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Abstract: A vector radiative transfer model has been developed for
coupled atmosphere and ocean systems based on the Successive Order of
Scattering (SOS) Method. The emphasis of this study is to make the model
easy-to-use and computationally efficient. This model provides the full
Stokes vector at arbitrary locations which can be conveniently specified by
users. The model is capable of tracking and labeling different sources of
the photons that are measured, e.g. water leaving radiances and reflected
sky lights. This model also has the capability to separate florescence from
multi-scattered sunlight. The δ - fit technique has been adopted to reduce
computational time associated with the strongly forward-peaked scattering
phase matrices. The exponential - linear approximation has been used to
reduce the number of discretized vertical layers while maintaining the
accuracy. This model is developed to serve the remote sensing commu-
nity in harvesting physical parameters from multi-platform, multi-sensor
measurements that target different components of the atmosphere-oceanic
system.
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1. Introduction

The radiative transfer equation (RTE) describes the propagation of radiation in turbid media
phenomenologically [1, 2, 3, 4, 5, 6]. Recently, the rederivation of the RTE from the electro-
magnetic wave theory establishes a new interpretation of the radiative transfer theory [7]. The
RTE is a differential-integral equation which generally has no analytical solution for realis-
tic medium configurations and boundary conditions. Therefore, efficient numerical solutions
are crucial for the applications of the radiative transfer theory. A non-complete list of these
methods includes the discrete-ordinate (DISORT) method[1, 8, 9, 10, 11, 12, 13, 14, 15],
the invariant embedding method [1, 16, 17, 18, 19, 20], the adding and doubling method
[3, 21, 22], the matrix operator method [23, 24, 25, 26, 27, 28, 29], the spherical har-
monics method [30, 31], the multicomponent method [32, 33], the spherical harmonics dis-
crete ordinate method [34, 35], the FN method [36, 37], the Successive Order of Scattering
(SOS) method [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], and the Monte Carlo method
[49, 50, 51, 52, 53, 54, 55, 56].
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The solution for the RTE in a coupled Atmosphere - Ocean System (AOS) is partic-
ularly of interest in the ocean color remote sensing, the general circulation model, and
many other studies. There are a few radiative transfer codes currently available for an AOS
[26, 27, 32, 40, 57, 58, 59, 60, 61, 62, 63, 64, 65]. Based on the matrix operator method, [26]
and [27] solve the scalar RTE in an AOS with wind induced rough ocean surface. The multi-
components method developed by Zege et al. [32, 33] solves the RTE in an AOS including
polarization. The model by Chami [40] is based on the SOS method which also includes polar-
ization. A flat ocean surface is assumed and the circularly polarized component is ignored in
this model. [60, 63] solve the scalar RTE using the DISORT method. Bulgarelli et al. has devel-
oped finite element method for solving the scalar RTE in an AOS with a smooth ocean surface
[61]. Another important work is the Hydrolight code based on the invariant embedding method
by Mobley [4, 59]. Polarization is not included in the Hydrolight. The model by Chowdhary
et al. solves the vector radiative transfer equation in an AOS based on the adding method [64].
The rest of the list are mainly based on the Monte Carlo method [54, 57, 58, 62, 65]. The
Monte Carlo technique is slow for remote sensing purposes because it requires an accumula-
tion of statistics. In our classification, the models in [20, 45, 46, 47] do not solve the RTE in
an AOS because they either treat the ocean surface as bidirectional reflectance surface or use a
semi-analytical model for the ocean [66], which is not a real simulation of light propagation in
ocean.

Most discrete ordinate methods (excluding the Monte Carlo method) apply the Fourier trans-
formation to the azimuth dependence of the Stokes vector in RTE in order to reduce the di-
mension of differential equations, as the computation time for eigen solution is proportional to
the third power of the dimension. For each Fourier component, Gaussian quadrature scheme
is used to discretize the cosine of the zenith angle μ = cosθ for numerical integration of the
scattering term in RTE. At an ocean surface, the refracted light in the ocean from the atmo-
sphere is confined within the Fresnel cone, which only cover part of the downward solid angle.
To match the boundary condition at the ocean surface, two sets of quadrature points are usually
selected for ocean [32, 60, 63]. One corresponds to the refracted directions of the quadrature
points in the atmosphere. The other covers the region outside the Fresnel cone. While the two
sets of Gaussian quadratures in water are required in most models that treat the RTE as eigen-
value problem, it is not entirely clear whether that is a neccessity for the successive order of
scattering approach. While less accurate, relaxing to one set of Gaussian quadrature may help
reducing computational time and memory requirement.

For optically thin media (such as clear sky with moderate aerosol loading) and for highly
absorbing media (such as ocean), the SOS method has advantages when compared with other
methods. First, each order of scattering has clear physics interpretation. This results in effi-
cient programing. For example, because of the fact that the source term associated with the
refracted light into the water can be formulated analytically, two sets of quadrature points for
the ocean are not mandatory. The same quadrature points can be used in the ocean just as in
the atmosphere. In other words, the quadrature points in the ocean do not have to match Snel’s
law [67] with the quadrature points in the atmosphere, as long as the angle change associated
with refraction is properly represented in the scattering source term (scattered light at arbitrary
quadrature angle). The use of one set of Gaussian quadrature points could decrease the memory
requirements for the ocean by a rough factor of 1/4 because a major part of the memory in the
computer code is allocated to store the phase matrices, whose number of elements are propor-
tional to P2, where P is the number of quadrature points. The CPU time reduction, however,
depends on the specific program implementation.

This paper documents the physics principle and detailed mathematical derivation of a For-
tran 90 computing package for solving the vector RTE based on the SOS method. The current
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code is developed for a flat ocean surface. However, the technique can be extended to rough
wave surface model [68]. Both the single and double ocean quadrature versions of the code are
available to the public science community by contacting the corresponding author.

Section 2 outlines the vector RTE, while section 3 describes the SOS formulas for solving
the vector RTE. Section 4 presents the treatment of the air-sea interface boundary condition.
Section 5 shows the numerical procedure used in the code. Section 6 provides the validation
and simulation results. The final section, section 7, presents the conclusions.

2. The vector radiative transfer equation

A beam light of arbitrary polarization may be represented by the Stokes vector L =
(I,Q,U,V )T , where the four elements I, Q, U , and V are the Stokes parameters; the super-
script T stands for the transpose of the vector. A formal definition of the Stokes parameters
in a medium may be found in [7] (see Eq. 2.6.4). The mathematical definitions of the Stokes
parameters depends on propagation direction, electric vector components, as well as the dielec-
tric properties of the medium. The vector RTE which describes multiple light scattering in a
plane-parallel medium can be written as :

μ
dL(τ,μ,φ)

dτ
= L(τ,μ,φ)−S(τ,μ,φ), (1)

where τ is the optical depth defined as the product of the extinction coefficient βe and the path
lengh l; μ = cos(θ) and θ is the zenith angle; φ is the azimuthal angle. All the zenith angles
in this paper are defined in terms of the upward direction. θ < 90◦ means that the direction
is pointing upward and θ > 90◦ when pointing downward. Both μ and φ are pertained to the
propagation direction of radiance L. S is the source matrix:

S(τ,μ,φ) =
ω(τ)
4π

∫ 2π

0

∫ 1

−1
P(τ,μ,φ ,μ ′,φ ′)L(τ,μ ′,φ ′)dμ ′dφ ′, (2)

where ω = βs/βe is the single scattering albedo and βs is the scattering coefficient. Mishchenko
et al. have shown that Eq. (2) is only valid in a macroscopically isotropic and mirror symmetric
medium [7]. In this equation and hereafter the dot product is assumed between the matrix P and
vector L. The same assumption applies if matrices are written next to each other. P is the phase
matrix defined as:

P(τ,μ,φ ,μ ′,φ ′) = R(π − i2)F(τ,Θ)R(−i1). (3)

The rotation matrix R rotates the reference plane of the Stokes vector between the meridian
plane and the scattering plane; i1 and i2 are the rotation angles [1, 69]; F is the scattering
matrix for the turbid medium; the scattering angle Θ is a function of variables μ , φ , μ ′, and φ ′.
Equation (1) does not contain thermal emissions.

The integral form of Eq.(1) is needed to apply the SOS method. Standard manipulation leads
to [1, 5]:

L(τ,μ < 0,φ) =L(τl ,μ,φ)e−(τl−τ)/μ −
∫ τ

τl

e−(τ ′−τ)/μS(τ ′,μ,φ)dτ ′/μ, (4a)

L(τ,μ > 0,φ) =L(τu,μ,φ)e−(τu−τ)/μ +
∫ τu

τ
e−(τ ′−τ)/μS(τ ′,μ,φ)dτ ′/μ, (4b)

where τl and τu are the lower and upper limits of the medium under consideration, namely,
τl < τ < τu. For the atmosphere, τl = 0 and τu = τ∗a are the top and bottom of the atmosphere,
respectively. For the ocean, τl = τo and τu = τ∗o are the top and bottom of the ocean, respectively.
Please note that τo = τ∗a +ε is just below the ocean surface, where ε is an infinitesimal number.
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In other words, the ocean surface is assumed to be a degenerated layer with no geometric
thickness. The only impact of the ocean surface to the system is through the refraction and
reflection of the dielectric interface, which is governed by Snel’s law and Fresnel formulas
[57, 65]. L(0,μ < 0,φ) is 0; and L(τ∗a ,μ > 0,φ) includes the light reflected by the dielectric
interface from the downward light in the atmosphere and the light transmitted through the
interface from the ocean. L(τo,μ < 0,φ) includes the light reflected by the dielectric interface
from the upward light in the ocean and the refracted light through the dielectric interface from
the atmosphere; and L(τ∗o ,μ > 0,φ) is the reflection of the ocean bottom.

3. The successive orders of scattering method

In the SOS method, the total radiance vector is expressed as a summation of contributions from
photons scattered a number of times, from 0 to a maximum number of N [39, 47, 70, 71],

L(τ,μ,φ) =
N

∑
n=1

Ln(τ,μ,φ). (5)

Substitution of Eq. (5) into Eqs.(4a) and (4b) leads to:

Ln(τ,μ < 0,φ) =Ln(τl ,μ,φ)e−(τl−τ)/μ −
∫ τ

τl

e−(τ ′−τ)/μSn(τ ′,μ,φ)dτ ′/μ, (6a)

Ln(τ,μ > 0,φ) =Ln(τu,μ,φ)e−(τu−τ)/μ +
∫ τu

τ
e−(τ ′−τ)/μSn(τ ′,μ,φ)dτ ′/μ, (6b)

where

S1(τ < τ∗a ,μ,φ) =
ω(τ)
4π

{eτ/μ0P(τ,μ,φ ,μ0,φ0)

+ e(2τ∗a−τ)/μ0P(τ,μ,φ ,−μ0,φ0)r(π −θ0)}E0, (7a)

S1(τ > τo,μ,φ) =
ω(τ)
4π

|μ0

μ ′
0
|e(τ−τo)/μ ′

0P(τ,μ,φ ,μ ′
0,φ0)t(π −θ0)E0eτ∗a /μ0 , (7b)

Sn>1(τ,μ,φ) =
ω(τ)
4π

∫ 2π

0

∫ 1

−1
P(τ,μ,φ ,μ ′,φ ′)Ln−1(τ,μ ′,φ ′)dμ ′dφ ′. (7c)

It should be noted that the direct solar light has been taken out of Eqs. (6). The source terms
caused by the direct solar light have been integrated and written out explicitly as S1 in Eqs. (7).
In other words, Eqs. (5) and (6) only contains the diffuse light in the turbid medium. In Eqs.(7),
E0 = (E0,0,0,0)T is the irradiance vector for the solar radiation; The matrices r and t are the
Fresnel reflection and transmission matrices, respectively. The readers are refered to [57] for
the exact expressions (see Eqs. (12–18) of [57]). μ0 = cos(θ0) and φ0 are the cosine of the solar
zenith angle and the solar azimuthal angle, respectively. μ0 < 0 because θ0 > 90◦. μ ′

0 = cos(θ ′
0).

θ ′
0 is the refracted angle for the solar incident angle θ0, i.e. sin(π − θ0) = nw sin(π − θ ′

0) and
nw is the refractive index of the water relative to air. The factor of |μ0/μ ′

0| takes the different
projection areas of the solar beam at the two sides of the ocean surface into account. The
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radiance vectors at the boundaries are:

Ln(τ = 0,μ < 0,φ) =0, (8a)

L1(τ∗a ,μ > 0,φ) =0, (8b)

Ln>1(τ∗a ,μ > 0,φ) =r(θ)Ln−1(τ∗a ,−μ,φ)+
t(θ ′)
n2

w
Ln−1(τo,μ ′,φ), (8c)

L1(τo,μ < 0,φ) =0, (8d)

Ln>1(τo,μ < 0,φ) =r(π −θ)Ln−1(τo,−μ,φ)+n2
wt(π −θ ′)Ln−1(τ∗a ,μ ′,φ), (8e)

L1(τ∗o ,μ > 0,φ) =
−μ ′

0

π
r∗(μ,φ ,μ ′

0,φ0)e(τ∗o−τo)/μ ′
0t(π −θ0)|μ0

μ ′
0
|E0eτ∗a /μ0 , (8f)

Ln>1(τ∗o ,μ > 0,φ) =
∫ 2π

0

∫ 0

−1

−μ ′

π
r∗(μ,φ ,μ ′,φ ′)Ln−1(τ∗o ,μ ′,φ ′)dμ ′dφ ′ (8g)

where r∗(μ,φ ,μ ′,φ ′) is the bidirectional reflectance matrix for the ocean bottom. For a Lam-
bertian surface, r∗1,1 = ρ is a constant, and r∗i, j = 0 for i �= 1 or j �= 1; ρ is the single scattering
albedo of the reflective surface. μ ′ = cos(θ ′) and sin(θ) = nw sin(θ ′) in Eqs. (8c) and (8e).
The factors of n2

w in Eqs.(8c) and (8e) are due to the n-square law of the radiance transmission
through a dielectric interface [4].

The next step is to expand the radiance vectors and the phase matrices into Fourier series of
the azimuth. The expansion of the radiance vectors can be written as:

Ln(τ,μ,φ) =
M

∑
m=0

(2−δ0m){cos[m(φ −φ0)]Lm
n,cos(τ,μ)+ sin[m(φ −φ0)]Lm

n,sin(τ,μ)}, (9)

with

Lm
n,cos(τ,μ) = (Im

n ,Qm
n ,0,0)T ,

Lm
n,sin(τ,μ) = (0,0,Um

n ,V m
n )T .

The expansion of the phase matrices can be written as:

P(τ,μ,φ ,μ ′,φ ′) =P1(τ,μ,φ ,μ ′,φ ′)+P2(τ,μ,φ ,μ ′,φ ′), (10a)

P1(τ,μ,φ ,μ ′,φ ′) =

⎛
⎜⎜⎝

P11 P12 0 0
P21 P22 0 0
0 0 P33 P34

0 0 P43 P44

⎞
⎟⎟⎠

=
M

∑
m=0

(2−δ0m)cos[m(φ −φ ′)]Pm
cos(τ,μ,μ ′), (10b)

P2(τ,μ,φ ,μ ′,φ ′) =

⎛
⎜⎜⎝

0 0 P13 P14

0 0 P23 P24

P31 P32 0 0
P41 P42 0 0

⎞
⎟⎟⎠

=
M

∑
m=0

(2−δ0m)sin[m(φ −φ ′)]Pm
sin(τ,μ,μ ′) (10c)

In the pioneer works [72, 73, 74], the analytical expressions of Pm
sin and Pm

cos have been found in
terms of the generalized spherical functions (GSF) [75]. Lenoble et al. have recently used the
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so-called generalized Legendre functions as the expansion basis, which are real by definitions
[47]. Not trying to create our own convention, we find it is more convenient to use the Wigner
d functions [76] as the expansion basis. The link between the generalized spherical functions
and the Wigner d functions has already been suggested by Hovenier and van de Mee [74].
Previously, the Wigner d functions have been used as the basis to expand the scattering matrices
by Mishchenko et al. [77]. The Wigner d functions are also real and better documented than
the generalized Legendre functions. More importantly, they can be calculated via stable up
recurrence relations. Interested readers may refer to Appendix B of [77] for detailed properties
of the Wigner d functions. The derivation of Pm

sin and Pm
cos in terms of the Wigner d functions is

given in the Appendix A.
The standard procedure includes substituting Eqs.(9) and (10) into Eqs. (7) and (8), car-

rying out the integration over φ ′, and identifying the same terms containing cos[m(φ − φ0)]
and sin[m(φ − φ0)] at both sides of the equations. The dependence of φ is then reduced to a
set of equations with variables of τ and μ and order number m. The equations with different
order m are completely decoupled and can be solved separately. For details, please refer to
[47, 73, 74, 78, 79]. After lengthy manipulations, the resultant formulas are:

Lm
n (τ,μ < 0) =Lm

n (τl ,μ)e−(τl−τ)/μ −
∫ τ

τl

e−(τ ′−τ)/μSm
n (τ ′,μ)dτ ′/μ, (11a)

Lm
n (τ,μ > 0) =Lm

n (τu,μ)e−(τu−τ)/μ +
∫ τu

τ
e−(τ ′−τ)/μSm

n (τ ′,μ)dτ ′/μ, (11b)

where

Sm
1 (τ < τ∗a ,μ) =

ω(τ)
4π

{eτ/μ0Pm(τ,μ,μ0)

+ e(2τ∗a−τ)/μ0Pm(τ,μ,−μ0)r(π −θ0)}E0, (12a)

Sm
1 (τ > τo,μ) =

ω(τ)
4π

|μ0

μ ′
0
|e(τ−τo)/μ ′

0Pm(τ,μ,μ ′
0)t(π −θ0)E0eτ∗a /μ0 , (12b)

Sm
n>1(τ,μ) =

ω(τ)
2

∫ 1

−1
Pm(τ,μ,μ ′′)Lm

n−1(τ,μ ′′)dμ ′′, (12c)

and

Lm
n (τ = 0,μ < 0) =0, (13a)

Lm
1 (τ∗a ,μ > 0) =0, (13b)

Lm
n>1(τ

∗
a ,μ > 0) =r(θ)Lm

n−1(τ
∗
a ,−μ)+

t(θ ′)
n2

w
Lm

n−1(τo,μ ′), (13c)

Lm
1 (τo,μ < 0) =0, (13d)

Lm
n>1(τo,μ < 0) =r(π −θ)Lm

n−1(τo,−μ)+n2
wt(π −θ ′)Lm

n−1(τ
∗
a ,μ ′), (13e)

Lm
1 (τ∗o ,μ > 0) =

−μ ′
0

π
r∗m(μ,μ ′

0)e
(τ∗o−τo)/μ ′

0t(π −θ0)|μ0

μ ′
0
|E0eτ∗a /μ0 , (13f)

Lm
n>1(τ

∗
o ,μ > 0) =2

∫ 0

−1
(−μ ′)r∗m(μ,μ ′)Lm

n−1(τ
∗
o ,μ ′)dμ ′. (13g)

In the previous equations, Lm
n = Lm

n,cos + Lm
n,sin and Pm = Pm

cos + Pm
sinD with D =

diag{1,1,−1.−1}. The purpose of D is to flip signs for the upper right 2× 2 sub-matrix of
Pm

sin [47, 73, 74]. r∗m has been treated similarly as Pm. For the Lambertian surface, its (1,1)
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element is reduced to a constant, i.e., the single scattering albedo; other elements are zero. The
dummy integration variable μ ′′ is used for later convenience.

Equations (11), (12), and (13) are the equations to be used in the SOS method. From a
mathematical point of view, the radiances with the factor of n2

w in Eqs. (13) need to be treated
with extreme care. At the ocean side, these terms are the contribution transmitted from the
atmosphere, confined within the Fresnel cone. Thus extra integration quadrature points are
generally needed to cover the region outside the Fresnel cone, which increases both the memory
requirement and the CPU time for the computation. In the next section, a single quadrature
scheme is presented based on the separation of directly transmitted sky light and the diffuse
light in ocean. The double quadrature scheme is also implemented in the SOS code. Numerical
comparison is made in section 6.

4. The boundary condition at the ocean surface

The starting point is to evaluate the source function Eq.(12c) with the boundary conditions of
Eqs. (13). In the following description, we assume that the source function in the ocean is to be
found. Substituting Eq.(13e) in Eq. (11a) leads to:

Lm
n (τ,μ < 0) =n2

wt(π −θ ′)Lm
n−1(τ

∗
a ,μ ′)e−(τl−τ)/μ +Lm

n,di f f (τ,μ), (14a)

Lm
n,di f f (τ,μ) =r(π −θ)Lm

n−1(τo,−μ)e−(τl−τ)/μ −
∫ τ

τl

e−(τ ′−τ)/μSm
n (τ ′,μ)dτ ′/μ, (14b)

where the first term in Eq.(14a) is the direct contribution from photons transmitted into the
ocean from the atmosphere. This part of the radiance field is confined within the Fresnel cone.
The total radiance field as shown in Eq. (14a) is not continuous because the first term jumps
from a finite value at the edge of the Fresnel cone to zero just beyond the Fresnel cone. In the
case of wind roughed ocean surface, this discontinuity is partly smoothed out but the rate of
change of the radiance field near the critical angle will still be large. The term Lm

n,di f f (τ,μ)
represents the diffuse radiance field. The factor r(π −θ) also changes abruptly around the edge
of the Fresnel cone because of the total internal reflection for incident angles larger than the
critical angle. Both these two parts contribute to the discontinuity around the critical angle. The
quadrature techniques, however, requires the function to be smooth in order to get an accurate
integration. This property has prompted people to use two sets of quadrature points to do the
integration in Eq. (12c). One set of μ covers the Fresnel cone and the other covers the rest of
the region.

Further analysis finds that the integration of the first term of Eq. (14a) can be done by
transforming the integral variables μ ′′, which is below the ocean surface, to the variable μ ′,
which is above the ocean surface. Specifically, sin(π −θ ′) = nw sin(π −θ ′′) and cos(θ ′)dθ ′ =
nw cos(θ ′′)dθ ′′ lead to the following equation:

n2
wdμ ′′ =−n2

w sin(θ ′′)dθ ′′

=−nw sin(θ ′)
cos(θ ′)dθ ′

nw cos(θ ′′)

=
μ ′

μ ′′ dμ ′. (15)

This relation is substituted into the source term caused by the direct sky light transmission from
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the atmosphere:

Sm
n>1,drct(τ,μp) =

ω(τ)
2

∫ μc

−1
Pm(τ,μp,μ ′′)n2

wt(π −θ ′)Lm
n−1(τ

∗
a ,μ ′)e−(τl−τ)/μ ′′

dμ ′′

=
ω(τ)

2

∫ 0

−1
Pm(τ,μp,μ ′′)t(π −θ ′)Lm

n−1(τ
∗
a ,μ ′)e−(τl−τ)/μ ′′ μ ′

μ ′′ dμ ′

=
ω(τ)

2

P/2

∑
q=1

wqPm(τ,μp,μ ′′
q )t(π −θ ′

q)L
m
n−1(τ

∗
a ,μ ′

q)e
−(τl−τ)/μ ′′

q
μ ′

q

μ ′′
q
, (16)

where μc = cos(θc) and θc = π − arcsin(1/nw) is the critical angle which defines the edge of
Fresnel cone; μ ′

q and wq are the quadrature points and weights in the atmosphere, respectively.
The summation in the last step is over half of the quadrature points, which covers the range of
−1≤ μ ′ ≤ 0. In the simulation, only Pm(τ,μp,μq) will be pre-calculated and stored in memory,
where μp,q are the quadrature points. In the single quadrature scheme, this means Pm(τ,μp,μ ′′

q )
will not be found because μ ′′

q is not one of the quadrature points in the ocean. The solution is
simply to use linear interpolation between the two nearby quadrature points.

Now it is assumed that the discontinuity caused by r(π−θ) in the diffuse light is insignificant
compared to the total radiance field. Thus the integration of the diffuse light in Eq. (14b) can
be done using a single quadrature scheme:

Sm
n>1,di f f (τ,μp) =

ω(τ)
2

∫ 1

−1
Pm(τ,μp,μ ′′)Lm

n−1,di f f (τ,μ ′′)dμ ′′

=
ω(τ)

2

P

∑
q=1

wqPm(τ,μp,μq)Lm
n−1,di f f (τ,μq). (17)

where μp,q and wq are the quadrature points and the associated weights; P is the order of the
quadrature scheme. The total source term is:

Sm
n>1(τ,μp) = Sm

n>1,drct(τ,μp)+Sm
n>1,di f f (τ,μp) (18)

Equations (16) and (17) only use one set of Gaussian quadrature points in the ocean, which
leads to less memory usage and CPU time. By assuming insignificant contribution of r(π −
θ) in the diffuse light, the question remains as to how large the error will be. We have also
implemented the double quadrature scheme in the ocean. Numerical comparison shows that the
difference between the two schemes is negligible.

The source terms by the direct transmitted light from the atmosphere is taken care by Eq.
(16). If the radiance field in the ocean needs to be exported at the end of the simulation, a
detector array is defined to record the first term Eq.(14a) separately. The separation of the
direct and diffuse contribution to the detector offers another benefit. If only the second term
in Eq.(13c) is substituted in Eq.(11b), and the optical depth integration term is ignored, the
resultant equation is the water leaving radiance:

Lm
n,wlr(τ,μ > 0) =

t(θ ′)
n2

w
Lm

n−1(τo,μ ′)e−(τu−τ)/μ , (19)

where the subscript wlr stands for the water leaving radiance. The water leaving radiance is
important for the retrieval of the inherent optical properties (IOP) of ocean waters. Thus an
efficient and accurate model for water leaving radiance simulation is very useful. The paper by
Chami et al. has tried to estimate the water leaving radiance by removing the sky light reflected
from the ocean surface [40]. That procedure is inefficient and less accurate in the sense that it
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ignores the multiple interaction between the diffuse light in the atmosphere and ocean. Equation
(19), however, provides an exact solution for the water leaving radiance without causing any
extra computational burden.

5. Numerical procedure

The atmosphere and ocean are discretized into Ka and Ko homogeneous layers, respectively.
The optical thickness of each layer needs to be small enough to meet the required numer-
ical accuracy. For the atmosphere, the optical depth at each layer is denoted as τk with
k = 0,1,2, ...,Ka. τ0 = 0, τ1 = τ0 + δτ ,...,τk = τk−1 + δτ ,...τKa = τ∗a . This means that the kth
layer is between τk−1 and τk. Practically, δτ does not have to be equal for each layer and can
be adjusted for convenience. For the ocean, k = Ka +1,Ka +2, ...,Ka +Ko +1 with τKa+1 = τo,
τKa+2 = τKa+1 +δτ , ... , τKa+Ko+1 = τ∗o .

The zenith angle cosine μ is discretized into the Gaussian quadrature of even order P. μp

and wp are the quadrature points and weights with p = 1,2, ...,P , respectively. Pm(τ,μp,μq)
for each p and q are calculated and stored in memory before the SOS iteration. Even Pm is
a function of τ while many layers with different τ may share the same Pm. Thus an index is
created for each layer. The layers with the same scattering properties are labeled with the same
index numbers. These index numbers will be used to refer to the correct Pm when needed.

The source functions Sm
1 (τk,μp) for the atmosphere and ocean are initialized according

to Eqs.(12a) and (12b), respectively. The SOS iteration begins with Eqs. (11) with known
Sm

1 (τk,μp). At this point, the first terms in Eqs.(11) are neglected temporarily. The integration
for μ < 0 is done in the following way:

Lm
n (τk,μp < 0) =−

∫ τk

τl

e−(τ ′−τk)/μpSm
n (τ ′,μp)dτ ′/μp,

=−
∫ τk−1

τl

e−(τ ′−τk)/μpSm
n (τ ′,μp)dτ ′/μp −

∫ τk

τk−1

e−(τ ′−τk)/μpSm
n (τ ′,μp)dτ ′/μp,

=eδτ/μpLm
n (τk−1,μp < 0)−

∫ τk

τk−1

e−(τ ′−τk)/μpSm
n (τ ′,μp)dτ ′/μp. (20)

The exponential - linear approximation has been implemented to evaluate the integration be-
tween τk−1 and τk [80]. Equation (20) shows that Lm

n (τk,μp < 0) can be updated successively
from k = 0 to Ka for the atmosphere and from k = Ka + 1 to Ka + Ko + 1 for the ocean. For
μp > 0, the procedure is:

Lm
n (τk,μp > 0) =

∫ τu

τk

e−(τ ′−τk)/μpSm
n (τ ′,μp)dτ ′/μp,

=
∫ τu

τk+1

e−(τ ′−τk)/μpSm
n (τ ′,μp)dτ ′/μp +

∫ τk+1

τk

e−(τ ′−τk)/μpSm
n (τ ′,μp)dτ ′/μp,

=e−δτ/μpLm
n (τk+1,μp > 0)+

∫ τk+1

τk

e−(τ ′−τk)/μpSm
n (τ ′,μp)dτ ′/μp. (21)

Lm
n (τk,μp > 0) will be updated successively from τKa+Ko+1 to τKa+1 for the ocean and from τKa

to τ0 for the atmosphere. Again the exponential - linear approximation has been implemented
to evaluate the integration between τk and τk + 1 [80]. After this step, all of the source terms
should be reset to zero to prepare the source terms for the next order of scattering.

The next step is to consider the boundary conditions. The bottom reflection can be taken into
account by adding Eq. (13f) to Lm

n (τk,μp > 0) according to Eq. (11b) for the ocean. For the
interface, only the first terms in Eqs. (13c) and (13e) are added to Lm

n (τk,μp) for the purpose of
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source integration in Eqs.(17). That is:

Lm
n (τk > τo,μp > 0) ⇐ Lm

n (τk > τo,μp > 0)+Lm
n (τ∗o ,μp > 0)e(τk−τ∗o )/μp , (22a)

Lm
n (τk > τo,μp < 0) ⇐ Lm

n (τk > τo,μp < 0)+ r(π −θp)Lm
n (τo,−μp)e(τk−τo)/μp , (22b)

Lm
n (τk < τ∗a ,μp > 0) ⇐ Lm

n (τk < τ∗a ,μp > 0)+ r(θp)Lm
n (τ∗a ,−μp)e(τk−τo)/μp , (22c)

where ⇐ is understood to evaluate the right hand side and give the resultant value to the left
hand side; θp = arccos(μp). After Eqs. (22), the single quadrature scheme uses Eqs.(17) to get
the source function due to ocean diffuse light. The double quadrature scheme, however, inte-
grates the source function in two separate regions, −μc < μ < μc, and |μ|> μc. The integration
of the second terms in Eqs. (13c) and (13e) involving n2

w in both schemes is done using Eq.(16)
or its equivalent form for the transmission from the ocean to the atmosphere. The only differ-
ence is that the double quadrature scheme does not involve the interpolation of Pm, because μ ′′

q
in Eq.(16) is one of the predefined quadrature points in the ocean. A separately allocated array
Lm

n,det(τk,μp) is used to store the radiance field for the final output:

Lm
n,det(τk > τo,μp < 0) ⇐Lm

n,det(τk,μp)+Lm
n (τk,μp)

+ e−(τo−τk)/μpn2
wt(π −θ ′

p)L
m
n−1(τ

∗
a ,μ ′

p), (23a)

Lm
n,det(τk > τo,μp > 0) ⇐Lm

n,det(τk,μp)+Lm
n (τk,μp), (23b)

Lm
n,det(τk < τ∗a ,μp < 0) ⇐Lm

n,det(τk,μp)+Lm
n (τk,μp), (23c)

Lm
n,det(τk < τ∗a ,μp > 0) ⇐Lm

n,det(τk,μp)+Lm
n (τk,μp)

+
e(τk−τ∗a )/μp

n2
w

t(π −θ ′
p)L

m
n−1(τo,μ ′

p). (23d)

Equations (23) are done only at levels where the output is desired. Again, in the single quadra-
ture scheme Lm

n (τk,μ ′
p) is not directly available because μ ′

p is not one of the quadrature points.
The solution is also to interpolate the values at the two near points. This is also physically sound
because Lm

n (τk,μp) is generally smooth before interacting with the ocean interface.
In addition, Eq. (13g) needs to be evaluated and stored to prepare the next order of scattering.

After this step, Lm
n (τk,μp) are set to zero. The steps from Eq.(20) to here are repeated N times,

where N is a preset value for the maximum order of scattering based on sensitivity studies. The
N could also be determined based on convergence criterias during the run time [40]. However, it
is more attractive to use a preset value in terms of efficiency. After the iteration of the procedure
for N times, the remainder is taken into account by a geometric series:

qm
n>N(τk,μp) =

Lm
n (τk,μp)

Lm
n−1(τk,μp)

= Constant. (24)

Duan and Min have shown that this relation is satisfied with N ≈ 40 for most, if not all plane
parallel systems [42]. This requirement is smaller for turbid media with small asymmetry fac-
tors or single scattering albedos. This relation is assumed for all the four Stokes parameters
unless Lm

n−1(τk,μp) = 0 for one of the elements Q, U , and V . Then the total radiance field is
given by:

Lm(τ,μ) =
N

∑
n=1

Lm
n (τ,μ)+Lm

N(τ,μ)
qm

N(τk,μp)
1−qm

N(τk,μp)
. (25)

6. Validation and results

The validation of the SOS code is done with the Monte Carlo code by Zhai et al. [65]. This
Monte Carlo code uses biased techniques and estimation schemes to increase the efficiency
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Fig. 1. The Stokes parameters at the top of the atmosphere. The solid lines are calculated
by the Monte Carlo (MC) method. The circle and cross symbols are computed by the SOS
method with the single Gaussian (SG) quadrature and double Gaussian quadrature (DG)
schemes, respectively. The Gaussian quadrature order of Pa = 36 is used in the atmosphere.
The ocean Gaussian quadrature order of Po = 72 is used for the DG scheme. The Fourier
series order used is M = 8. The solar incident angle is θ0 = 120◦. The azimuthal angle
of the observation is 90◦ from the solar principle plane. The atmosphere is a conservative
Rayleigh medium with an optical depth of 0.1. The ocean scattering function is a Henyey-
Greenstein function with an asymmetry factor of 0.9185. The optical depth of the ocean is
10.0. The ocean bottom is a Lambertian surface. The single scattering albedos of both the
ocean medium and bottom are 0.5. The total order of scattering is N = 10.

and accuracy. It can deal with both one-dimensional and three dimensional vector radiative
transfer problems. Even it is well known that the Monte Carlo method converges slow, the error

associated with the Monte Carlo method is easy to understand, i.e. ∝ N−1/2
photon, where Nphoton is

the number of the photon bundles. As long as Nphoton is large enough, the code can produce
reliable results. In the validation case, the atmosphere is chosen to be a conservative Rayleigh
medium with optical depth of τa = 0.1. The Rayleigh scattering matrix is:

F(Θ) =
3
4

⎛
⎜⎜⎝

cos2(Θ)+1 cos2(Θ)−1 0 0
cos2(Θ)−1 cos2(Θ)+1 0 0

0 0 2cos(Θ) 0
0 0 0 2cos(Θ)

⎞
⎟⎟⎠ . (26)

The ocean phase function is a Henyey-Greenstein (HG) scattering phase function [81]:

F11(μ,g) =
1−g2

(1−2gμ +g2)3/2
, (27)

where μ = cos(θ) and g is the asymmetry parameter defined by:

g =
1

4π

∫
4π

P(θ)cos(θ)dΩ. (28)
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Fig. 2. The Stokes parameters at the bottom of the atmosphere (just above the ocean surface)
for the same system as in Fig. 1.

The range of the asymmetry parameter is [−1,1]. g ≈ 1 sugguests the scattering function
is strongly peaked in the forward direction. g ≈ 0 suggests the scattering function is nearly
isotropic. In our calculation, we take g = 0.9185, which means the scattering function has a
large forward peak. The HG phase function with g = 0.9185 has the same integrated backscat-
tering coefficients bb as the Petzold phase function [82]. The other scattering matrix elements
for the ocean is determined by:

FHG
i j

FHG
11

=
FRAY

i j

FRAY
11

, (29)

where the superscript HG shows the matrix elements are with the HG scattering phase function
while RAY shows that they are with the Rayleigh scattering phase function. In other words, the
reduced scattering matrix elements of the ocean water are the same as those of the Rayleight
scattering matrix [83]. δ - fit technique for the phase function truncation has been extended
to the full scattering matrix to fulfill the polarization calculation requirement in this code. The
details are provided in Appendix B. The optical depth is 10.0 for the ocean. The single scattering
albedo in ocean depends on the wavelength with a possible range of highly absorptive (ω ≈ 0.1)
to nearly conservative (ω ≈ 0.9). The single scattering albedo has been chosen to be 0.5 as a
representative value for the primary study in this paper. The bottom is a Lambertian surface
with single scattering albedo of 0.5. The refractive index of the ocean water is 1.338.

Figures 1 and 2 show the Stokes parameters I, Q/I, U/I, and V/I as functions of observation
angles for the system at the top and bottom of the atmosphere, respectively. The observation
angle is 0◦ for the upward (from the bottom of the ocean to the top of the atmosphere (TOA)
direction and 180◦ for the downward (from the TOA to the bottom of the ocean) direction. The
principle plane of the observation angles shown in the figures is obtained by rotating the solar
incident plane by an azimuthal angle of 90◦ clock-wise if looking in the zenith direction. The
solid lines are calculated by the Monte Carlo method. The circle and cross symbols are com-
puted by the SOS method with the single Gaussian (SG) quadrature and double Gaussian (DG)
quadrature schemes, respectively. A solar source with an incident angle of 120◦ is used. The
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principle plane for the observation angles is at an azimuthal angle of 90◦ from the solar inci-
dent plane. For the Monte Carlo code, the total photon number used is 5000000. The Gaussian
quadrature order of Pa = 36 is used in the atmosphere. The ocean Gaussian quadrature order of
Po = 72 is used for the DG case. The total number of scattering orders is N = 10. δτ = 0.01
and 0.2 have been used for the optical depth integration of the ocean. δτ = 0.01 has been used
in the atmosphere if δτ = 0.01 in the ocean. δτ = 0.2, however, cannot be used for the optical
depth integration of the atmosphere because it is larger than 0.1, the optical depth of the atmo-
sphere. Thus the value δτ = 0.05 is selected for the atmosphere in this case, which is the largest
value one can select because there have to be at least two layers (Ka = 3) in the atmosphere to
solve for the three unknown coefficients in the exponential - linear approximation. The order of
the Fourier expansion used is M = 8 in Eq. (9). The maximum order of the HG phase function
expansion is L = 36 in Eq.(A-13). The δ - fit technique is generalized to the full scattering ma-
trix for the polynomial expansion. The SOS code was run using an I-Mac with a 2.8 Ghz Intel
processor. The fortran compiler is GFORTRAN with the −O3 compile option. Table 1 shows
the average CPU times for both the SG and DG schemes for the cases shown in Figs. 1 and 2.

Table 1. Average CPU time for the SG and DG schemes.

δτ 0.01 0.2
SG 13.7 s 0.9 s
DG 51.2 s 3.3 s

Both the SG and DG quadrature schemes results agree well with the Monte Carlo results for
all the four Stokes parameters at both the top and bottom of the atmosphere. Note that only the
Stokes parameters within observation angles of 0−90◦ are shown at the TOA because they are
zeros for observation angles larger than 90◦. For both δτ = 0.01 and δτ = 0.2, the differences
between the SG and DG are negligible, for the TOA and bottom of the atmosphere. For the
TOA, the errors of the SG and DG scheme radiances with δτ = 0.2 vary between 0.25% at 0◦ to
1.0% at 82.6◦, if using the DG scheme with δτ = 0.01 as a standard. The error at 87.5◦ is -2.5%,
which is slightly larger than smaller angles. The linear polarization components Q/I and U/I
also have larger errors at larger observation angles. The differences of the circular polarization
components V/I between the SOS code and Monte Carlo code are larger compared to those of
I, Q/I, and U/I. The DG scheme has slightly better agreement with the Monte Carlo method.
For the bottom of the atmosphere, the differences between the SG, DG, and the Monte Carlo
results are smaller than those of the TOA. The errors of the SG and DG cases with δτ = 0.2
are from -0.5% to 0.5%. Another interesting feature is that the ratios Q/I and U/I have smaller
errors than the absolute radiance. Considering the large forward peak of the phase function, the
results in Figs.1 and 2 are quite impressive.

Figures 3 show the water leaving radiance for the same system as in Fig.1 at the bottom of
the atmosphere (just above the ocean surface). The radiance percentage differences between
the SOS results and the Monte Carlo results are around 2%, which are larger than those of the
total radiance plots. The reason is that the ocean has a large asymmetry factor g = 0.9185 and
an optical depth of τ = 10, which is rather difficult for the Monte Carlo method to achieve
convergence. The SOS method, however, virtually takes all order of scattering into account
(see Eq. (25)). The better agreements between the two methods for the total radiance is due
to the contribution of the atmospheric Rayleigh layer, which is thin and the phase function is
symmetric around the scattering angle of 90◦. It is obvious that the polarization components
Q/I, U/I, and V/I agree well between the two methods. Another very interesting feature is
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Fig. 3. The water leaving Stokes parameters at the bottom of the atmosphere (just above
the ocean surface) for the same system as in Fig. 1.

that the polarized components converge before the absolute radiance for both methods. The
small value of the circular component makes it more sensitive to the optical depth integration
step δτ . Again, the difference between the SG and DG results are negligible. The water leaving
radiance for δτ = 0.2 has relative errors from −0.6% to −1.5%, if comparing to the results
with δτ = 0.01.

The next case to be studied is designed to answer the following question. For a clear sky
condition with an aerosol optical depth up to 0.3, how many orders of scattering is needed to
achieve a radiance error smaller than 0.5% in an AOS? For this purpose, a layer of aerosol
is added at the bottom of the atmosphere in the first case studied. The aerosol consists in a
fine mode of spherical particles with log-normal size distribution [84]. The modal radius is
rm = 0.08μm and the variance is σ = 0.46. The refractive index is m = 1.45. The zero imaginary
part of the refractive index leads to a single scattering albedo of 1. The incident wavelength is
0.443μm. The conservative Rayleigh layer of optical depth 0.1 is unchanged, located at the
top of the aerosol layer. The aerosol layer at the atmosphere bottom does not mix with the
Rayleigh layer. To make sure the standard converged results are obtained before the sensitivity
study, an optical depth of τsol = 0.3 is given to the aerosol layer. The ocean is also kept the
same as the previous case. Figure 4 shows the effects of different Gaussian quadrature orders P
and Fourier series orders M. The radiance and Q/I shown in the figure is at the TOA. A total
scattering order of N = 40 is used for all the SOS calculation. The azimuthal angle for Fig.
4 is 180◦, because the Stokes parameter at this azimuthal angle contains minimum amount of
sun glint, which is very important in the satellite remote sensing. The Gaussian order P shown
in Fig.4 refers to the Gaussian quadrature order used in the atmosphere. For the DG case, the
corresponding Gaussian order used in the ocean is 2P. In all the cases, the differences between
the SG and DG case are negligible. It is observed that the results with the Gaussian quadrature
order of P = 18 and the Fourier series order of M = 8 are already converged to the results with
P = 36 and M = 36. The Gaussian order P = 8 produces larger errors because P = 8 is much
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Fig. 4. The effects of the orders of the Gaussian quadrature and Fourier series orders

smaller than the ocean Legender expansion order of L = 36. The following sensitivity studies of
scattering N use the DG scheme with P = 36 and M = 8. The results with the scattering orders
of N = 40 are regarded as the true solution.

Table 2. Scattering orders needed for convergence.

τsol 0 0.05 0.1 0.15 0.2 0.25 0.3
Total radiance 4 5 5 6 7 7 8

Water leaving radiance 8 8 8 9 9 9 10

Table 2 shows the order of scattering needed for convergence. A set of aerosol optical depth
τsol are used to test the sensitivity of scattering orders N. Other system configurations are the
same as the previous cases. The radiance at the TOA are studied and the observation azimuthal
angle is 180◦. Both the total radiance and water leaving radiance are tested. A tolerance level of
±0.5% is used in the calculation of Table 2. It is shown that scattering orders of N = 4 to N = 8
are needed to achieve errors smaller than ±0.5% for the total radiance. The scattering orders are
from N = 8 to N = 10 are needed for the water leaving radiance calculation. The requirement
for scattering orders N is higher for the water leaving radiance than the total radiance. The
reason is that the total radiance consists of the contributions from both the atmosphere and the
ocean. The atmosphere is a thin conservative medium in which a few order of scattering are
enough for convergence. Thus the total radiance is easier to achieve the ±0.5% error tolerance
level. However, the water leaving radiance comes only from the ocean. The ocean is a optically
thick medium, which leads to more orders of scattering. The results with the scattering order
of N = 10 have errors smaller than 0.1% for all the total radiance calculation. The maximum
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errors with N = 10 associated with the water leaving radiance are around 0.25%.
It should be emphasize that the SOS method will converge even for optically thick and near

conservative media given a large enough order of scattering. Min and Duan have presented that
the SOS method can converge for a turbid medium of optical depth up to 50, with a single scat-
tering albedo of 0.99 [42]. The limitations of the SOS code may be its computational speed,
which can only be found by crosscheck with other methods. This will be an interesting work in
the future. The last case we use 0.5% as a standard to study the how many orders of scattering
are needed for converging a realistic atmosphere-ocean system. Applications of radiative trans-
fer models for aerosol retrievals may require the polarized radiance measurement as accurate
as 0.1% [85, 86]. As stated in the previous paragraph, the total polarized radiance converges
within 0.1% at the TOA with the scattering order of N = 10 for the AOS studied. A higher
single scattering albedo may lead to larger scattering orders.

7. Conclusion

This paper presents a vector radiative transfer model for an AOS. The model is based on the
SOS Method. The SOS formulas have apparent physical significances and the errors are easy
to be analyzed. The source terms in the RTE involves numerical integration with Gaussian
quadratures. Previously published models normally use two sets of Gaussian quadrature points
in ocean and one set in atmosphere to treat the interface boundary condition correctly. This
paper has presented a Single Gaussian (SG) quadrature scheme in ocean in comparison with
the Double Gaussian (DG) quadrature scheme. Although two sets of Gaussian quadratures is
essential for discrete ordinate methods, the differences between the SG and DG schemes can be
small for SOS in a typical atmosphere and ocean configuration. Both memory requirements and
CPU time are smaller for the SG scheme, which can be helpful for remote sensing applications.
The current SOS model (both SG and DG schemes) can differentiate water leaving radiance
from light scattered by the atmosphere and by sea surface reflection of the sky light. The model
results compare well against the Monte Carlo simulations. For a realistic case involving an
ocean of optical depth τ = 10 and single scattering albedo ω = 0.5, the SOS converges with
the order of scattering N = 10 and the Gaussian quadrature order P = 36. The δ - fit technique
is generalized to the whole 4×4 scattering matrix to fulfill the polarization calculation require-
ment. This work is primarily of interest in aerosol and ocean color remote sensing, and other
relevant scientific disciplines. Both the SG and DG scheme computing packages are available
to the public science community by contacting the corresponding author.

Appendix A: the expression of Pm

First a few properties of the Wigner d functions are rephrased here for convenience. The gen-
eralized spherical functions are related to the Wigner d functions in a way of [74, 75, 77]:

Pl
mn(ξ ) = im−ndl

mn(θ), (A-1)

where ξ = cos(θ). In the case of n = ±2,

Pl
m,±2(ξ ) = im∓2dl

m,±2(θ) = −imdl
m,±2(θ). (A-2)
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Substituting Eq. (A-2) in Eqs. (14a) and (14b) of [73] leads to:

Rm
l (ξ ) =

(−1)m

2

√
(l +m)!
(l−m)!

(dl
m,2 +dl

m,−2) (A-3a)

=

√
(l +m)!
(l−m)!

dl,+
m,2, (A-3b)

T m
l (ξ ) =

(−1)m

2

√
(l +m)!
(l−m)!

(dl
m,2 −dl

m,−2) (A-3c)

=

√
(l +m)!
(l−m)!

dl,−
m,2, (A-3d)

with the notations of:

dl,+
m,2 = (−1)m

dl
m,2 +dl

m,−2

2
, (A-4a)

dl,−
m,2 = (−1)m

dl
m,2 −dl

m,−2

2
. (A-4b)

If m = n = 0, the Wigner d functions are reduced to the Legendre polynomials,

dl
00(θ) = Pl(ξ ). (A-5)

For n = 0, the Wigner d functions are related to the associated Legendre functions as follows:

dl
m0(θ) =

√
(l−m)!
l +m)!

Pm
l (ξ ). (A-6)

Setting m = 2 in Eq.(A-6) leads to

P2
l (ξ ) =

√
(l +2)!
l−2)!

dl
20(θ) (A-7)

For the real derivation, the starting point is the scattering matrix: (Eq. (3) in [73]):

F(Θ) =

⎛
⎜⎜⎝

a1(ξ ) b1(ξ ) 0 0
b1(ξ ) a2(ξ ) 0 0

0 0 a3(ξ ) b2(ξ )
0 0 −b2(ξ ) a4(ξ )

⎞
⎟⎟⎠ . (A-8)

The elements a1, a2, a3, a4, b1, and b2 are expanded in terms of the generalized spherical
functions. Our goal is to express everything in terms of the Wigner d functions. Substituting
Eq. (A-5) in Eqs. (19a) and (19b) of [73], the coefficients βl and δl are:

βl =
2l +1

2

∫ 1

−1
a1(ξ )dl

00(θ)dξ , (A-9a)

δl =
2l +1

2

∫ 1

−1
a4(ξ )dl

00(θ)dξ . (A-9b)
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The coefficients γl and εl are found by substituting Eq. (A-7) into Eqs. (19c) and (19d) of [73]:

γl =
2l +1

2

∫ 1

−1
b1(ξ )dl

20(θ)dξ , (A-10a)

εl =− 2l +1
2

∫ 1

−1
b2(ξ )dl

20(θ)dξ . (A-10b)

The coefficients αl and ζl can be obtained by setting m = 2 in Eq. (A-3) and plugging in Eqs.
(23a) and (23b) of [73]:

ζl =
2l +1

2

∫ 1

−1
[a2(ξ )dl,−

2,2 (θ)+a3(ξ )dl,+
2,2 (θ)]dξ , (A-11a)

αl =
2l +1

2

∫ 1

−1
[a2(ξ )dl,+

2,2 (θ)+a3(ξ )dl,−
2,2 (θ)]dξ . (A-11b)

Note that these coefficients are consistent with those given in Page 103–104 of [77] even dif-
ferent notations have been used. The relations are:

βl = {α l
1}M, αl = {α l

2}M, (A-12a)

ζl = {α l
3}M, δl = {α l

4}M, (A-12b)

γl = −{β l
1}M, εl = {β l

2}M, (A-12c)

where the order number s in [77] has been replaced with l; and the subscripts M are added to
the coefficients in [77] for clarification.

In the visible range, scattering particles are often much larger than the incident wavelength.
In turn, the scattering phase function a1 usually has a strong forward peak, which leads to
hundreds or thousands of expansion terms βl . In this case the truncation techniques are normally
used to reduce the number of fitting coefficients significantly [87, 88]. In this paper the δ - fit
technique is generalized to fit the scattering matrix [88], which is presented in Appendix B. If
no truncation is needed, the method in [77] is used to calculate the expansion coefficients as in
(A-12).

Equations (10), which are also used in [47], are different from Eq. (6) of [73] by a factor
of 2. Careful check finds that Cm = 2Pm

cos and Sm = 2Pm
sin, where Cm and Sm are the notations

used in [73]. These two factors of 2 cancel out and the whole formulas remain consistent. Now
define Pm = Pm

cos +Pm
sinD with D = diag{1,1,−1.−1}. The expression of Pm can be found by

substituting Eqs. (A-6) and (A-3) into Eqs. (7a) and (7b) of [73], with the knowledge of which
a factor of 2 has been canceled out:

Pm =
L

∑
l=m

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

βldl
m0d

′l
m0 γldl

m0d
′l,+
m2 −γldl

m0d
′l,−
m2 0

γld
l,+
m2 d

′l
m0 αld

l,+
m2 d

′l,+
m2 +ζld

l,−
m2 d

′l,−
m2 −αld

l,+
m2 d

′l,−
m2 −ζld

l,−
m2 d

′l,+
m2 εld

l,−
m2 d

′l
m0

−γld
l,−
m2 d

′l
m0 −αld

l,−
m2 d

′l,+
m2 −ζld

l,+
m2 d

′l,−
m2 αld

l,−
m2 d

′l,−
m2 +ζld

l,+
m2 d

′l,+
m2 −εld

l,+
m2 d

′l
m0

0 −εldl
m0d

′l,−
m2 εldl

m0d
′l,+
m2 δldl

m0d
′l
m0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A-13)

where L is the maximum order of l used for the expansion; dl
m0 = dl

m0(μ), dl,+
m2 = dl,+

m2 (μ), and

dl,−
m2 = dl,−

m2 (μ); similarly, d
′l
m0 = dl

m0(μ ′), d
′l,+
m2 = dl,+

m2 (μ ′), and d
′l,−
m2 = dl,−

m2 (μ ′).
Pm can be precalculated and stored in the computer memory before the SOS iteration, which

will speed up the code significantly. The computation aspects and the recurrence relations of
the Wigner d functions are documented in Appendix B of [77], which will not be repeated here.
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Appendix B: generalized δ - fit for the expansion of the scattering matrix

Both the Delta-M [87] and the δ - fit [88] techniques approximate the strong forward peak of
the scattering phase function by a delta function.

a∗1(θ) = 2 f δ (1− cosθ)+(1− f )
L

∑
l=0

β ∗
l dl

00(θ) (B-1)

The difference between the two techniques is how to determine the truncation factor f . The
Delta M method sets f = βL+1, and rescales the coefficients by

β ∗
l =

βl − f
1− f

, 0 <= l <= L. (B-2)

This selection is accurate for irradiance simulation. However, it causes large errors in the radi-
ance simulation [89]. Therefore, δ - fit uses a different strategy, which is to find the expansion
coefficients that minimize the relative difference ε between the approximate phase function
a∗1(θk) and the actual phase function a1(θk):

ε = ∑
k

wk(
a∗1(θk)
a1(θk)

−1)2, (B-3)

in which

a∗1(θk) =
L

∑
l=0

β ∗
l dl

00(θk). (B-4)

θk is the scattering angle, wk is the weight for each scattering angle. By setting the weights for
the forward-scattering angles to zero, the forward peak will be automatically truncated. The
singular-value decomposition method is used to solve the equations ∂ε/∂β ∗

l = 0. After a set
of coefficients β ∗

l are found, the renormalization factor is f = 1−β ∗
0 . All the coefficients are

divided by β ∗
0 to renormalize the fitted phase function. The δ - fit is proven to be accurate for

radiance simulations [88].
This work deals with the polarized radiative transfer equation. Thus the δ - fit needs to be

generalized to all the scattering matrix elements. To conserve the polarization properties of
the radiance field, it is important to keep the reduced scattering matrix elements unchanged.
Therefore the following procedure is proposed.

First, the expansion coefficients for the phase function are found by using the least squares
fitting. The coefficients are substituted into Eq.(B-4) to produce the fitted phase function. The
fitted scattering matrix elements are then obtained by:

F∗
i j(θk) = a∗1(θk) · Fi j(θk)

a1(θk)
, (B-5)

where Fi j(θk) are the scattering matrix elements other than a1(θk) = F11(θk) in Eq. (A-8). For
instance, F12(θk) = b1(θk), F22(θk) = a2(θk), ..., etc. Finally the expansion coefficients cl∗

i j for
the elements F∗

i j(θ) are found by solving:

εi j = ∑
k

[
L

∑
l=0

cl∗
i j d

l
mn(θk)−F∗

i j(θk)]2, (B-6)

∂εi j

∂cl
i j

= 0.0. (B-7)
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For mn = 00 and (i, j) = (4,4), cl∗
i j correspond to the coefficients δl in Eq.(A-9b). For mn = 20

and (i, j) = (1,2),(4,3), cl∗
i j correspond to γl , and εl in Eq.(A-10b), respectively. For mn = 22

and (i, j) = (2,2),(3,3) cl∗
i j correspond to ζl and αl in Eq.(A-11b), respectively. Note that the

weight is no longer needed because the truncation is already done by the least squares fitting of
the phase function. To use the δ - fit coefficients, the optical depth and single scattering albedo
for the layer have to be adjusted similarly as the Delta-M method:

τ ′ =(1−ω f )τ, (B-8)

ω ′ =
ω(1− f )
1−ω f

. (B-9)
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