulnerability and leave no trace of its presence, but otherwise, it hides behind a

dropper file which is usually office files, PDFs or an e-mail. Lack of awareness of fileless

malware, have a natural advantage over malicious binaries, which have been a conventional

threat to society. [30] and [31] provide a nice idea on Cuckoo Sandbox and its comparison

with other sandboxes, for better understanding.

3.4 Change during compilation

“Is it possible to add an intercepting function through a compiler, while creating an

executable?” To answer this question, we need to understand what compilers are.

Compilers are programs that convert high-level language to machine-readable lan-
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guage. So, even if we assume that there exists a super-compiler that has the hooking func-

tionality, without putting any efforts to develop one. There are still many drawbacks in

this approach. Firstly, the executable binary that any compiler provides, can only contain

statically linked libraries and not dynamically linked libraries (DLL). Therefore limiting

the hooking functionality till statically linked libraries. Lastly, we will have to recompile

all the existing applications using this super-compiler to achieve hooking at a global scale,

which is not practicle.

In this Chapter, we understood the possible ways we can achieve hooking in a Win-

dows system. There exist more ways to hook system calls, for example hooking via Rootk-

its, or hooking Network Interfaces (NDIS). But those approaches are currently beyond our

approach. We focus on hooking at the user level and not system level. In the next Chapter,

we will walk through the hooking implementation and evaluation of the results.



Chapter 4

IMPLEMENTATION AND EVALUATION

We understood in Chapter-3, the possible ways to intercept system calls. We will be

primarily using the first approach i.e. Chapter-3.1 to achieve automated hooking of system

calls.

4.1 Implementation

We used Visual Studio Code[33] and C++ to implement API hooking. Visual Studio

Code is a source-code editor, developed by Microsoft, to develop Windows-based applica-

tions and Dynamic Libraries (DLLs). Our implementation also uses Microsoft Detours[34],

a framework built by Microsoft to intercept function calls in a DLL of the windows system,

and tested it on Windows 7 SP1 (x86).

In this section, we briefly understand the working of Detours and then deep dive into

our implementation

4.1.1 Microsoft Detours

Detours is a very powerful tool and an equally dangerous tool. It is a library of useful

APIs that can be utilized to hook any system call on ARM, x86, x64 and IA64 machines.

It is commonly used to intercept Win32 APIs to add debugging instrumentation. As it
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simplifies the hooking mechanism, it is beneficial for both malware analysts and authors.

The internals of the Detours is highly complicated and technical, which is beyond the scope

of our work. To use Detours, we must have sufficient knowledge of how Windows works,

already described in Chapter-3.

Fig. [??] shows the workflow of basic hooking, but Detours work a bit differently,

and the comparison has been shown in Fig. [??]. The dotted lines in Fig. [??] show

the normal execution flow of any process without the Detours; and solid lines show the

execution with the Detours. The detour-function is the function that is called, instead of

the target function. The detour function must exist to intercept a system call. Unlike the

trampoline function, which can be avoided and therefore is optional.

Detour is a set of C/C++ code and is important to build it on the same system that

is supposed to be monitored or hooked. It gives us an easy framework to hooking system

APIs, and allow the developers to choose the system calls. So, we integrate and build

our set of codes with Detours, to achieve system call hooking, specifically focusing on

identifying fileless malware. Code Project[35] provides a great resource to implement

Microsoft Detours.

4.1.2 Adding Hooks

Detour implements every function call as a transaction. So, it is important to under-

stand the need of following functions:-

• DetourTransactionBegin: Initiates a transaction

• DetourUpdateThread: Updates the transaction, with the details of the current thread

• DetourTransactionCommit: Brings the hook into action

• DetourAttach, DetourDetach: Used to start and stop a hook, respectively
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Both DetourAttach and DetourDetach functions take two pointer arguments. The first

argument is a pointer to the original target function; while the second argument is a pointer

to the detour-function that we create. Note that, the detour function is supposed to have the

same method signature as the target function, as shown in Fig. [??].

Fig. [??] shows an example of hooking CheckRemoteDebuggerPresent function,

defined in kernel32.dll. “pCheckRemoteDebuggerPresent” is the pointer to the target-

function, and “MyCheckRemoteDebuggerPresent” is the detour-function (left undefined)

with the same signature as the target function i.e. CheckRemoteDebuggerPresent. This

simplifies the hooking procedure, as all the complexities behind the hooking process are

being handled by the Detours efficiently. The detour-function was created for all the sys-

tem APIs specified in (Appendix-A), with an intention to monitor malicious behavior. The

trampoline-function keeps a log of all the system calls, with the time-stamps and the fre-

quency/usage of each API, in a map. We finally built the DLL named WinHook.dll using

Visual Studio Code and moved ahead to the final step. It is important to note that, Win-

Hook.dll writes the recorded data from the map into a file, once a process exits.

4.1.3 Activating Hooks

Once the DLL named WinHook.dll was created, we placed it in the Windows system

partition (C drive). Then, we set two specific Windows Registry values: AppInit DLLs and

LoadAppInit DLLs to activate the hook during the testing phase. These registries are lo-

cated at: “HKEY LOCAL MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows”,

as shown in Fig. [??].

The value of AppInit DLLs tells the Windows PE loader to load the respective DLL

into every user process, of the current window session. Even after being informed, the PE

loader does not load the specified DLL into user processes, unless we set another registry

value named LoadAppInit DLLs, with a value of 1. Also recall from Chapter-3.1, that Win-
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dows restricts injecting a custom DLL into the processes unless signed by Microsoft. The

workaround is that we set another registry value, named RequiredSignedAppInit DLLs to

0, as shown in Fig. [??].

Finally, after setting the values of all three registries, we successfully hooked system

APIs for all the user processes. Note that, since Windows 7 does not allow to inject an

unsigned DLL like “WinHook.dll” into the system processes, we were only able to test,

hook and log the user processes.

4.2 Proof Of Concept

In this section, we explain how we tested our developed framework and covered a large

variety of malware. Our testing involves two major goals. The first goal is to automate the

tracing of system calls and the second goal is to verify that this method works for fileless

malware.

We divided the tests into four major categories. First, we inject the WinHook.dll into

a running process in order to verify the results with pure binaries. Second, we executed

shellcodes using a C program to verify the automation. Third, we executed a PowerShell

script to verify the working of hooks for fileless malware. Lastly, we compare the results

of hooking a simple PDF against a malicious PDF file.

4.2.1 Processes and Binaries

We chose Web Browsers to trace system calls and analyze the results, as they use a

variety of functionalities in background. Google Chrome was purely a random choice, with
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no specific reason to test it.

We first activated the hook by modifying the registry value as specified in Chapter-

4.1.3, and then started the chrome browser. The Windows Task Manager in Fig. [??] shows

all six running processes of Google Chrome, named “chrome.exe”. As there were six

chrome processes that were created on starting the Google Chrome browser, our framework

also created six text files. Each log file contained the Process Id (PID) of the respective

process, with the name “winhook (PID) log.txt”, located at the Desktop of the Window

user. It is not possible to view the log files during the hooking process, until all the chrome

processes are closed.

The results showed that one log file out of all six logs was totally blank. The remaining

five log files are shown in Fig. [??]. Each log file contained the list of hooked Windows

APIs that were used by the process, with the count/usage of each API.

We can conclude that only one chrome process with process-id as 3044 tried to con-

nect to the internet; as only that process used system calls like send, connect and recv. Rest

of the API calls are pretty common in every instance of chrome. Additionally, it is interest-

ing to see that chrome also used system API named IsDebuggerPresent, commonly used

by malware to hide its behavior, and checked if it’s running inside a Memory Debugger.

We verified the working of our approach on the Windows 10 operating system also,

using the same implementation. This time we tested the working on Mozilla Firefox web

browser, as shown in Fig. [??] and Fig. [??]. We can see a change in the results, that

only two out of the five processes of firefox.exe were logged as a text file. The reason

for this change was that Firefox did not import the user32.dll in the other three processes,

therefore not allowing Windows PE loader to inject the hooking functionality. We verified

the absence of the DLL using Process Explorer tool found in Windows SysInternals.
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4.2.2 Shellcodes

The Shellcodes[16] were not simple to test, as compared to the binaries. A Shellcode

can neither be directly executed like a binary, nor it can be executed like a DLL by inject-

ing into another process. So, we created a C program and executed the shellcode as an

executable binary.

A typical shellcode looks like a set of unicode characters representing machine code,

as shown in Fig. [??]. These unicode characters can be directly executed using a C pro-

gram, by storing them as a string and executing the character pointer as a function. We used

this approach to identify the behavior of the shellcode. This approach is totally acceptable

to prove the concept, as a shellcode is eventually executed inside a binary by exploiting

some vulnerability on a victim’s system. In order to simplify this testing, it was totally fair

to run the shellcode directly as an executable, rather than exploiting a vulnerability by our

self. The only aim is to identify the unexpected behavior using the hooking logs.

We used MSFVenom[37] to generate a malicious shellcode and created a reverse TCP

connection at port 9999, commonly used to gain access to a victim’s system. Once the

shellcode was executed through the binary, the TCP port 9999 is reserved by the process.

Fig. [??] shows Windows Command Prompt executing the shellcode via a process named

“WinHook.exe” and the Windows Task Manager showing the process-id 4552 of the “Win-

Hook.exe”. The winhook log file was also created at the user Desktop, with the usage of

hooked APIs being logged in the file. We verified the usage of the port 9999 by the process

4552 through the “netstat” tool shown in Fig. [??].

The system APIs used by the shellcode is shown in Fig. [??]. The result shows the use

of connect system call and confirms the creation of the reverse TCP. We could have seen the

usage of additional WinSock APIs(Appendix-A) if the reverse TCP was successful. Since
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there was no other program/process to accept the TCP connection, in this test scenario, the

shellcode timed-out at connect.

4.2.3 PowerShell scripts

PowerShell scripts turned out to be more challenging than shellcodes because of our

direct dependency on the Windows PE loader to automate the hooking process.

A limiting factor to our approach is that the custom DLL is only linked to the pro-

cess importing “user32.dll”. As the PowerShell console did not import user32.dll, “Win-

Hook.dll” was not injected by the PE loader. However, just to verify the working of our ap-

proach, we manually injected “WinHook.dll” into malicious PowerShell scripts and tested

the scenario. Fig. [??] shows a PowerShell script executing as a KeyLogger[36].

The results were positive as the text file was created successfully with the usage of

the system calls. Fig. [??] shows the usage of system APIs named GetAsyncKeyState,

GetKeyState, and GetKeyboardState. These three system APIs are commonly used by mal-

ware to steal passwords and important user data, verifying that the method can be used to

identify malicious PowerShell activities.

4.2.4 Office/PDF files

PDF and Microsoft Office files are one of the major sources of fileless attacks([41][42]),

breaking the general convention of using malicious binaries. These are known as semi-

fileless malware, as it involves a dropper file to execute the malware. Once executed, this

malware resides only in memory. These particular malicious files hide a script or a shell-

code behind the them. The scripts or shellcode can be activated either by exploiting a

vulnerability or through escalated privileges.
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In the following sections, we tested a benign PDF and a malicious PDF and then com-

pared the results.

Benign PDF We created the benign PDF named “sample.pdf” using Microsoft Of-

fice and executed it after enabling the hook. The log file for the Adobe Acrobat Reader

(AcroRd32.exe) with Process Id 3372 was successfully created, also shown in Fig. [??].

We found the usage of Hooking related APIs(Appendix-A) even in a benign PDF file, along

with the usage of OpenProcess and CreateRemoteThreadEx. It is difficult for us to reason

the usage of few system calls by the benign PDF, shown in Fig. [??].

Malicious PDF We created the malicious PDF named “sample-mal.pdf” using

Metasploit Framework[38].

An existing exploit named windows/fileformat/adobe pdf embedded exe was used to

embed a malicious payload/behavior into a benign PDF. The malicious payload in the PDF

created a Reverse TCP connection without the consent of the user. Just for testing purpose,

we set the Destination IP of reverse TCP as “127.0.0.1” and the destination port as 8989.

Fig. [??] shows the malicious PDF running on the Windows Desktop after the hook was

activated.

The malicious PDF executed using the Adobe Acrobat Reader (AcroRd32.exe) having

process-id 3180. It is important to note that, two log files and one additional PDF named

“sample.pdf” were created on the execution of the malicious PDF. We found sample.pdf

executing in the background (not visible as a PDF on the Windows Desktop) with process-

id 2564 through Windows Task Manager. Netstat tool verified that the sample.pdf process

was creating the intended Reverse TCP at port 8989. The Netstat tool and the logs of both

the processes: 3180 (the malicious pdf) and 2564 (the additional process) are shown in Fig.
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[??].

Comparison We understood the working of the malicious PDF in the previous sec-

tion and discovered the silent creation of another process sample.pdf. We found that the

API usage of the malicious PDF (Pid= 3180) and the benign PDF (Pid= 3372) do not have

any major difference. It is probably because of AcroRd32.exe being a common benign

software used to view PDF files.

The good part was that we were able to monitor the behavior of the additional process

(Pid= 2564) created by the malicious PDF to initiate Reverse TCP. The usage of the socket

function by the process 2564 is shown in Fig. [??]. Very similar to Chapter-4.2.2, we

could have seen the usage of additional network APIs, if the reverse TCP was successful.

By performing the above tests, we tried to cover a wider range of malware and verified

that it is possible to identify them by hooking system calls. We also analyzed the challenges

that we faced during the automation of tracing the system calls. We found a good and a

bad thing about the Windows system that helped and blocked our motive respectively. In

the next Chapter, we summarize our study and explain the limitations and future work.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

We revisited the problem of detecting malware. We analyzed the challenges faced

in malware analysis, especially due to fileless malware. We understood the process of

hooking Windows system calls and reviewed the work already been done. We discovered

that system call hooking hasn’t been tested on the fileless malware and analyzed exist-

ing methodologies and understood their pros & cons. We chose one of the methods and

implemented it to automate the process of tracing system APIs to detect malicious behav-

ior. Finally, we evaluated our method and proved its effectiveness, to detect both filed and

fileless malware.

5.2 Limitations

Although we were able to raise the usefulness of API hooking to identify malicious

behavior, we were not able to truly automate the process for fileless malware. The following

factors limit our approach to automate API hooking.

First, the Windows PE Loader injects a custom DLL only into the process importing

user32.dll. This made our approach capable enough to monitor user processes but not

automatized enough to monitor PowerShell scripts, as explained in Chapter-4.2.3.
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We were also restricted to test only the user processes, as Microsoft Windows re-

stricted to profile the system processes. It can be taken as a positive aspect too because it

makes it harder for malware to infect a system process.

5.3 Future Work

Malware authors always try to be unpredictable and unusual. It becomes difficult for

us to predict the system API/calls that could be used by the malware authors. Therefore,

it is very important for us to regularly improve and update the framework and walk one

step ahead of the malware authors. Our framework is currently limited to x86 Windows

architecture and does not support x64 architecture, making it open for an extension toward

other platforms.

Also, devising a new method to automate the tracing of the PowerShell scripts is very

important. TrendMicro[40] states that “Malicious PowerShell scripts are a key ingredient

to much fileless malware”. Therefore a workaround has to be designed to identify a wider

range of fileless malware.
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Appendix A

APIS HOOKED

This is the list of all the Win32 APIs we hooked:

Registry Apis

• RegCreateKeyExA

• RegCreateKeyExW

• RegSetValueExA

• RegSetValueExW

• RegCreateKeyA

• RegCreateKeyW

• RegDeleteKeyA

• RegDeleteKeyW

• RegCloseKey

System Apis

• CreateToolhelp32Snapshot

• CreateProcessA

• CreateThread

• CreateFileA

• CreateFileW
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• OpenFile

• lopen

• DeleteFileA

• DeleteFileW

• OpenProcess

• CreateRemoteThread

• CreateRemoteThreadEx

• WriteProcessMemory

• ReadProcessMemory

• NtOpenFile

• NtCreateFile

• NtRenameKey

• WinExec

• LookupPrivilegeValueA

• LookupPrivilegeValueW

• ExitWindowsEx

Hooking Apis

• SetWindowsHookExA

• SetWindowsHookExW

• CallNextHookEx

• UnhookWindowsHookEx

• GetAsyncKeyState

• GetKeyState

• GetKeyboardState

Crypto Apis

• CryptBinaryToStringA
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• CryptBinaryToStringW

• CreateEventA

• CreateEventW

• CreateEventExA

• CryptDecrypt

• CryptEncrypt

• CryptDecryptMessage

• CryptEncryptMessage

WinSock Apis

• socket

• send

• recv

• listen

• connect

• bind

• gethostbyname

• gethostbyaddr

Debugging Apis

• IsDebuggerPresent

• CheckRemoteDebuggerPresent

• OutputDebugStringA

• OutputDebugStringW

Network Apis

• URLDownloadToFile

• HttpOpenRequestA
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• HttpOpenRequestW

• HttpSendRequestA

• HttpSendRequestW

• InternetConnectA

• InternetConnectW

• InternetCrackUrlA

• InternetCrackUrlW

• InternetOpenA

• InternetOpenW

• InternetOpenUrlA

• InternetOpenUrlW

Resource Apis

• SecureZeroMemory

• memcpy

• wmemcpy

• memcpy s

• wmemcpy s

• VirtualProtect

• VirtualProtectEx

• VirtualAlloc

• VirtualAllocEx

• VirtualQuery

• VirtualQueryEx

• LoadLibraryA

• LoadLibraryW

• LoadLibraryExA

• LoadLibraryExW
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