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Abstract: Onboard target detection of hyperspectral imagery (HSI), considered as a significant remote
sensing application, has gained increasing attention in the latest years. It usually requires processing
huge volumes of HSI data in real-time under constraints of low computational complexity and
high detection accuracy. Automatic target generation process based on an orthogonal subspace
projector (ATGP-OSP) is a well-known automatic target detection algorithm, which is widely used
owing to its competitive performance. However, ATGP-OSP has an issue to be deployed onboard
in real-time target detection due to its iteratively calculating the inversion of growing matrices and
increasing matrix multiplications. To resolve this dilemma, we propose a novel fast implementation
of ATGP (Fast-ATGP) while maintaining target detection accuracy of ATGP-OSP. Fast-ATGP takes
advantage of simple regular matrix add/multiply operations instead of increasingly complicated
matrix inversions to update growing orthogonal projection operator matrices. Furthermore, the
updated orthogonal projection operator matrix is replaced by a normalized vector to perform the
inner-product operations with each pixel for finding a target per iteration. With these two major
optimizations, the computational complexity of ATGP-OSP is substantially reduced. What is more,
an FPGA-based implementation of the proposed Fast-ATGP using high-level synthesis (HLS) is
developed. Specifically, an efficient architecture containing a bunch of pipelines being executed in
parallel is further designed and evaluated on a Xilinx XC7VX690T FPGA. The experimental results
demonstrate that our proposed FPGA-based Fast-ATGP is able to automatically detect multiple
targets on a commonly used dataset (AVIRIS Cuprite Data) at a high-speed rate of 200 MHz with
a significant speedup of nearly 34.3 times that of ATGP-OSP, while retaining nearly the same high
detection accuracy.

Keywords: hyperspectral image; fast automatic target generation process; field-programmable gate
array; high-level synthesis

1. Introduction

Hyperspectral imaging sensors can acquire images with hundreds of contiguous spectral
channels [1,2]. As a benefit from such rich spectral information, hyperspectral images (HSIs) have
unique advantages for classification, detection, and recognition [3—6]. Real-time target detection aiming
to find timely interesting targets has drawn much attention because of its significance in military and
civilian applications [7-9]. Although the presence of targets in HSI provides critical information in
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data analysis, it is rather rare and may be difficult to find because many of HSI-detected targets are
relatively small and weak, such as anomalies [10]. Consequently, real-time target detection in HSI
presents a great challenge and has become increasingly important.

Currently, many algorithms have been developed for target detection in HSI, such as unsupervised
fully constrained least squares (UFCLS) [11], automatic target-generation process based on an
orthogonal subspace projector (ATGP-OSP) [12], and Reed-Xiaoli (RX) detector [13]. Among them,
the performance of ATGP performs well in terms of detection accuracy and computational complexity
according to the quantitative and comparative assessments [14,15]. However, despite the fact that
automatic target detection has received increasing attention [16-18], two problems with real-time
onboard applications need to be addressed. One is to continuously increase the scale of operations
in the process of automatically iterating to update currently being found targets, which complicates
the process of updating operator matrix. The other one is a large-scale matrix multiplication problem
when projecting HSI data onto the direction specified by the operator matrix, which consumes most
of the time and resources and makes ATGP-OSP realize inefficiently. To mitigate the aforementioned
problems, Fast-ATGP is proposed to solve the increasingly complicated operation problem and to
replace the update of the operator matrix with a normalized vector.

Owing to the complexity and dimensionality of HSI, ATGP is still computationally intensive [19].
This often leads to the requirement of hardware accelerators to speed up computations [20]. The
algorithm could be implemented on one of the widely used platforms like CPUs [16], GPUs [21], and
field-programmable gate array (FPGAs) [22]. Among them, FPGAs have significant advantages in
efficiently processing HSIs due to the following three main reasons. First, FPGAs are able to provide
much more competent levels of performance closing to those offered by GPUs with much lower power
consumption. Another is that FPGA devices with increased levels of tolerance to ionizing radiation in
space are widely used as the solution for onboard processing at earth observation satellites. Last but
not least, is the fact that FPGAs have the inherent ability to change their functionality through partial or
full reconfiguration. In the past, there have been several developments toward the implementation of
target detection algorithms on FPGAs [23]. Specifically, Yang et al. [24] utilized Streaming Background
Statistics (SBS) structure with an idea of continuously updating the inverse of the correlation matrix
on FPGA. Recently, Gonzalez et al. [17] developed an FPGA implementation of ATGP-OSP using the
pseudoinverse operation with superior hardware implementation. Unfortunately, the Gauss-Jordan
elimination method for updating the inverse matrix still suffers higher computational complexity and
resource utilization.

Although FPGAs gain much attention, it is still not easy to apply them to accelerate those
algorithms which still have high computational complexity [25,26]. The primary reason is that the
conventional development technique of FPGA uses hardware description language (HDL) at the
register-transfer level (RTL), which is a massive time-consumed process and lacks portability and
flexibility compared to those based on C/C++ for CPUs or GPUs. As a promising alternative, FPGA
vendors and developers begin to take advantage of high-level synthesis (HLS) to develop FPGA
applications [27]. HLS is a relatively mature design methodology [28], which allows high-level
abstraction languages such as C/C++ to be synthesized into VHDL/ Verilog HDL for RTL-level circuit
design [29,30]. Specifically, there have been some studies on using HLS for HSI applications, such as
classification [31], unmixing [32], and compression [33]. The merit of HLS is validated in our previous
work [34] that the deep pipelined background statistics (DPBS) structure is developed for real-time
target detection. In addition, Domingo et al. [29] proposed an HSI spatial-spectral classifier accelerator
using Intel FPGA SDK for OpenCL. Guo et al. [35] introduced the pixel purity index (PPI) to extract
endmembers in HSI described in Vivado HLS.

In this paper, a Fast-ATGP algorithm is developed and implemented on FPGA using HLS for
real-time target detection. Like ATGP-OSP, the orthogonal projection operator is gradually updated
using pseudoinverse operation [17]. Different from the traditional target update with an increasing
scale of calculation, Fast-ATGP optimizes the Gram Schmidt orthogonal vector projection (GSOVP)
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method to update the operator matrix. As for the issue of calculating large-scale matrix multiplication
when the operator projected on HSI, a normalized vector is proposed to perform vector multiplications
instead of matrix multiplications. As a result, an extremely fast version of ATGP can be further
proposed, which has an extraordinary performance improvement resulting from a significant reduction
in the amount of computations. Experiments performed on two real hyperspectral data sets prove the
effectiveness of the proposed algorithm in terms of detection accuracy and speed performance. More
specifically, our architecture has the capability of operating at a high-speed rate of 200 MHz with a
significant speedup of near 34.3 times ATGP-OSP in the AVIRIS Cuprite data set with nearly the same
detection accuracy.
The contributions of this paper can be summarized as follows.

e A solution is derived to remove traditional complex inversion in ATGP-OSP by a simple method.
The proposed method is capable of achieving real-time detection without sacrificing target quality
at a fixed scale of operation.

e Anovel effectively update structure for orthogonal projection operator is proposed to accelerate
Fast-ATGP. A normalized vector is adopted to replace the classical operator to complete the
projection process.

e The proposed architecture can greatly balance speedup factors and resources by combining the
serial-parallel structure and multiplex technique, which is optimal for processing wealthy HSI
information in terms of real-time hardware implementation.

e The approach can be simply reconstructed by adjusting several parameters in HLS. As a
consequence, the framework is able to support HSI with different sizes and spectral bands and
conforms to multiple amounts of processing element (PE) to achieve different levels of parallelism.

The remainder of this paper is organized as follows. Section 2 briefly describes the principle of
ATGP-OSP and analyzes its problems when it is implemented on FPGAs. The proposed Fast-ATGP is
introduced in Section 3. The FPGA implementation of Fast-ATGP is presented in Section 4. Section 5
conducts a detailed performance analysis via extensive experiments. Finally, conclusions along with
some remarks are drawn in Section 6.

2. Background

In this section, we briefly describe ATGP-OSP and analyze its problems when it is implemented
in practical applications.

2.1. ATGP-OSP Algorithm

The original ATGP is based on OSP concepts and will be referred to hereinafter as ATGP-OSP [17].
The basic concept of OSP is to project each pixel vector onto a subspace which is orthogonal to the
obtained signatures [14]. It is an iterative process in which orthogonal projections are applied to find
a set of spectrally distinct pixels [12]. ATGP-OSP method is summarized in Algorithm 1, where U
is a matrix of spectral signatures, UT is the transpose of it, and I is the identity matrix. It should be
emphasized that the ATGP-OSP primarily comes from a need of finding targets of interest in HSI only
with the prior knowledge of ¢, where t denotes the number of targets to be detected. In general, the
value of t can be obtained by the virtual dimensionality (VD) developed in [22].

In ATGP-OSP, F € R" denote an HSI with r(r = W x H) pixels and L spectral
bands. The ATGP-OSP algorithm begins by an orthogonal projection operator specified by the
following expression:

P =1- UU* (1)

Orthogonal projection operator P{; has the same structure with the orthogonal complement

projector, where U* = (UTU) “1UT s the pseudoinverse of U. The operator Py is first applied to
the original image, with U = [my], where my is an initial target signature (i.e., the pixel vector with
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maximum length). It then finds a target signature m;, with the maximum projection in < mgy >, where
< my > is the orthogonal projection operator P{; composed with U = [my] by step 4 in Algorithm 1.
< mg > is the orthogonal complement space linearly spanned by my. The following target signature
m; is obtained by another P{; with U = [mg,m;] and selected by the maximum projection in
< my,m; >. Then the procedure above is repeated until the target pixels {my, my,..., m; 1} are
detected.

Algorithm 1 Pseudocode of ATGP-OSP
1: Inputs: F € R", and ¢;
% F denotes an n-dimensional hyperspectral image with r pixels, and t denotes the number of
targets to be detected
2: U = [mp|0],...,|0];
% my is the initial target signature with maximum length in F
3:fori=0tot—1do
4 PL=1-U(UTU) 'UT;
% Py; is a vector orthogonal to the subspace spanned by the columns of U
5. v= PleF;
% F is projected onto the direction indicates by Py
6: ii =argmaxy .y V[ ii];
% The maximum projection value is found, where r denotes the total number of pixel in the
hyperspectral image and the operator “:” denotes “all elements”
72 m; =U[;,i+1] = F[,ii];
% The target matrix is updated
8: end for i
9: Outputs: U = {mg, my,..., m;_1};

2.2. Analysis

According to Algorithm 1, the target detection process can be summarized in three stages. The first
stage updates the orthogonal subspace projector Py (step 4 of Algorithm 1). The next stage is the
orthogonal projection process (step 5 of Algorithm 1). The last stage mainly finds the target pixel with
maximum length in F (step 6 of Algorithm 1). In addition, the number of computations for each stage
is shown in Table 1 when detecting the i-th target, where 0 < i < t. Although ATGP-OSP achieves
considerable detection performance [36], it is computationally expensive because of the complexity
and dimensionality of HSI, which limits the possibility of utilizing this approach in time-critical
applications. In the above three stages, the tightest bottleneck in the detecting process can be inducted
as following two problems.

Table 1. Computations for each stage when detecting the i-th target in automatic target generation
process based on an orthogonal subspace projector (ATGP-OSP).

Stage Number Formula Flop
1 PL=1-U(UTU) 'UT lit+ 1B 4L

2 v = P§F rx L2

ii = argmaxyy . V[, ii] rx L

2.2.1. Increasing Operation Problem

The traditional ATGP-OSP requires inverting a matrix to eliminate the effect of the obtained
targets [37]. However, as shown in Table 1, one of the most important issues with ATGP-OSP method
is of high complexity in matrix inversion. ATGP-OSP needs O(i*) time-slots every time when updating
the operator P{;. Though i is much smaller than L, it is still unusually difficult for hardware to design
because the complicated process of matrix inversion is required. Besides, when the number of targets
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keeps increasing, which is indeed the case of hyperspectral data, ATGP-OSP will become slower due to
the growing size of inverting matrices. In other words, high complexity makes it much more difficult
to be realized on hardware like FPGAs.

To deal with this problem, Song et al. [38] developed a simple and new type of OSP without
computing matrix inversion, referred to as GSOVP, which is also based on orthogonal projection.
The purpose of using the GSOVP method in combination with ATGP is to orthogonalize a set of
linearly independent vectors in an inner product space, usually the space R"(t < n) in which the
original hyperspectral image F is defined. GSOVP theory, shown in Equation (2), can be described
as follows: Suppose that there is a set of orthogonal base {1y, t, ..., M;_1} corresponding to the
original signature vectors {mg, my, ..., m;_1 }. The vector m; obtained by the Gram Schmidt theory is
orthogonal to all the vectors included in {mg, my, ..., m; 1}. Itis found in the orthogonal complement
subspace to the space linearly spanned by {mg, my, ..., m;_1} by

i—1 mlTﬁln -

@

m; =m; — Z;zlom?u”m” =m; — 2n=0 ﬁ‘z;ﬁln
where g = my, u, = M,/ ||m,]||.

The method above, which is much less complicated, makes use of consecutive inner product
operations to achieve the purpose of eliminating the inversion of a matrix. However, according to
Equation (2), the orthogonal vector m; in F must be operated with th,, in sequence, in which redundant
multiplications are required. In addition, as the number of iterations 7 increasing, more repetitive
operations need to be processed. Therefore, it is critical to convert this kind of increasing operations
into regularized operations.

2.2.2. Huge Matrix Multiplication Problem

We test on a large number of HSIs and finding that stage 2 in Table 1 consumes the most of the
time and resources because of the wealth of spectral information in F. As shown in Table 1, after
all of the target signatures are obtained, t x r x L? multiplications need to be performed, where r is
about tens of thousands. It is also expected that, in the future, hyperspectral sensors will continue
increasing their spatial, spectral, and temporal resolutions [39]. Therefore, HSI makes stage 2 have a
typical huge matrix multiplication problem, which may cause a significant slow process to extraction
the target signatures.

To reduce large-scale matrix multiplications, Bernabe et al. [18] utilized the normalized vectors
generated by orthonormal set {fh, iy, ..., m; 1} to update the orthogonal projector P{. In their
implementation, Py is an arbitrary n-dimensional vector. Unfortunately, the method utilizes the
operator P{; repeatedly every time when extracting a next new signature, resulting in a large number
of redundant and repetitive operations. What is more, the update of P{; by orthogonal set is another
process with redundant matrix multiplications. In conclusion, stage 2 overhead would be the major
bottleneck of ATGP-OSP in data computation performance.

3. The Proposed Approach

To solve the aforementioned problems, an optimized algorithm, called Fast-ATGP, is proposed
in this section in detail. The two main solutions are proposed to reduce computational complexity
while realizing it in parallel. The Fast-ATGP calculates the orthogonal projection without using the
pseudoinverse operation and updates the operator in one step, which is described in Algorithm 2.
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Algorithm 2 Pseudocode of Fast-ATGP
1: Input: F € R", and ¢;
% F denotes an n-dimensional hyperspectral image with r pixels and ¢ denotes the number of
targets to be detected
2: Initialized: Pjj, = Ipx1, P% =[11,...,1],w=[1,1,...,1];
% 1 is the identity matrix and L denotes spectral bands of HSI, Péo and Péo are the initialized
orthogonal projection operators
3:fori=0tot—1do
4. v= P#i -F;
% HSI data F is projected onto the direction indicates by P#i
5: index = argmax . V;
% The maximum projection value is found, where r denotes the total number of pixels
6: m; =U[;,i+ 1] = F[;,index];
% The target m; is detected and the target matrix U is updated, where the operator “:” denotes
“all elements”
7: ﬁll‘ = Pﬁi - m;

% m;, used for updating the operator Péiﬂ and P%Hl, is a vector obtained by the target

signature m; projected onto the direction indicated by PILJi

o ST
.opL  _pl _ MMy
8: PUi+1 U mmy
% The projection operator of matrix Py; is updated
9: PL  —pl _ wm LT
’ Vii Vioomlm, i
% The projection operator of vector Py; is updated
10: end for i

11: Output: U = {my, my, ..., m;_1};

3.1. The Principle of Fast-ATGP

3.1.1. Fixed Scale of Operation

In classical ATGP-OSP, the operator Pg; projects the pixel vector into the orthogonal complement
of the signatures {mg, my, ..., m;_1 } when executing the i-th iteration. To reduce unnecessary complex
calculations like matrix inversion when updating the operator P{;, GSOVP algorithm utilizes another
way to obtain the orthogonal vector. But it inevitably performs more complicated operations as the
number of targets increases, and each operation requires all the previous pixels to participate, instead
of updating it in real time based on existed results. To solve the increasing operation problem, a fixed
scale of operation can be applied to update the P{. In our implementation, the update of orthogonal
set is changed into a matrix form by performing matrix operations. Instead of {thg, my,...,M; 1},
operator Py still acts as the orthogonal subspace to project the image F like ATGP-OSP. The Fast-ATGP
algorithm extracts the orthogonal projection operator Pﬁi by

. T . = =T

N i—1m; my _ i—1 1y, m

mi:mi—é _OJTiNmn: I—E —o~;~n 'miéPﬁ.-mi 3)
=YV, m, =YV, my, i

At this time, only a single update of matrix P{; is needed rather than i-times vector operations
when attaining the orthogonal projection vector ;. In addition, the first target my may be a priori
vector in ATGP-OSP. But when my is unknown, the calculation process is different from the other
targets so that when implementing the ATGP algorithm in hardware, an extra and separate module
needs to be designed. In this paper, the orthogonal projection operator Py is initialized to an identity
matrix, and the processing module of the first target combined with the others shown in Algorithm 2.
The update of P can be described as follows:
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= T
mm:
L PJ_ L (4)

where the initial matrix PlLJo isIpxr.

3.1.2. Update Operator in One Step

As mentioned above, significant resources and time are consumed in stage 2 of Table 1. To reduce
this cost, we propose a projector Py; which can be utilized to project on HSI and it is also orthogonal to
all vectors in {fhg, ty, ..., m;_1}. It is worth emphasizing that the L components of the orthogonal
projector Py; could be initialized to any values since it would not affect its orthogonality. In this paper,
the Py is initialized as [1,1,..., 1], which is suited for hardware and updated by

1 pl w-m
Vi+1_P

] (5)
where w is fixed to [1,1,...,1].

The pseudocode for Fast-ATGP is provided in Algorithm 2. In addition, it is important to
emphasize that steps 7 and 9 in Algorithm 2 are unnecessary to be performed when i = t — 1.
During the last two iterations, step 8 also can be neglected.

3.2. Parallel Strategy

According to Algorithm 2, the detection process of Fast-ATGP can be summed up in another
three new stages: Updating projector, performing orthogonal projection, and finding targets. The
number of computations is listed in Table 2 for the ith iteration (0 < i < t). According to stage 1 in
Table 1, the number of computations will increase exponentially as 7 increases, while there exists a
strong data dependency problem. In our implementation, Fast-ATGP completes this stage with a
fixed L-scale operation through parallel operations. It can also be clearly seen from Tables 1 and 2,
Fast-ATGP saves nearly L times of operations in the latter two stages, which reduce a considerable
amount of computation.

Table 2. Computations for each stage when detecting the i-th target in Fast-ATGP.

Stage Number Formula Flop
1 _ pl _ mymf 2
1 Ui PUi T omlm L*+L
L _ plL Ay T
Py =Py — 1‘;’?‘;1 m, 3L
v="P{ F rxL
2
ﬁli = P[LJ - m; LZ
3 index = argmaxyy v r

In previous work, it has been reported that data-parallel approaches, in which the hyperspectral
data is partitioned among different PEs, are particularly effective for parallel processing in the
high-performance computing systems like FPGA [40,41]. So, it is crucial to choose a satisfactory
strategy for partitioning the HSI data in stage 2. Since the processing between pixels in Fast-ATGP is
independent, a spatial-domain decomposition approach can be adopted for data partition, and the
neighboring pixels can be processed in parallel. Previous experiments also indicate that spatial-domain
partitioning can significantly reduce inter-processor communication, resulting from the fact that a
single pixel vector is never partitioned and communications are not needed at the pixel level [42].

The parallel-based version of Fast-ATGP consists of the following steps,
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(1) The master divides the HSI data F into spatial-domain partitions according to the number of PEs,
and sends partitions and operator P; to all parallel processing units.

(2) Each processing unit finds the pixel vector with maximum length in its local partition. Specifically,
performing the dot-product operation in step 4 of Algorithm 2, and completing the comparison
and target selection process in step 5 of Algorithm 2. It is worth noting that the above two steps
can be implemented using HLS in parallel. In other words, the local brightest pixel vector can be
selected while operating dot-product simultaneously. Then, each unit sends the spatial location
and maximum length of the pixel to master respectively.

(3) The master finds the global pixel vector (m;) with the maximum length. Then, the pixel vector m;
is serially projected into the orthogonal subspace P{; (step 7 of Algorithm 2). Finally, the master
updates the orthogonal projection operators Py and Py, and broadcasts Py to all units.

(4) Repeat from step 2 to step 3 until a set of ¢ target pixels {mg, my, ..., m; 1} are extracted from the
original cube.

4. FPGA Implementation

This section describes the detailed implementation of Fast-ATGP. An overall hardware structure
of Fast-ATGP is given in Section 4.1. Section 4.2 describes the microscopic hardware architecture.

4.1. Overall Hardware Architecture of Fast-ATGP

As shown in Figure 1, the hardware architecture of Fast-ATGP has been implemented in OpenCL
framework, which mainly consists of two components including an off-chip memory (DDR3 SDRAM)
and a processor core. The off-chip memory is utilized to cache the HSI data. And the processor core
of Fast-ATGP is mainly responsible for the data processing, which involves three modules. The first
module is Target Searcher, dedicated to processing the HSI and finding the locations of the target pixel.
The second module is Sub-space Projector, applied to calculate the projection vector m; of the target
m;. The last module is Updater, utilized to update the orthogonal projection operator Pg; and the
orthogonal projector Py;.

‘ Off-chip Memory (DDR3 SDRAM) ‘

it

W Memory Controller |
H <
HSI < AXI Interconnect Bus >
L AN ZANIPAN
A4 N N/
AXI Target Searcher 8 || Sub-space Projector Updater
- g -
PCle @ s 8 P 1 Matrix
. 3 & Sl &2l U (P
CPU <:'> 550 |51 23] 2|2, | e Mem ] T Undater
g k- é gé g = o} li Norm-Coef
— é £ E' 3 4 £ g _|| Calculator
t g i S 5mi| P -m; |
S 2 O & = . > P 1 Vector
A A = Projector V Updater
U L s
Py e
Targets FPGA | Fast-ATGP Vector Mem

Figure 1. Overall hardware structure of Fast-automatic target generation process (Fast-ATGP).

4.2. Microscopic Hardware Architecture of Fast-ATGP

4.2.1. Target Searcher

As described in Figure 2, the Target Searcher contains three processing stages for finding the
location information of the target. This module is the center of parallel optimization to improve the
processing speed.
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The batch Data Loader and Distributor reads HSIs from the DDR3 SDRAM through the AXI
interconnect bus and loads pixel vectors for Dot-Product PEs in parallel. In order to provide enough
data for Dot-Product PEs, the data width of DDR3 SDRAM is set to 512 bits, which is the maximum
bit-width of the device available to use. Specifically, given an HSI with a pixel width of 16 bits,
32 successive bands of a pixel vector at each address can be saved. In other words, when the number
of PEs is set to 32, the processing unit can make full use of the bandwidth of DDR3 SDRAM.

< AXI Interconnect Bus

@xslzb

| Batch Data Loader & Distributor

1
| FFo V[ FFo ! E
i J<52b 1 <5120 1 !
1 1
:| Converter |: :| Converter || i
| Jx16b 1 Jx1eb ! i
1
E|FIFO|| P |EE|FIFO|| Py | :
o Jxieb X dxieb |
i
h
[
I
I
h
[
[

| Comparer(Max) & Target Selector

¢ Target pixel’s location

(a) (b)

Figure 2. (a) Hardware structure of Target Searcher; (b) Hardware circuit of Dot-Product (temp
represents the the result of dot-product).

Multiple PEs work in parallel, which can efficiently accomplish dot-product operations of Py;
with each pixel in HSI. Moreover, a task-level pipeline structure is adopted in each PE. As described in
Figure 2a, each PE first stores a pixel derived from batch Data Loader and Distributor into FIFO with
bit-width of 512. Then, the 512 bits data in FIFO is split into single band pixel data by the converter
and stored in FIFO with bit-width of 16. Finally, the inner product of pixel vector and Py; in FIFO is
completed by dot-product calculator, and the result is passed to the next stage through shift-register.

Comparer and Target Selector can get the new projection value by comparing 32 results from
Multiple PEs. When the new value obtained, comparing if it is greater than the currently stored value.
If yes, the position information of a target pixel will be updated and the new value will be stored. In
this way, after completing an iteration process, the position information of a new target pixel with
maximum length can be obtained, which is transmitted to the off-chip memory through Target Loc
Updater and used as input to Sub-space Projector.

Figure 2b shows the specific calculations of dot-product. In order to reduce the consumption
of computing resources, we only instantiate a multiply add accumulator and realize the operation
in serial.

4.2.2. Sub-Space Projector

Figure 3 shows the specific hardware circuit of Sub-space Projector. This module, which has two
inputs including the matrix P; from the Updater and the vector m; from the Target Pixel Loader, is
used to calculate the product ;. It is worth noting that Pg; should be set to the identity matrix when
the system is initialized. In order to improve the capability of parallel computation with fewer logic
resources, L multipliers are allocated to realize the parallel matrix calculation.
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Figure 3. Hardware circuit of Sub-space Projector.
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4.2.3. Updater

The Updater module consists of three sub-modules, including Matrix Updater, Norm-Coefficient
Calculator, and Vector Updater. The Updater is mainly optimized for reducing on-chip resources,
which is similar to the Sub-space Projector.

Figure 4 describes the Norm-Coefficient Calculator, which is used to calculate cy and cy that
are respectively applied to update P; and Py;. To begin with, it can be seen that both t; and t, are
intermediate variables. t; is the sum of squared elements of target pixel m;, which makes it the
denominator of the fraction by referring to Equation (4). Therefore, cy, the negative reciprocal of t,
is the subtrahend of Equation (4). Then cy is computed using the product of cy and f; , the sum of all
the element of m;. According to Equation (5), the fraction is equal to cy. Computing ¢; occupied only
one multiply add accumulator and ¢, uses one accumulator.

P = cy (i) +0) + P§ (6)

M
U Reg E @
X
(-] <]
I:hL
Counter

Figure 4. Hardware circuit of Norm-Coefficient.
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Figure 5 shows the architecture of Matrix Updater. Because cy is the same as the denominator
of the fraction Equation (4), Equation (4) can be converted to Equation (6), which is shown by the
equation above. So that we can reuse the architecture to finish the complicated calculation in two
steps. The first step is to work out one column in outer product of h;, and store the results in registers.
The next step starts with multiplying the first step results with cy, then it adds these products to the
element of Pg; in order. When the writing enable signal is valid, the members of P; will be stored in the
given BRAM. The two steps form the pipeline for figuring out P{; matrix every time, thus improving
the performance in terms of throughput.

; ¥ ‘
@'_X/ P3 Matrix Memory

@ ge{ uu‘ |u12 |u11 }—

Is the 1 step ?

EB]}EH 2]

®-¢[-'@-

@ ge{ uu‘ ‘uzz ‘u;n l—

|
=
[-] 2]

2]

@@ =l mn

Figure 5. Hardware circuit of the Pﬁ updater by using t; and cy.

In the proposed system, each member of the same column in P{; is processed and updated in
parallel. As a result, it can be inferred that the instantiation of L-element multiply accumulates is
necessary for Matrix Updater.

Figure 6 shows the architecture of Vector Updater, which implements the updating of Py.
When it comes to P%, usually initialized as all ones, the new P% is equal to the old one plus the
I There exists only one multiply accumulate for the sake of cutting down
resources consumption.

product of cy and m

m,
f_Jﬁ
) A Py Vector Memory
2
M |
U Reg |VL|"' |V2‘V1
: P X

~

Figure 6. Hardware circuit of the Py; updater.
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Besides, it is worth noting that the following design optimization strategies play an important
role in improving the performance of the FPGA implementation.

(1) The data type of input data is 16 bits unsigned fixed-point (15 bits fractional part), while the
majority of data types of intermediate data are not easy to assign. To better balance the trade-off
between detection accuracy and resource consumption, different data types are used in different
intermediate data. For example, as shown in Figure 2, the variable cy and cy are respectively set
to 38 bits signed fixed-point type (10 bits integer part, 18 bits fractional part) and 36 bits signed
fixed-point type (5 bits integer part, 31 bits fractional part). The elements of Pg; are 36 bits signed
fixed-point type (10 bits integer part, 26 bits fractional part). All the other intermediate data are
also assigned to the appropriate data type.

(2) The elements of Py and P5; are continuously updated and become smaller, so more bits should be
assigned to the fractional part for avoiding data overflow. However, the fixed bit-width of Pg;
and Py; are recommended to be applied in order to reduce the resource consumption as much
as possible. Considering the circumstances, we have done a lot of tests in HSIs and found that
the variation trend of elements in P{; was approximate to the inverse proportion function, so the
values of elements were enlarged in a certain proportion in our implementation to ensure the
variation trend constrained to a fixed interval. In this way, the risk of data overflow could be
effectively avoided.

5. Experimental Results and Discussion

5.1. Experimental Environment

The hardware architecture described in Section 4 has been implemented in OpenCL framework
for the specification of Fast-ATGP [43]. The communication between CPUs and FPGAs in the full
framework is completed using SDAccel, which can support standard OpenCL APIs. Moreover, HLS
tool is used to achieve the kernel of Fast-ATGP in Vivado HLS 2017.3. In our implementation, an
Alpha-Data ADM-PCIE-7V3 board (configured with Virtex-7 XC7VX690T FPGA) is chosen as our
development platform, which features two independent channels of DDR3 memory capable of 1333
MT/s (fitted with two 8 GB SODIMMs). To better compare the performance of our proposed algorithm
on FPGA with software implementation on a computer, the computer simulation is performed by
MATLAB in Windows 7 operating system where the computer hardware specification is specified by
Intel Core™ quad CPU@3.2 GHz and 4 GB main memory.

5.2. Hyperspectral Image Data Set

5.2.1. Cuprite Data

Cuprite, as shown in Figure 7a, is the most benchmarked dataset for the hyperspectral detection
research that covers the Cuprite in Las Vegas, NV, USA. The well-known AVIRIS Cuprite dataset is
considered as a reference within the hyperspectral remote sensing research field, which is available on
the website http:/ /aviris.jpl.nasa.gov/. This scene is composed by 250 x 191 pixels and 224 spectral
bands distributed between 0.4 and 2.5 um, with a spectral resolution of 10 nm. As a result, a total of
188 bands were used for experiments after removing the noisy channels (1-2 and 221-224) and water
absorption channels (104-113 and 148-167) [44]. Reference ground-signatures of the above minerals
(see Figure 7b), available in the form of a U.S. Geological Survey library (USGS), will be used to assess
Fast-ATGP algorithm in this paper.
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Figure 7. (a) False color composition of the AVIRIS hyperspectral over the Cuprite mining district in
Nevada; (b) U.S. Geological Survey mineral spectral signatures used for validation purposes.

5.2.2. Urban Data

Urban Data, available at http:/ /www.tec.army.mil /Hypercube, is one of the most widely used
hyperspectral data set for target detection [45,46]. It was recorded by the Hyperspectral Digital
Imagery Collection Experiment (HYDICE) in October 1995, whose location is an urban area at CA,
USA. As shown in Figure 8a, there are 307 x 307 pixels with 210 bands in this image, ranging from
400 nm to 2500 nm. After the bands 1-4, 76, 87, 101-111, 136-153, and 198-210 are removed (due to
dense water vapor and atmospheric effects), 162 bands remained in this data.
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Figure 8. (a) False color composition of an HYDICE hyperspectral image collected on October 1995
over an urban area at CA, USA; (b) Four signatures: Asphalt Road, Tree, Roof, and Dirt.

120

5.3. Analysis of Target Detection Accuracy

In this section, we evaluate the detection accuracy of the proposed implementation of Fast-ATGP
by using the real hyperspectral data sets which ground-truth information is available. ATGP-OSP is
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evaluated together with our approach. It is worthwhile to emphasize that our hardware version of
Fast-ATGP provides exactly the same results as a software version of the same algorithm, implemented
using the Intel C/C++ compilers.

Figure 9 shows the location and sequence information of the detected targets in two datasets,
where the number of targets is calculated by the VD algorithm. Specifically, the red circles indicate the
targets detected in HSI, with the numbers next to the circles indicating the order of the targets being
detected. Figure 9a displays the detection result of AVIRIS Cuprite Data and Figure 9b is the detection
result of HYDICE Urban Data.

The detection accuracy can be evaluated via spectral angle mapper (SAM) [47] values (in degrees)
between the detected target and the reference spectral signature, which reflects the similarity of pixels
in an HSI. The SAM between two pixel vectors x; and x; is defined by the following expressions,

[Ixill2 - 1%l

SAM (xi,xj) = cos™! <xlx]> (7)

It should be noted that SAM is invariant in the presence of illumination interferes, which can
provide advantages in terms of target detection in complex backgrounds.

(b)

Figure 9. Detection results on two different images, where the red circles indicate the targets detected

in hyperspectral imagery (HSI), with the numbers next to the circles indicating the order of the targets
being detected. (a) AVIRIS Cuprite scene; (b) HYDICE Urban scene.

5.3.1. Results for the AVIRIS Cuprite Scene

Table 3 shows the SAM values (in degrees) between the most similar target pixels detected by
two different versions of ATGP (ATGP-OSP and Fast-ATGP) at the known target positions in the
AVIRIS Cuprite image. In addition, the number of target pixels to be detected was set to t = 19 after
calculating the VD. As shown by Table 3, again ATGP-OSP and Fast-ATGP extracted targets were
similar, spectrally, to the known ground-truth targets.
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Table 3. Spectral angle mapper values (in degrees) between the target pixels extracted by ATGP-OSP
and Fast-ATGP and the known ground targets in the AVIRIS Cuprite scene.

ATGP-OSP  Fast-ATGP

Alunite 4.86° 5.48°
Andradite 7.56° 4.80°
Buddingtonite 6.00° 4.67°
Dumortierite 4.56° 4.56°
Kaoliniteq 4.79° 4.31°
Kaolinite, 5.40° 4.42°
Muscovite 9.35° 5.11°
Montmorillonite 5.98° 4.47°
Nontronite 4.19° 6.01°
Pyrope 7.50° 8.78°
Sphene 3.74° 9.37°
Chalcedony 4.73° 6.80°
Average 5.72° 5.73°

5.3.2. Results with the HYDICE Urban Scene

Table 4 tabulates the SAM values (in degrees) between the most similar target pixels detected by
the two considered versions: ATGP-OSP and Fast-ATGP in the HYDICE Urban image. In addition,
the number of target pixels to be detected was set to t = 15 after calculating the VD. As shown by
Table 4, Fast-ATGP extracted targets which were slightly similar (on average) to the ground references
than those provided by ATGP-OSP for 4 targets in HYDICE Urban image [48]. This indicates that the
proposed Fast-ATGP optimization does not penalize ATGP-OSP in terms of target detection accuracy.

Table 4. Spectral angle mapper values (in degrees) between the target pixels extracted by ATGP-OSP
and Fast-ATGP and the known ground targets in the HYDICE Urban scene.

Version  Asphalt Road Tree Roof Dirt Average

ATGP-OSP 8.48° 7.03° 8.38° 6.25° 7.54°
Fast-ATGP 8.48° 3.08° 824° 7.71° 6.88°

5.4. Performance Evaluation

Two different platforms have been used in our experiments. The first one is the C++ environment
on CPU, and the second one is the Virtex7 FPGA. As shown in Table 5, the processing time of Fast-ATGP
implemented on FPGA has achieved a speedup of 5282.5x on average faster than our software version,
where it detects 19 targets in Cuprite data and 15 targets in Urban data.

Table 5. Processing time measured for Fast-ATGP methods in C++ and field programmable gate array
(FPGA) implementations.

HSIs C++(s) FPGA (s)

Cuprite 210.016 0.0376
Urban 320.636  0.0491

Table 6 tabulates the processing time obtained for the FPGA implementation of ATGP-OSP
and Fast-ATGP for the AVIRIS Cuprite scene. It should be noted that the FPGA implementation of
ATGP-OSP corresponds to an architecture described in [17], while Fast-ATGP is described in this paper.
As shown by Table 6, not only the maximum frequency of Fast-ATGP with 32 PEs are higher than that
of ATGP-OSP, but also the clock periods occupied by Fast-ATGP are fewer than ATGP-OSP. Overall,
the processing time consumed by ATGP-OSP is about 34.3 times that required by Fast-ATGP.
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It is also remarkable that the processing time achieved by the FPGA implementation of Fast-ATGP
is strictly in real-time for the Cuprite data. This is because the data acquisition ratio by the
AVIRIS sensor is known and we have used this information to determine if the proposed hardware
implementation could be applied at the same time as the data are collected without delaying the
collection procedure at the sensor. Specifically, the cross-track line scan time in AVIRIS, a push-broom
instrument, is quite fast (8.3 to collect 512 full-pixel vectors). This introduces the need to process
the Cuprite scene in 0.77 s to fully achieve real-time performance. As noted in Table 5, all out
implementation of Fast-ATGP are well below 0.05 s in processing times, including loading times and
the data transfer times from CPU to FPGA device. This represents a significant improvement with
regard to previous FPGA implementations of ATGP-OSP.

Table 6. Processing time of the AVIRIS Cuprite scene measured for ATGP-OSP and Fast-ATGP
on FPGAs.

ATGP-OSP Fast-ATGP

Maximum frequency (MHz) 72 200
Number of clock periods ~ 92.88 x 10°  7.52 x 10°
Total time (s) 1.29 0.0376
Speedup 34.3x

Table 7 shows the hardware resource utilization corresponding to ATGP-OSP and Fast-ATGP
algorithm with 32 PEs. Our hardware design is implemented on an FPGA, which has a total of
1470 block RAMs, 3600 DSP48E1s, 433,200 slice look-up tables (LUTs), and 866,400 slice registers. As
Table 7 illustrates, because of the optimal architecture we have adopted, the resources such as block
RAMs, DSP48E1s and slice LUTs are obviously reduced compared to the ATGP-OSP. Although the
usage of slice registers is increased, the proposed hardware structure occupies fewer resources than
ATGP-OSP in general.

Table 7. Resource utilization measured for ATGP-OSP and Fast-ATGP on FPGAs after processing the

AVIRIS Cuprite scene.
ATGP-OSP Fast-ATGP
Number Proportion Number Proportion
BRAMs 994 67.62% 632.5 43.03%
DSP48E1s 2847 79.08% 1040 28.89%

Slice LUTs 132,802 30.66% 80,080 18.49%
Slice Registers 22,962 2.65% 14,0143 16.18%

5.5. Design Space Exploration and Potential Analysis

Computation and communication are two principal constraints in system throughput
optimization. An implementation can be either computation-bounded or memory-bounded. To find
the optimal architecture configuration for a specific FPGA device, a design space exploration
methodology [49] is introduced to relate system performance to off-chip memory traffic and the
peak performance provided by the hardware platform.

For Fast-ATGP, a straightforward way to improve the system performance is to increase the
number of PEs. However, increasing the number of PEs indicates that the consumption of memory
bandwidth and resources are also increased. Figure 10 shows the change trends of speedup and
resource consumption at different number of PEs. It is worth mentioning that the trends remain the
same for any other datasets regardless of their spatial and spectral resolutions. This is because the
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speedup linearly goes up with the increase of the number of PEs as shown in Figure 10a, as long as
the maximum memory bandwidth provided by the FPGA device is not consumed out. In this paper,
the memory bandwidth is limited to 512 bits per clock cycle by the FPGA platform we selected. It
means that a maximum of 32 spectral pixels can be processed simultaneously per clock cycle if the
data type of the pixel is set to 16 bits unsigned fixed-point. As a result, the maximum number of PEs
required to accelerate is 32 since each PE is dedicated to handling one of the spectral pixels respectively.
Figure 10b illustrates that the main computing resource consumption is not obviously raised as the
increase of PEs. Even when the number of PEs is 32, the computing resource utilization rate has not
reached half of the resource capacity. However, further increasing parallelism will not improve the
performance of the system because of the memory bandwidth limitation.

Predictably, when the hardware platform is replaced with larger memory bandwidth, the speedup
of the proposed implementation will continue to increase. Fast-ATGP can choose the appropriate
number of PEs according to computational roof and I/O bandwidth roof for different platforms, which
fully reflects its flexibility and adaptability.
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Figure 10. (a) The changing trend of the processing time speedup as the number of processing elements
(PEs) increases; (b) The variation trend of resource utilization relative to the number of PEs.

6. Conclusions

In this paper, a novel approach to HSI target detection, referred to as Fast-ATGP, is implemented
on FPGA using HLS, which has never been explored in the past. Through analyzing calculations
of ATGP-OSP, an increasing operation problem occurs during growing matrix inversion process
and a huge matrix multiplication problem also arises in the OSP process. For the first problem,
a fixed operation scale is introduced to replace the continuously increasing computations when
updating the OSP operator matrix, which ensures that the consumption of hardware resources does
not change as the number of detected targets increases. Moreover, a vectorization approach is also
developed for the operator matrix to avoid the latter problem, which updates the operator in a
vector form only by one step and decreases computation to a great extent. The experimental results,
conducted on a Virtex-7 XC7VX690T FPGA, demonstrate that our implementation makes advanced
use of FPGA architecture including balancing the serial-parallel structure and multiplex technique,
detection accuracy, and computation performance. Under the same conditions, the detection speed
of our proposed Fast-ATGP is about 34.3 times faster than that of ATGP-OSP on AVIRIS Cuprite
data when detecting multiple targets. Finally, a design space exploration method based on our
architecture is leveraged for the optimal configuration in arbitrary FPGA device. In the future, we will
exploit unsupervised deep learning method like deep belief network (DBN) and autoencoder (AE) for
feature extraction and dimension reduction, and combine them with Fast-ATGP to gain performance
improvement in detection accuracy and speed.
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