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Reproducible and Portable Big Data
Analytics in the Cloud

Xin Wang , Pei Guo, Xingyan Li, Aryya Gangopadhyay , Carl E. Busart , Jade Freeman, and Jianwu Wang

Abstract—Cloud computing has become a major approach to
help reproduce computational experiments. Yet there are still two
main difficulties in reproducing batch based Big Data analytics
(including descriptive and predictive analytics) in the cloud. The
first is how to automate end-to-end scalable execution of analytics
including distributed environment provisioning, analytics pipeline
description, parallel execution, and resource termination. The sec-
ond is that an application developed for one cloud is difficult to
be reproduced in another cloud, a.k.a. vendor lock-in problem.
To tackle these problems, we leverage serverless computing and
containerization techniques for automated scalable execution and
reproducibility, and utilize the adapter design pattern to enable
application portability and reproducibility across different clouds.
We propose and develop an open-source toolkit that supports
1) fully automated end-to-end execution and reproduction via a
single command, 2) automated data and configuration storage for
each execution, 3) flexible client modes based on user preferences,
4) execution history query, and 5) simple reproduction of existing
executions in the same environment or a different environment. We
did extensive experiments on both AWS and Azure using four Big
Data analytics applications that run on virtual CPU/GPU clusters.
The experiments show our toolkit can achieve good execution per-
formance, scalability, and efficient reproducibility for cloud-based
Big Data analytics.

Index Terms—Big data analytics, cloud computing, portability,
reproducibility, serverless.

I. INTRODUCTION

R EPRODUCIBILITY is increasingly required by the re-
search community, funding agencies, and publishers [1].

By reproducing an existing computational experiment and ob-
taining consistent results, we can have more confidence in the
research. Further, besides reproducing the exact process, it is also
valuable to explore how the experiment behaves with different
input datasets, execution arguments, and environments. Cloud
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computing has been a major approach for reproducibility [2]
because cloud services can be leveraged to provision data,
software, or hardware needed in reproduction. For instance,
paper [3] summarized 13 aspects that cloud computing can help
with reproducibility.

In this paper, we mainly address the following challenges in
cloud-based reproducibility. First, it is still difficult to achieve
end-to-end automated Big Data analytics execution and repro-
duction in the cloud. The end-to-end automation should support
scale-up and scale-out of distributed hardware environment,
software environment provisioning, data and configuration stor-
age for each execution, resource termination after execution,
execution history query and reproducibility of existing execu-
tions in the same environment or a different cloud environment.
Second, because the services provided by each service provider
such as AWS and Azure are proprietary, an application devel-
oped for one cloud cannot run in another cloud, which is a
well-known vendor lock-in challenge. Two scientific problems
to be studied by tackling challenges are: 1) what is a proper
abstraction and design for better reproducibility support from
both user and toolkit perspectives, 2) what is a more efficient way
to achieve cloud-based reproducibility for Big Data analytics.
We note our work only supports batch based processing Big Data
analytics jobs, including descriptive and predictive analytics, not
interactive jobs like database queries.

Based on the above challenges and scientific problems, we
propose an approach and corresponding open-source toolkit [4]
for Reproducible and Portable Big Data Analytics in the Cloud
(RPAC). Our contributions are summarized as follows.
� Our proposed approach and toolkit integrate serverless

computing techniques to automate end-to-end batch based
Big Data analytics execution. Tasks of Big Data analytics
execution (resource provisioning, application execution,
data storage and resource termination) are encapsulated
as cloud functions and automatically triggered by proper
events. With the full automation support, users can re-run
the exact execution or run the application with different
configurations, including different scale-out and scale-up
factors, via only one command. Our RPAC toolkit supports
both AWS and Azure cloud environments.

� For easy reproducibility, we make proper data modeling
and abstraction. It first separates essential information
required for reproducibility and detailed information
required by each cloud provider. Following the separation
of concerns principle, it further separates the essential
information into three categories (resources, application,
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personal) for easy reconfiguration. The essential
information will also be automatically stored in the cloud
by our toolkit as authentic recording of the execution.
Later, the storage URL can be published and shared as the
single source to reproduce the historical execution.

� To deal with the vendor lock-in challenge, on top of
the above abstractions, we propose a Cloud Agnostic
Application Model (CAAM) to support execution and
reproducibility portability with different cloud providers.
CAAM abstracts the application out of its cloud specific
logic, and allows reproducing executions in another cloud
via only minimal configuration changes from the user.

� We benchmark both CPU-based and GPU-based Big Data
analytics applications using our RPAC toolkit. We measure
the overhead of data storing for reproducibility. We also
did extensive experiments to benchmark three applications
on different cloud providers in terms of execution perfor-
mance, scalability and reproducibility efficiency.

The rest of the paper is organized as follows. In Section II, we
briefly introduce related techniques our work is built on. Sec-
tion III provides an overview of our proposed approach. Three
main parts of our approach, namely data modeling, automated
execution and reproduction of Big Data analytics in the cloud are
explained in Sections IV, V and VI, respectively. Experiments
and benchmarking results are discussed in Section VII. We
compare our work with related studies in Section VIII and
conclude in Section IX.

II. BACKGROUND

A. Big Data Analytics

To deal with increasing data volumes in data analytics, many
platforms have been proposed to achieve parallelization of the
analytics in a distributed environment. We explain three such
platforms that our work is built on for reproducibility. As one
of the most popular Big Data platform, Spark [5] follows and
extends the MapReduce paradigm [6] and achieve parallelism
by distributing input data among many parallel tasks of the same
function. To run an application, Spark employs a master process
on one node and a worker process on each of other nodes so the
worker processes can take tasks from the master process and run
them in parallel. Similar to Spark, a Dask [7] application is com-
posed as a task graph that can be distributed within one computer
or a distributed computing environment. Dask employs a similar
master-worker framework for task scheduling. Horovod [8], as
a popular software framework for distributed learning, provides
data parallel deep learning optimized for GPU-based data ana-
lytics. For coordinating execution between distributed processes
on GPU, Horovod can use Message Passing Interface (MPI) for
communicating data with high performance. The CUDA-aware
MPI is commonly used in HPC to build applications that can
scale to multi-node computer clusters [9].

B. Reproducibility

There have been many definitions of reproducibility and
similar terms like replicability and repeatability [10], [11].

Unfortunately, these definitions are not very consistent, some
even contradict with each other [1]. Here, we simply define
reproducibility as a capability that obtains consistent results
using the same computational steps, methods, and code. As
paper [12] said, containerization is one of the valid and common
solutions for the reproducible software deployment problem of
scientific pipelines. For cloud-based reproducibility, it studies
how to re-execute an existing application in the cloud [3]. We
categorize reproducibility support into four ways: 1) rerun ex-
actly the same application with the same hardware and software
environment, 2) reproduce with a different application config-
uration to know how the application performs with different
datasets or arguments, 3) reproduce with different cloud provider
hardware environment (virtual machine type and number, etc.)
within the same cloud provider to test scale-up and scale-out;
and 4) reproduce with a different cloud provider to avoid vendor
lock-in problem. Our toolkit is built to support all four types of
reproduction.

C. Serverless Computing

As a recent cloud-based execution model, serverless comput-
ing provides a few advantages. First, it responds to user service
requests without maintaining back-end servers in the cloud.
Second, it employs Function as a Service (FaaS) architecture that
allows customers to develop separate functions directly rather
than standalone cloud applications. As explained in [13], each
application logic/pipeline is split into functions and application
execution is based on internal or external events. All major cloud
providers offer serverless services, including AWS Lambda,
Azure Functions and Google Cloud Functions.

III. OVERVIEW OF REPRODUCIBLE AND PORTABLE DATA

ANALYTICS IN THE CLOUD

In this section, we provide an overview of how our proposed
approach achieves reproducible and portable data analytics in the
cloud. With the approach and corresponding open-source toolkit
RPAC for reproducible and portable data analytics in the cloud,
users can easily re-run previous experiments with the same or
different setups including environments, application arguments,
input data and cloud providers. Our approach is built on top
of serverless computing and we adopt a new way of utilizing
serverless computing for large scale computations. So we will
explain first how to use serverless large scale computations, then
how to use serverless for Big Data analytics reproducibility.

A. Serverless Based Reproducibility

As shown in Fig. 1, our proposed approach has two parts:
1) first execution of an application, and 2) reproduction of
the existing execution from historical configurations. Both first
execution and reproduction are automated via serverless-based
approach shown on the right.

In the beginning, there is no execution history for querying and
reproducing. Clients need to prepare configurations to generate
the pipeline file for the whole execution. The configuration
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Fig. 1. The overview of our proposed approach for reproducible and portable data analytics in the cloud.

includes all configurable setups, for example, the application-
based information like application programs, arguments, in-
put data, and the cloud-based information like virtual cluster
type, size, network setting, memory, with personal credentials.
Our toolkit will take this information to create an executable
pipeline for a target cloud. With this pipeline, the data analytics
application will execute in the cloud environment, output its
results to the storage, and automatically terminate resources
once the execution finishes. We will explain in detail how we
leverage serverless techniques for automated Big Data analytics
in Section V.

After an application is executed, clients can reproduce it
based on its execution history. Our RPAC toolkit will generate a
pipeline file based on the execution history and reproduction
configurations. If the client wants to reproduce an existing
execution with the exact environment and configuration, the
pipeline file within the execution history can be used directly
by our toolkit for reproducibility. If the client chooses to re-
produce existing execution within the same cloud, but with a
different environment or application, our toolkit will combine
changed configurations of cloud resources or applications with
the historical execution information to generate a new pipeline
file. If the client prefers reproducing existing execution on a
different cloud, our toolkit will provide cloud service mapping
and implementations of functions in the target cloud. With
user-provided personal information and historical execution, a
new pipeline will be generated for the target cloud. Finally, with
the pipeline file executable by cloud serverless services, the data
analytics will be reproduced in cloud automatically. Details of
how our approach achieves reproducibility will be explained in
Section VI.

We would like to note the serverless pipeline used here is
different from most other workflow or pipeline definitions such
as [12], [14], [15], [16]. These definitions only include the

processing steps and their dependencies. They do not describe
how to provision hardware and software environments because
they assume these environments are ready before pipeline exe-
cution. Our serverless pipeline includes the full execution life
cycle including hardware and software provisioning, Big Data
analytics, execution export and resource release. Our pipeline
does not describe internal processing steps, but could be inte-
grated with traditional pipelines as internal logic description in
its Function 2: conduct Big Data analytics.

B. Serverless Based Large Scale Application in the Cloud

Traditionally, serverless computing is used to execute server-
less pipelines and the functions defined in each pipeline directly
via cloud services like AWS CloudFormation. In this case, the
computation is executed following the pipeline without using
any additional cloud resources. Because of the memory and
CPU limit for serverless functions, this approach can only
handle computations whose resource requirements are light.
For instance, OpenWhisk [17] is an event-based serverless
computing cloud platform, which allows users to implement
their own OpenWhisk APIs for the connections between the
event source and trigger, the trigger rule, and the computation
actions.

Different from the above way to use serverless, we leverage
serverless computing and its FaaS to achieve reproducibility for
Big Data analytics in the cloud. The main difference is that we
use the serverless pipeline as a way to orchestrate and manage
additional cloud resources for heavy workloads while each step
is wrapped as a function. In this way, both the serverless pipeline
and its functions do not execute heavy commands directly.
Instead, each function’s execution only submits commands from
serverless to the additional cloud resources. Then when the
function is triggered, the commands will be transferred to the
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Fig. 2. The interaction between our proposed toolkit and cloud resources.

additional cloud services and be executed as background pro-
cesses so they can return without waiting for the finish of the
commands. As shown in Fig. 2, the serverless pipeline listens to
events sent by our toolkit or other cloud services. By mapping the
triggers mentioned in the event with the trigger rule associated
with each serverless function, it knows which serverless function
will be involved based on the received event. For instance,
Function 2 will be triggered when the pipeline receives an
event as SoftwareEnvReady. For each function’s execution, it
only submits commands from serverless to additional cloud
services such as AWS EC2, so the resource and time limits for
serverless functions will not be violated. Also, all major cloud
providers including AWS and Azure, only enforce time limits
for serverless functions, not serverless pipelines. So serverless
pipelines are capable of large-scale computations that might take
a long time. Serverless pipeline is also a reasonable choice from a
budgetary cost perspective because serverless service is charged
by the number of function invocations and the duration it takes
to execute, not the deployment time of the pipeline.

IV. DATA MODELING AND STORAGE FOR REPRODUCIBILITY

To achieve easy configurability by users and future repro-
ducibility across cloud providers, we categorize data based on
their usage and employ different levels of data abstraction.
Specifically, the data model contains three parts: abstract re-
quest information, executable request information and execution
history information. We believe the data model can serve as a
reference model for different reproducibility toolkits.

A. Abstract Request Information

To avoid learning specific specifications and templates for
specific clouds, we extract minimal information a user has to
provide for application execution or reproduction. Further, as
shown in the upper part of Fig. 3, we categorize the information

into three separate key-value based configuration files where
ini is used as file extension to distinguish them from other
file types used by our toolkit. Specifically, resources.ini
stores hardware and software resources information such as
virtual machine type, virtual instance number, docker image
URL and Big Data engine; application.ini records the
program URI of the application, program arguments, and input
dataset URIs of the program; personal.ini contains the
cloud credential information such as SSH key location and
cloud credential info (which can also be provided at runtime for
security concerns). We use three different files so only a subset
of files needs to be edited for each type of reproducibility shown
in Fig. 1. A complete and formal listing of the information can be
found at Fig. 4 using syntax of Backus–Naur form (BNF) [18].

B. Executable Request Information

We separate information that is required for actual cloud-
based application execution into four files and use json as
the file extension. Such files have to follow specifications set
by each cloud. For such files, our RPAC toolkit generates
them automatically based on corresponding abstract ini file(s)
mentioned above. The first file is resources.json which
describes hardware and software environment info. This file
has to be changed if the cloud provider is switched. The
resources.json will be generated based on the above
resources.ini file, the cloud type and the type of Big
Data analytics. Another file is application.json which
contains application specific information and will be gener-
ated by our toolkit based on the above application.ini
file and the cloud type. Similarly, personal.json can
be generated from personal.ini. As shown in Fig. 3,
by combining resources.json, application.json,
personal.json and four cloud-specific serverless functions
shown in Fig. 1, we get pipeline.json that describes the
execution logic of the serverless application. Our RPAC toolkit
contains template json files and serverless function implemen-
tations so they can be reused for different data analytics appli-
cations. We illustrate how to map from abstract requirements in
Section IV-A to an executable cloud specific serverless pipeline
and its implemented functions in Fig. 5. The pipeline file is
generated by the three abstract request information provided by
users, which transfers the stateless configurations to executable
cloud-specific information. The abstract request information is
first transferred to the executable request information while
missing parameters can be filled with their default values. All
parameters in the executable request information are also sorted
out based on the cloud-specific schema. By combining with cor-
responding serverless functions, the cloud-specific executable
request information, like pipeline _ aws.json, will be
generated and executed in our RPAC toolkit. Each serverless
function listens to the upcoming events. If a received event
(e.g.,HardwareEnvReady in Fig. 5) matches, the associated
function (e.g., SoftwareEnvSetup() in Fig. 5) will be triggered.
At the end of the function execution, a new event (e.g., Softwa-
reEnvReady in Fig. 5) will be returned to trigger the downstream
functions.
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Fig. 3. Data modeling and abstraction for reproducibility.

Fig. 4. Normative form for abstract request information.

Fig. 5. Mapping from abstract requirement to executable cloud specific serverless pipeline and functions.

The differences between the two types of request informa-
tion are summarized below. Abstract request information, as a
user-friendly abstraction, contains the minimal information a
user has to provide for application execution or reproduction.
In comparison, the executable request information describes the
execution logic of the serverless application, which is required
for actual cloud-based application execution. Our RPAC toolkit
will generate the executable request information based on the
corresponding abstract information during the execution.

Next, we will explain how the files are used for automated
execution in detail in Section V-A and how they are reused or
transformed for reproduction in Section VI.

C. Execution History Information

Execution history information is critical to share each execu-
tion for later analysis and reproduction. As illustrated in Fig. 6,

we classify execution history related data into three categories
and store them separately. The first category is execution log
metadata, such as timestamps, duration, cost, and status, which
are stored in the database for query. Key-value based execution
parameters including analytics command line and arguments
are also stored for easy comparison among executions. This
metadata information is unique for each execution, not required
for reproducibility, but useful for later analysis such as finding
the fastest execution time of the same application on different
clouds or cloud resources. For information that can be referred
from external resources, such as input datasets, output files and
configuration files used for the execution, only their URLs are
stored in the database. The second category is object based
storage of each execution information for reproducibility. Two
items are stored for each execution: 1) abstract request infor-
mation (resources.ini, personal.ini and appli-
cation.ini in Config.zip), 2) execution output datasets in
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Fig. 6. Data modeling of execution history information.

Result.zip. Only abstract request information, not cloud specific
information, is stored by our RPAC toolkit in order to minimize
storage overhead. These data are compressed, categorized and
stored in cloud object storage services such as AWS S3 and
Azure Blob storage so a unique URL could be obtained for each
execution. Because the data has the complete information to
achieve reproducibility, the URL could be easily published as
public records following the Research Object framework [19] so
it can be referred to via a DOI identifier later as the single source
for reproducibility. The third category is shared object storage of
input datasets. It is stored separately so that multiple executions
with the same input data only need one object storage. Also,
cloud storage services like AWS S3 and Azure Blob storage
allow automatic versioning so minor changes of input datasets
do not require a fully separate storage.

V. AUTOMATED BIG DATA ANALYTICS IN THE CLOUD

TOWARDS REPRODUCIBILITY

To achieve easy reproducibility, the execution should be as
automated as possible to minimize manual operations during
reproduction phase. Also, an execution should be easily config-
urable for different scalability factors, application parameters,
even cloud providers. In this section, we discuss our techniques
to achieve fully automated Big Data analytics in the cloud so an
application can be executed and later reproduced using only one
command.

A. Serverless and Docker-Based Execution Automation

We leverage serverless computing to achieve overall analytics
pipeline description and execution, and docker for software en-
vironment setup. Serverless computing offers a few advantages
for reproducibility: 1) it saves costs because we do not need to
maintain a server in the cloud especially for cases reproduction
does not happen frequently; 2) its FaaS model allows us to
design and implement separate functions required for automated
execution/reproduction; 3) its event-based function composition
and execution eliminates the requirement of a separate work-
flow/pipeline software which is needed for many traditional
workflow-based reproducibility [1].

As explained in Section II-C, serverless computing offers
templates to describe cloud service resources required by the
application, structured application pipeline, and event-based
execution. Each component in the application pipeline is im-
plemented as a serverless function and triggered by the events it
listens to. So the pipeline binds cloud services with the specific
event in order to trigger the corresponding serverless function.
In addition, we can package complicated software dependen-
cies required for an application via docker. The details of the
automation are illustrated in Fig. 7.

After receiving the user request, RPAC execution automation
starts with pipeline generation and submission. Based on config-
urations, RPAC generates corresponding pipeline files, deploys
its serverless functions, and uploads these configurations to the
storage except client personal information. RPAC then submits
this pipeline to the cloud and starts serverless execution. The
serverless pipeline starts with the on-demand hardware environ-
ment provisioning (step a in Fig. 7) via cloud manager services
(such as CloudFormation for AWS and Deployment Manager for
Azure). The hardware provisioning is more like an on-demand
resource request service that is a prerequirement for all serverless
functions. So we put the hardware provisioning at the beginning
of the serverless pipeline. To conduct Big Data analytics, we
also need to create a virtual cluster by specifying the type and
sub-type of virtual machines, the number of virtual machines,
network security groups, etc. Cloud manager services allow
the information to be submitted based on their semi-structured
specification such as JSON and YAML. RPAC will send a reply
once the pipeline file is submitted.

The remaining steps of the automated pipeline execution are
done via four cloud functions. On top of the virtual hardware
environment provisioned, the next automation step is to deploy
the required software to run the application (step b in Fig.
7). It is achieved by the first serverless function, which pulls
required docker file and starts it. After the hardware and software
environments are provisioned, it is ready to execute applications.
The second serverless function in Fig. 7 executes the application
by deploying user application (e.g., download application codes
and unzip them) and running its commands with proper param-
eters (input data, application specific arguments, etc.). The third
function exports all addresses of stored files to cloud database
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Fig. 7. The system sequence diagram for automated execution of Big Data analytics in serverless framework.

TABLE I
COMPARISON OF TWO EXECUTION MODES OF RPAC TOOLKIT FOR EXECUTION AND REPRODUCIBILITY

and object storage for future query and reproduction. After the
storage completes, a termination event is sent to the last function,
which terminates all cloud resources. At this time, the whole
pipeline is fully executed, and the client is able to check and
query information stored in the database and object storage.

All these functions are triggered automatically when they
receive corresponding events. The cloud manager services men-
tioned before can help the client manually send events to the
serverless function from cloud console. In order to achieve full
automation, these events can also be delivered to the target
function by cloud event handling services (such as EventBridge
for AWS and Event Grid for Azure) using a pre-defined event
rule. Each serverless function needs to set up an event rule
which specifies what type/property of event can trigger this
function. For example, the rule of execution export function
(step d in Fig. 7) requires the event source from object storage
with a rule-defined prefix, like export.

Besides serverless-based execution, our RPAC toolkit also
supports cloud SDK-based execution to allow flexible client
modes. Their differences are summarized in Table I. The cloud
SDK mode is designed based on the cloud-specific software
development toolkit (SDK). SDK facilitates the creation of
applications by having a compiler, debugger and a software
framework based on its functionality. The implementation of
this SDK-based mode contains cloud application programming
interfaces (APIs) for pipeline management. For example, AWS

Boto python SDK can be invoked to describe the status of
EC2 using ec2.describe _ instances(). The execu-
tion can be automated by a periodical status pulling loop.
This SDK-based mode requires programming knowledge and
a complete understanding of the data analytics pipeline, so that
developers become preferred users since they can either run the
application in a fully automated way or step-wise execution for
debugging purposes. By supporting different execution modes,
users can make flexible choices. In comparison, serverless based
approach is fully automated and more efficient because only the
execution is managed via internal event triggering. No commu-
nications between client and cloud are needed once the pipeline
is submitted.

B. Scalable Execution for Three Parallel Frameworks

In this section, we discuss how our approach supports scalable
execution via the three parallel frameworks in Section II-A,
namely Spark-based, Dask-based, and Horovod-based analytics.
The first two utilize virtual CPU clusters and the third utilizes
virtual GPU clusters. By specifying the virtual machine type
and number, cloud services can provision a cluster hardware
environment. However, software dependencies, process coordi-
nation, and even access permission may differ for different Big
Data analytics. Because of these differences, each framework
requires its own resources.json and implementation of
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the first serverless function shown in Fig. 7. To reproduce Big
Data analytics, one important part is to record and reuse original
Big Data engine configurations. Paper [20] uses separate files to
record Spark memory configuration for reproducibility. Similar
to this approach, we set these configurations by recording the
information via command line arguments or original Big Data
engine configuration files. Big data engine’s configurations
can be modified in application reproduction by users in
application.ini file, such as changing –driver-memory
60 g –executor-memory 60 g for Spark engine. Additional Big
Data engine configurations are set up via separate files like spark-
env.sh in the $SPARK/conf folder. Our toolkit supports storing
such files in the cloud so they can be reused in reproduction.

Beyond the listed frameworks, the additional parallel frame-
works can also be deployed by updating the docker images’
address in application.ini. RPAC will setup this parallel
framework in the second serverless function of Fig. 7 and execute
analytics within the new environment.

Spark-Based Big Data Analytics on Virtual CPU Nodes. We
provide Spark-based parallel framework via the docker-based
Spark engine virtual cluster provisioned by direct cloud services
like AWS EMR with additional cloud resources like virtual
network, container service and file system. By default setting,
the resource manager like YARN NodeManager initiates the en-
vironment from a pulled docker image, and allocates one virtual
instance as the master while others as workers. With serverless
based pipeline execution, our toolkit enables automated execu-
tion management on master and execution computation on work-
ers defined by serverless function handlers/implementations.

Since Big Data analytics utilizes many compute nodes with
complex computation proprieties, it is important to make sure
availability and reliability during cloud execution. To achieve
a secure and stable scalable execution, we control the access
permission of master and workers by using the network security
group. During Big Data analytics, our pipeline assigns one group
for the master and another group for workers, and only enables
TCP/UDP inbound and outbound rules within them. Also, for
computation reliability, the Big Data analytics pipeline only
allows client SSH permission for the master security group.

Dask-Based Big Data Analytics on Virtual CPU Nodes. Be-
sides Spark, our RPAC toolkit also supports CPU-based parallel
analytics by using Dask as the resource manager in the virtual
cluster. Different from Spark which has dedicated cloud ser-
vices (such as EMR in AWS), Dask environment can only be
provisioned by regular virtual machine services (such as EC2 in
AWS).

Each virtual instance in the cluster initiates one docker con-
tainer and our pipeline assigns one of the containers to be the
Dask scheduler and others to be workers. Same with the security
group setup with Spark-based analytics, we divide the client
access between scheduler and workers for execution reliability.
During execution, different from AWS EMR service which auto-
matically initiates Spark processes after hardware provisioning,
our RPAC toolkit needs to start Dask processes on both sched-
uler and worker containers during software provisioning before
executing Big Data analytics on virtual CPU nodes. Besides,
same as Spark-based cloud services, the client can also produce

interactive visualizations based on Dask diagnostic dashboard
in our framework, by using the public DNS name (public IP) of
the scheduler instance with its dashboard port.

Horovod-Based Big Data Analytics on Virtual GPU Nodes. To
provide a GPU-based parallel framework, we leverage Horovod
and regular virtual machine services for analytics. The RPAC
toolkit executes multi-instance GPU-based data analytics within
our pre-built Docker containers, involving a shared file system
and a customized port number for the SSH daemon. In order to
categorize functionality between different instances, we set one
of them as the primary worker and others as secondary workers.
Within the container, the primary worker runs the MPI parallel
command for data analytics execution while secondary workers
listen to that specific port.

VI. REPRODUCE BIG DATA ANALYTICS IN THE CLOUD

In this section, we discuss how to achieve different levels
of reproducibility within the same cloud and across different
cloud providers. To achieve reproducibility, the user only needs
to provide the URL of a historical execution stored in cloud
storage (more in Section IV) and her own configurations. We will
explain how our framework and RPAC toolkit support different
ways of reproducibility summarized in Section II-B.

A. Reproducibility in the Same Cloud

Reproduction With the Same Environment and Configuration.
This type of reproducibility is simplest because it is the same
with the first execution as long as we can retrieve the information
used from execution history. As illustrated by the first item in
reproducibility phase of Fig. 1, by retrievingresources.ini
and application.ini from execution history and provid-
ing proper personal.ini, our RPAC toolkit can rerun the
experiment the same way it was executed for the first time.

Reproduction in a Different Environment. Reproduction in
a different environment means the virtual environment con-
figuration needs to be changed from a historical execution,
which is often useful for scale-up and scale-out experiments.
As illustrated by the second reproducibility item in Fig. 1, a new
resources.ini needs to be provided explaining the new
environment setup (mostly virtual machine type and number).
Then our RPAC toolkit can use it to generate a new executable
resources.json and run the experiment in the same cloud.

Reproduction With a Different Application Configuration.
Reproduction with a different application configuration is often
useful to run the application with a different dataset and/or
application argument. As illustrated by the third reproducibility
item in Fig. 1, a newapplication.ini needs to be provided
explaining the new application setup. Then our toolkit can use
it to generate a new executable application.json and run
the experiment in the same cloud.

We note that the last two reproductions can be easily combined
for the requirements of running an application with different
configurations and a different environment. To support it, a new
resources.ini and a new application.ini should be
provided.
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Algorithm 1: Cloud Agnostic Application Model (CAAM).

B. Cross-Cloud Reproducibility

We discuss how the client achieves reproducibility with a
different cloud provider. As illustrated in the fourth way of
reproduction in Fig. 1, by providing cloud service mapping and
corresponding serverless function implementation, our toolkit
can transform the general-purpose configurations in execution
history into a new executable pipeline file for another cloud.

To extend the reproducibility to another cloud, by lever-
aging the adapter pattern [21], we propose a portable Cloud
Agnostic Application Model (CAAM) in order to solve the

vendor lock-in and interoperability problem for Big Data an-
alytics, which is shown in Algorithm 1. When CAAM re-
ceives resources.ini, application.ini and proper
personal.ini, CloudAdapter() invokes each vendor
specific method of different cloud. It means as long as there
is an adaptee class written for the cloud provider, by calling
the CloudAdapter() with this cloud provider, the provided
general-purpose configurations will be transformed to the ex-
ecutable request information of the target cloud based on its
specification sets and execution requirements. By combining the
compatible information of resources, application and personal,
CAAM generates the overall executablepipeline.json and
starts to execute the data analytics.

As shown in Algorithm 1, each cloud adaptee needs to
implement how to get its resources.json based on re-
sources.ini from execution history, parallel framework
and service mapping shown in Table II. After all json files
are ready, AWS uses GetAwsPipeline(AwsConfig) to
generate pipeline file, while Azure usesGetAzurePipeline
(AzureConfig) for generation. With CAAM, client directly
calls CloudAdapter() with a specific adaptee method to
execute data analytics with one general-purpose configura-
tion. By calling Pipeline.execution(), the gener-
ate() method in corresponding cloud adaptee will generate
the pipeline file and execute the Big Data analytics in cloud.
Particularly, adaptee is in a modular design that can be in-
jected into, removed from, or replaced within CAAM at any
time.

Extensibility on Cross-Cloud Reproduction. Our reproducible
and portable Big Data analytics can be easily extended to
additional clouds because most services from different cloud
providers can be mapped to each other. Table II lists all cloud ser-
vices provided by Amazon AWS, Microsoft Azure and Google
Cloud for data analytics. Our toolkit currently only implements
cross-cloud reproducibility between AWS and Azure. Extension
to Google Cloud can be done by adding an additional cloud
specific adaptee and providing corresponding service mapping
with function implementation.

VII. EVALUATION

We implement the reproducible and portable cloud com-
puting and open-source it on GitHub at [4]. Two CPU-based
analytics applications (cloud retrieval and causality discovery)
and one GPU-based analytics application (domain adaptation)
are tested in our experiments. All benchmark evaluations are
developed on two cloud providers, Amazon AWS and Microsoft
Azure. Seven metrics are used to evaluate our work which
include data analytics metrics like execution time, budgetary
cost, cost-performance ratio, and cloud reproducibility metrics
like overhead.

Table III lists the exact cloud resources we use for each data
analytics. For executing the application with a larger dataset,
additional storage like AWS Elastic Block Store (EBS) is also
been attached during the resource initialization. One varia-
tion is in scale-out of AWS CPU-based evaluation. We use
c5d.large cluster for Dask-based analytics, but c5d.xlarge cluster
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TABLE II
CLOUD SERVICE USED BY REPRODUCIBLE AND PORTABLE DATA ANALYTICS

TABLE III
COMPARISON OF CLOUD RESOURCES

for Spark-based analytics because AWS EMR requires more
computational capability.

A. Benchmark Analytics and Datasets

To benchmark our toolkit’s functionality comprehensively,
we employ four applications and each uses a separate Big Data
framework in Section II-A.

Cloud Retrieval. Cloud property retrieval is an important
task in remote sensing and Atmospheric science. We used the
implementation of paper [22] for our first application. It trains a
Random Forest machine learning model for cloud mask and
cloud thermodynamic-phase retrieval from satellite observa-
tions. Dask framework is used for execution parallelization.
The Docker image we built is hosted on DockerHub public
repository, with Python 3.6 and sklearn 0.24.2. Total datasets
are around 0.5 GB.

Causality Discovery. In order to discover the cause-effect
relationships in a system with the increasing volume and dimen-
sionality of available data, the two-phase scalable and hybrid
causality discovery is proposed by Guo et al. [23]. As a Big
Data analytics, we use the Spark application with Hadoop in the
cloud virtual cluster. The Docker image we built is hosted on
DockerHub public repository, with Python 3.7 and R 3.4. The
data in our execution is 200,000 rows of simulated five variable
time-series records, which is around 10 MB.

Domain Adaptation. Unsupervised Domain Adaptation
(UDA) aims to transfer the knowledge learned from a labeled
source domain to an unlabeled target domain. We use the UDA
implementation designed by Sun et al. [24] that solves the
problem of the unlabeled target domain. To move this data
analytics to the cloud, we use the virtual cluster with Pytorch
GPU acceleration and Horovod with MPI. The Docker image
we built is hosted on DockerHub public repository, with Python
3.6, CUDA 10.1 and cuDNN 7. The data we used is the public
Office dataset containing 31 object categories in two domains:
Amazon and Webcam, which is around 50 MB in total.

Satellite Collocation. Because there are many satellites orbit-
ing the Earth, it is valuable to integrate and/or compare their
measurements. Satellite collocation provides a way to pair mea-
surements from two satellite sensors that observe the same loca-
tion quasi-simultaneously. We implemented and parallelized the
method in [25] to generate collocated data from two satellites.
Like the cloud retrieval application, we use Dask framework for
execution parallelization. The Docker image we built is hosted
on DockerHub public repository, with Python 3.8, Pandas 1.5.0
and H5py 3.7.0. The two satellites we used in the experiment
include the ABI passive sensing data product from NOAA
Geostationary Operational Environmental Satellites (GOES-
16+) [26] and the CALIOP active sensing data product from
NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) satellite [27]. The total input data
volume is 1.1 TB.

B. Evaluation Metrics

Even though there have been many studies on reproducibility,
as stated in this recent survey paper [28], there are still no
agreed metrics that can quantitatively measure reproducibility
and compare different reproducible toolkits. The survey paper
thinks performance, scalability and efficiency are possible met-
rics, but no concrete metric definition was provided. In this work,
to promote fair comparison, we provide our own definition of
performance, scalability and efficiency for cloud based repro-
ducibility, which results in seven metrics (namely m1 to m7 listed
below).

1) Execution Performance Metrics: Following paper [29],
we measure execution performance of our cloud based appli-
cation via m1: execution time, m2: budgetary cost and m3:
performance-price ratio (PPR). We first record execution time
for each data analytics benchmark. The execution time is the
wall-clock time of analytics pipeline (as shown in Fig. 7), which
includes pipeline file preparation, cloud resources deployment
and initialization, data analytics execution, execution history
upload, and termination.

Budgetary cost contains bill usages for all resources used
in each data analytics benchmark, which mainly includes the
virtual cluster, container, network, database, and object storage
with read and write request usage.

Regarding the performance-price ratio (PPR), it evaluates the
performance of each analytics considering the execution time
with cost. We use the same formula used in [30] for PPR by
calculating the product of execution time and budgetary cost.
Lower PPR is more desirable excluding other factors.
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2) Cloud Scalability Metrics: We evaluate the scalability of
our work for both m4: scale-up (vertical scaling) and m5: scale-
out (horizontal scaling).

Cloud scale-up is achieved by utilizing more resources within
an existing computation system to reach a desired state of
performance. In our evaluation, scale-up is set in a single vir-
tual machine by having more threads in Dask-based analytics,
more executor cores in Spark-based analytics, or more GPUs in
Horovod-based analytics. For cloud retrieval, we fix the number
of threads for each Dask worker, and utilize the number of
workers from 1 to 8 during evaluation. It is the same in domain
adaptation, except by increasing more threads for GPUs rather
than CPUs. For causality discovery, because of the EMR setup,
we launch only one worker in each virtual instance and allocate
only one executor in this worker. To scale up, we use one
executor with increasing the numbers of vCPUs of this executor
for parallel execution.

In real world scale-up, it is undesired to launch a powerful in-
stance but only use its partial computational capability. In order
to have a fair comparison, we additionally measure scale-up cost
by usage, which times the budgetary cost of one instance by the
percentage of CPU that is actually used. It simulates scale-up
scenarios that use more and more powerful machines.

Cloud scale-out is usually associated with a distributed archi-
tecture, which is achieved by adding additional computational
capacity to a cluster. In our evaluation, scale-out is set by
increasing more virtual machines in an existing cluster. For cloud
retrieval and domain adaptation, we deploy only one worker
process per instance, and increase the number of instances from
1 to 8 during evaluation. For causality discovery, we instead
use one CPU core in each executor, and increase the number of
workers by adding virtual instances.

3) Reproducibility Efficiency Metrics: For reproducibility, a
metric m6: reproducibility_overhead is used to understand how
much overhead it brings by supporting reproducibility during
execution. Since reproducibility support is achieved by storing
application configuration and execution history, we calculate the
ratio between additional execution time caused by reproducibil-
ity data storage and the execution time of execution without
reproducibility support. The lower the overhead ratio is, the
better.

As we mentioned in Section V-A, an SDK-based pipeline
execution mode has also been proposed for Big Data analytics.
Since both SDK-based and serverless-based approaches can
be achieved automatically, we also measure m7: reproducibil-
ity_efficiency to compare their execution time with reproducibil-
ity.

C. Benchmarking for Execution Performance and Scalability

In this section, we first assess the cloud scalability of our
RPAC toolkit based on three metrics: m1: execution time,
m2: budgetary cost, and m3: performance-price ratio. In m4:
scale-up evaluation, the execution is analyzed by gradually
utilizing more resources in one instance. In m5: scale-out, the
evaluation is achieved by gradually adding additional instances
of the same type in one cluster. Next, we will explain our
benchmarking results of the four applications.

1) Scalability Evaluation for the Cloud Retrieval Applica-
tion: The cloud retrieval m4: scale-up and m5: scale-out eval-
uations are shown in Fig. 8. As illustrated in Fig. 8(a), the
m1: execution time decreases when the number of executors
increases in both AWS and Azure with similar trends. The m2:
budgetary cost as shown in Fig. 8(b), however, decreases in
m4: scale-up and increases in m5: scale-out when the number
of executors increase. The reason is that in cluster scale-up,
the same resources were used while their execution time was
decreasing; and in cluster scale-out, the costs saved by less
execution time costs were less than the costs increased with
additional resources. If only calculating the cost by usage for
m4: scale-up case, its trends become similar to those of m5:
scale-out. Combining cost and time, as illustrated in Fig. 8(c),
the m3: PPR in m4: scale-up and scale-up by usage decrease
when the numbers of executors increase. However, the m3: PPR
first decreases but later increases a little bit in m5: scale-out
cases. The figure also shows AWS achieves better m3: PPR
than Azure, and m4: scale-up achieves better m3: PPR than m5:
scale-out. So the best m3: PPR for the Dask-based Big Data
application with virtual CPU nodes is achieved by m4: scale-up
of application with more executors in AWS.

2) Scalability Evaluation for the Causality Discovery Ap-
plication: Because Azure HD-Insight cluster does not support
Docker-based Spark computation, we only focus on the eval-
uation of causality discovery for AWS, which is shown in
Fig. 9. The trends for this application are very similar to those
for the previous application since they both are CPU-based. As
illustrated in Fig. 9(a), the m1: execution time for both m4:
scale-up and m5: scale-out decreases dramatically by at most
80% when the parallelism increases. This change of time appears
more significant in causality discovery compared with what is
in cloud retrieval. For the m2: budgetary cost in Fig. 9(b), when
the parallelism increases, the m4: scale-up decreases, while both
m5: scale-out and scale-up by usage increase with similar trends.
For all three metrics in Fig. 9(c), The m3: PPR decreases when
the numbers of executors increase. As a result, it is better to
use a larger number of executors in the Spark-based Big Data
analytics with virtual CPU nodes.

3) Scalability Evaluation for the Domain Adaptation Appli-
cation: For domain adaptation, the evaluations are shown in
Fig. 10. Because the maximal number of GPUs in one instance
is 4 for Azure, we compare m4: scale-up only from 1 GPU
to 4 GPUs. As illustrated in Fig. 10(a), same with the findings
from other data analytics, the m1: execution time decreases when
the numbers of GPUs increase in both AWS and Azure. The
m2: budgetary cost in Fig. 10(b), also have the same regularity
compared with CPU-based analytics. For m3: PPR, as illustrated
in Fig. 10(c), more GPUs lead to better ratios for m4: scale-up
and worse ratios for scale-up by usage. For m5: scale-out, m3:
PPR first gets worse and then improves a little bit. But still
launching with only 1 instance can have the best m3: PPR for
both AWS and Azure execution.

4) Scalability Evaluation for the Satellite Collocation Appli-
cation: The above three applications already show the effec-
tiveness of RPAC for parallel frameworks in different clouds.
We further evaluate the satellite collection application with over
1 TB input data on AWS, and its longest total execution time is
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Fig. 8. Scalability evaluation of RPAC toolkit for the cloud retrieval application: scale-up (circle and square mark) and scale-out (triangle and diamond mark)
for AWS and Azure. Dashed line: cost value calculated by its usage.

Fig. 9. Scalability evaluation of RPAC toolkit for the causality discovery application: scale-up (circle mark) and scale-out (triangle mark) for AWS. Dashed line:
cost value calculated by its usage.

Fig. 10. Scalability evaluation of RPAC toolkit for the domain adaptation application: scale-up (circle and square mark) and scale-out (triangle and diamond
mark) for AWS and Azure. Dashed line: cost value calculated by its usage.

over 25 hours. As shown in Fig. 11, the m1: execution time in
Fig. 11(a) of all m4: scale-up experiments decrease around 1 to 2
hours compared with all m5: scale-out experiments in the same
parallelism setting. Thus, parallel execution in one VM with
scale-up deployment is preferred, since m5: scale-out generates
more communication overheads between different nodes. For
the m2: budgetary cost as illustrated in Fig. 11(b), when the
number of executors increases, the m4: scale-up gets a more
reasonable price while the m5: scale-out becomes more expen-
sive. Different with previous findings, m2: budgetary cost of

m5: scale-out, m4: scale-up and scale-up by usage change very
dramatically by at most 75% when the parallelism changes. The
reason is that the execution time of the Big Data application is
much longer than others. Combining cost and time, as illustrated
in Fig. 11(c), the m3: PPR of m4: scale-up is decrease when
the numbers of executors increase. The m3: PPR of scale-up
by usage and m5: scale-out are first decrease but later increase
a little bit. As a result, the better parallelism strategy for the
Big Data application is using more executors in m4: scale-up
deployment.
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Fig. 11. Scalability evaluation of RPAC toolkit for the satellite collocation application: scale-up (circle mark) and scale-out (triangle mark) for AWS. Dashed
line: cost value calculated by its usage.

Fig. 12. The box-plots and its relative difference for application execution
time with and without reproducibility support.

D. Benchmarking for Reproducibility Efficiency

In this section, we assess the efficiency of reproducibility for
RPAC toolkit in the first three applications. We first evaluate
the overhead caused by serverless-based reproducibility, then
we compared the efficiency between serverless-based and SDK-
based approaches.

1) Efficiency Comparison for Reproducibility Support: We
first measure the m6: reproducibility_overhead of our applica-
tions with and without reproducibility support. For each appli-
cation, we measure the AWS scale-up with 4 parallelisms, run
each experiment 10 times and collect all results in a box-plot
shown in Fig. 12. From the figure, we can see having repro-
ducibility support did not cause much overhead, which is less
than 0.01 hours, for all applications. The overhead percentage
caused by reproducibility for cloud retrieval (CR), causality
discovery (CD), and domain adaptation (DA), are 1.28%, 3.58%,
and 2.17%, respectively. Besides, the time range of GPU-based
analytics is larger than both CPU-based analytics, which means
the execution time of GPU-based computation is more unstable
than CPU-based one.

We utilize a statistical hypothesis test approach, called T-
test [31], to determine whether the execution time with and
without reproducibility support differ statistically. T-test deter-
mines a possible conclusion from two different hypotheses. By
calculating the corresponding p-value [32], we can measure the
probability that an observed difference has occurred just by

Fig. 13. The box-plots and its relative difference for application execution
time with serverless-based and SDK-based approach.

random chance. Hypothesizing that the reproduce execution pro-
vides some overhead over the execution without reproducibility,
we calculate the p-value for the two sample t-test with equal
variance. The p-values of CR, CD and DA, turn out to be 0.4968,
0.3193 and 0.3634. Since these are not less than p = 0.05, we
fail to reject the null hypothesis of the tests. As the result, we
do not have sufficient evidence to say that the average execution
time between the two species (with and without reproducibility
support) is different for all three applications.

2) Comparison With SDK-Based Reproduction: Besides the
serverless-based approach, as shown in Table I, we also im-
plemented an SDK-based automatic execution mode which is
achieved by periodical status pulling. In order to explore their
difference, we evaluate the m7: reproducibility_efficiency of
these two approaches with the same applications. Same with
the previous measurement setting, we run each experiment
10 times and collect all results in a box-plot as illustrated in
Fig. 13. For SDK-based approach, the time window for each
status pulling is set to 10 s. The figure shows that serverless-
based approach is more efficient than SDK-based approach,
and the percentage of overhead reduction for CR, CD and
DA, are 25.92%, 28.24% and 29.41%, respectively. The time
range of serverless-based approach is larger than SDK-based
one especially in GPU-based analytics. The reason is that, in
SDK-based approach, the execution status monitoring could be
delayed with periodical pulling. With the serverless function
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TABLE IV
COMPARISON OF RELATED WORK FOR CLOUD-BASED REPRODUCIBILITY

TABLE V
DETAILED COMPARISON AMONG SERVERLESS COMPUTING RELATED WORK

and event trigger, serverless-based approach enables Big Data
analytics to be measured more efficiently and with less noise.

We also use T-test to determine whether the execution time
using serverless approach and SDK-based approach differs sta-
tistically. Hypothesize that the serverless-based approach pro-
vides some efficient benefit over SDK-based approach. The
p-values of CR, CD and DA, turn out to be 9.31e−15, 6.00e−14
and 2.19e−06. Since these p-values are less than 0.05, we can
reject the null hypothesis of the tests. The serverless-based
approach is indeed providing statistically significant efficient
benefit compared with SDK-based approach.

VIII. RELATED WORK

There have been many studies on cloud-based reproducibility.
Some of them [35], [40], [41], [42], [43] only study its concep-
tual frameworks. In this section, we only discuss those having
actual systems/toolkits. As shown in Table IV, we categorize re-
lated work into four groups based on their systems’ capabilities.
Besides, we also selected two most related works to compare in
detail. The comparison is shown in Table V where the first one
also leverages serverless computing and the second is one of the
most recent work on cloud based reproducibility.

A. General Comparison With Related Work

Among the related studies in Table IV, nearly all related
approaches achieve the software environment provision for re-
producibility. However, approaches in group 1 mainly use the
archived or containerized software environment, which limits
the scope of applicability and lacks support for maintaining
hardware configurations within cloud. Additionally, they moni-
tor execution status by system commands or cloud APIs based
periodical pulling which is less efficient than event-based exe-
cution in our work. For example, ReproZip [33] tracks system
commands and zips collected information along with all the used
system files together for reproducibility. CARE [34] reproduces
a job execution by monitoring and archiving all the material
required to re-execute operations. For related work in group 2,

their proposed approaches encapsulate the code dependencies
and software in virtual machine images or graphs, and enable
history retrieval for reproduction. For instance, WSSE [41]
proposes to generate digital data and source code snapshots to be
reproduced and distributed within a cloud-computing provider.
The Tapis [16] open-source API platform was proposed for
accomplishing distributed computational experiments in a se-
cure, scalable, and reproducible way. With the implemented
pipeline with the Python API, the containerized applications can
be submitted, scheduled and executed as tasks using a traditional
HPC batch scheduler such as SLURM. AMOS [40] uses a VM
containing a set of tools previously installed to implement a
mechanism that initializes and configures VMs on demand.
However, this reproduction is more like a history repetition,
which is designed for verification and validation of history ex-
ecution. They also provide configurable environment variables
for automatic resource deployment in a single cloud, but do not
support cross-cloud reproducibility. Instead, our proposed RPAC
uses a data abstraction for information needed for reproducibility
and transforms resource configurations used in one cloud into
those in another cloud.

For related studies in Table IV, group 3’s capabilities are
closest to ours. These approaches rely on annotated information
provided by a user to assign workflow, and software/hardware
environment. For example, PRECIPE [45] provides APIs to
access both AWS and private cloud. However, users need to
call the functions in order and have to manually terminate
resources after the experiment is done, so it does not support
automated end-to-end execution and reproducibility. The whole
execution has to wait at the client side before the next function
can be called. On the contrary, RPAC serverless event triggering
enables fewer communications between client and cloud, which
improves the efficiency for cloud analytics. Chef [46] achieves
virtual execution environment launching and termination via
designed knife commands. Chef client is installed in virtual
machines to run the pipeline within the virtual machines. So
some internal steps of the application can be executed within
the virtual machines via its pipeline. However, Chef does not
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support full automation since its user has to wait at client
side to manually terminate resources after the experiment is
done. Apt [47] uses user-provided profiles, which consists of
a cluster with a control system to instantiate encapsulated ex-
periment environments, for repeating historical research. From
this information, they deduce the required execution resources
in cloud and then re-provision or configure them through their
own APIs. In comparison, we use a serverless-based pipeline
and follow cloud function APIs provided by cloud providers so
the execution/reproduction process can be managed by the cloud
without communications with toolkit. Also, their fully created
annotations, even in cross-cloud reproduction, rely heavily on
the users instead of execution history. Our work abstracts infor-
mation required by users from information in execution history,
users only need to provide minimal information to reproduce.
Our toolkit will transform user-provided information into exe-
cutable pipeline. For automated execution and reproducibility,
none of these approaches can achieve full automation including
resources and software provisioning, analytics execution and ter-
mination. RPAC’s event-based automation is the one-command
execution that achieves a more efficient cloud computation and
reproduction. For cross-cloud reproducibility, we further use
the adapter pattern model to achieve the configuration mapping
without taking all inputs from the user.

B. Detailed Comparison With Most Related Work

As shown in Table V, Apache OpenWhisk [14], [17] is
an open-source, distributed Serverless cloud platform. In their
serverless design, functions are explicitly defined in terms of
the event, trigger, and action, which are implemented by users.
Events are generated from event sources, which often indicate
changes in data or carry data themselves. The trigger is defined
by specifying its name and parameters (key-value pairs). It is
associated with an action. The action is defined as functions
(code snippets), which encapsulate application logic to be ex-
ecuted in response to events. Before deployment, users need
to initiate the cluster in the cloud and provide the hostname
and port of the Kubernetes cluster to the toolkit. No resource
termination option when deployment finishes. Openwhisk has
three deployment options. 1) OpenWhisk can be deployed using
Helm charts on any Kubernetes provisioned from a public cloud
provider. 2) The deployment can be achieved by OpenWhisk
REST API or OpenWhisk CLI. 3) Use the cloud-defined CLI on
a cloud provider that already provisions Apache OpenWhisk as
a service, which is only supported by IBM cloud as of now. For
parallel execution, Openwhisk does not provide direct parallel
framework support. To enable scalable execution, users need to
initiate a cloud cluster with the parallel software environment
and prepare docker images with a parallel framework. Then
users need to implement the parallel logic in the pipeline’s
action. OpenWhisk enables the deployment on different clouds
with Helm charts on any Kubernetes. However, an application
for one cloud cannot be redeployed in another cloud, unless
users 1) initiate instances on another cloud with the Kubernetes
cluster, 2) rewrite the events and triggers in the pipeline, and 3)
provide the new hostname and port of Kubernetes cluster to the

toolkit and redeploy the pipeline. Another example is Neuro-
CAAS [44]. NeuroCAAS provides formatted pipelines, called
blueprints, in a public code repository and defines a resource
bank that can make hardware available through pre-specified
instances in one specific cloud. The users are able to update the
blueprint with new configurations and upload its new version
to the public repository for deployment and reproduction. The
users need to provide the blueprint’s repository address for
automated deployment, execution and reproduction. By default,
NeuroCAAS fixes a single instance type per analysis in order
to facilitate reproducibility. With the blueprint, datasets, and
configuration files for one analysis, NeuroCAAS achieves repro-
ducibility for corresponding analyses with the same environment
and configuration. For parallel execution, NeuroCAAS does not
provide direct parallel framework support. The logic of parallel
processing must be explicitly scripted and implemented in the
blueprint by users.

IX. CONCLUSION

Reproducibility is an important way to gain the confidence
of new research contributions. In this paper, we study how
to achieve cloud-based reproducibility for Big Data analytics.
By leveraging serverless, containerization and adapter design
pattern techniques, our proposed approach and RPAC toolkit
can achieve reproducibility, portability and scalability for Big
Data analytics. Our experiments show our toolkit can achieve
good scalability and low overhead for reproducibility support
for both AWS and Azure.

For future work, we will mainly focus on the following three
aspects. First, we will optimize the executions in terms of time,
cost or ratio by mining execution history, and further optimize
the overhead of reproducibility via better data abstraction, mod-
eling and storage. Second, we will extend our work to easily
publish data analytics as public records following the Research
Object framework [19] so they can be referred via DOI identifiers
later. Third, we will study how to utilize execution history data
to achieve automated execution optimization based on users’
objectives (time, cost or ratio) and datasets.

REFERENCES

[1] National Academies of Sciences, Engineering, and Medicine and others,
Reproducibility and Replicability in Science. Washington, DC, USA:
National Academies Press, 2019.

[2] R. Qasha, J. Cała, and P. Watson, “A framework for scientific workflow
reproducibility in the cloud,” in Proc. IEEE 12th Int. Conf. e- Sci., 2016,
pp. 81–90.

[3] B. Howe, “Virtual appliances, cloud computing, and reproducible re-
search,” Comput. Sci. Eng., vol. 14, no. 04, pp. 36–41, 2012.

[4] Reproducible and portable Big Data analytics in cloud. 2021, Ac-
cessed: Oct. 01, 2021. [Online]. Available: https://github.com/big-data-
lab-umbc/Reproducible_and_portable_app_in_cloud, doi: 10.5281/zen-
odo.7548181.

[5] Apache spark project. 2021, Accessed: May 28, 2021. [Online]. Available:
http://spark.apache.org

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[7] Dask: Scalable analytics in Python. 2021, Accessed: May 28, 2021.
[Online]. Available: https://dask.org/

[8] Horovod: Distributed training framework for TensorFlow, Keras, PyTorch,
and Apache MXNet. 2021, Accessed: May 28, 2021. [Online]. Available:
https://horovod.readthedocs.io/

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 06,2023 at 18:15:09 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/big-data-lab-umbc/Reproducible_and_portable_app_in_cloud
https://github.com/big-data-lab-umbc/Reproducible_and_portable_app_in_cloud
https://dx.doi.org/10.5281/zenodo.7548181
https://dx.doi.org/10.5281/zenodo.7548181
http://spark.apache.org
https://dask.org/
https://horovod.readthedocs.io/


WANG et al.: REPRODUCIBLE AND PORTABLE BIG DATA ANALYTICS IN THE CLOUD 2981

[9] J. Kraus, “An introduction to CUDA-aware MPI,” Nvidia Developer,
Mar. 13, 2013. Accessed: 2013. [Online]. Available: https://developer.
nvidia.com/blog/introduction-cuda-aware-mpi/

[10] L. A. Barba, “Terminologies for reproducible research,”
2018, arXiv:1802.03311.

[11] Association for Computing Machinery, “Artifact review and badging,”
2021, Accessed: Apr. 13, 2021. [Online]. Available: https://www.acm.org/
publications/policies/artifact-review-and-badging-current

[12] F. Bartusch, M. Hanussek, J. Krüger, and O. Kohlbacher, “Reproducible
scientific workflows for high performance and cloud computing,” in Proc.
19th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., 2019, pp. 161–
164.

[13] G. McGrath and P. R. Brenner, “Serverless computing: Design, implemen-
tation, and performance,” in Proc. IEEE 37th Int. Conf. Distrib. Comput.
Syst. Workshops, 2017, pp. 405–410.

[14] I. Baldini et al., “Cloud-native, event-based programming for mobile ap-
plications,” in Proc. Int. Conf. Mobile Softw. Eng. Syst., 2016, pp. 287–288.

[15] Y. Babuji et al., “Parsl: Pervasive parallel programming in python,” in Proc.
28th Int. Symp. High- Perform. Parallel Distrib. Comput., 2019, pp. 25–36.

[16] J. Stubbs et al., “Tapis: An API platform for reproducible, distributed
computational research,” in Proc. Future Inf. Commun. Conf., Springer,
2021, pp. 878–900.

[17] The apache software foundation, “Apache OpenWhisk,” 2016. [Online].
Available: http://openwhisk.org/

[18] D. D. McCracken and E. D. Reilly, “Backus-naur form (BNF),” in
Encyclopedia of Computer Science, Hoboken, NJ, USA: Wiley, 2003,
pp. 129–131.

[19] S. Bechhofer et al., “Why linked data is not enough for scientists,” Future
Gener. Comput. Syst., vol. 29, no. 2, pp. 599–611, 2013.

[20] S. Perera, A. Perera, and K. Hakimzadeh, “Reproducible experiments
for comparing apache flink and apache spark on public clouds,”
2016, arXiv:1610.04493.

[21] E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented
Software. Munich, Germany: Pearson Deutschland GmbH, 1995.

[22] C. Wang, S. Platnick, K. Meyer, Z. Zhang, and Y. Zhou, “A machine-
learning-based cloud detection and thermodynamic-phase classification
algorithm using passive spectral observations,” Atmospheric Meas. Techn.,
vol. 13, no. 5, pp. 2257–2277, 2020.

[23] P. Guo, A. Ofonedu, and J. Wang, “Scalable and hybrid ensemble-based
causality discovery,” in Proc. IEEE Int. Conf. Smart Data Serv., 2020,
pp. 72–80.

[24] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain
adaptation,” in Proc. Eur. Conf. Comput. Vis., Springer, 2016, pp. 443–450.

[25] R. Holz et al., “Global moderate resolution imaging spectroradiometer
(MODIS) cloud detection and height evaluation using CALIOP,” J. Geo-
physical Res. Atmospheres, vol. 113, no. D8, 2008, Art. no. D00A19.

[26] NOAA GOES Satellite Data, “NOAA geostationary operational environ-
mental satellites (GOES) 16, 17 & 18,” 2021, Accessed: Oct. 06, 2022.
[Online]. Available: https://registry.opendata.aws/noaa-goes/

[27] D. M. Winker et al., “Overview of the calipso mission and caliop data
processing algorithms,” J. Atmospheric Ocean. Technol., vol. 26, no. 11,
pp. 2310–2323, 2009.

[28] P. Ivie and D. Thain, “Reproducibility in scientific computing,” ACM
Comput. Surv., vol. 51, no. 3, pp. 1–36, 2018.

[29] K. Li, “Quantitative modeling and analytical calculation of elasticity in
cloud computing,” IEEE Trans. Cloud Comput., vol. 8, no. 4, pp. 1135–
1148, Fourth Quarter 2020.

[30] J. Wang, P. Korambath, I. Altintas, J. Davis, and D. Crawl, “Workflow as
a service in the cloud: Architecture and scheduling algorithms,” Procedia
Comput. Sci., vol. 29, pp. 546–556, 2014.

[31] T. K. Kim, “T test as a parametric statistic,” Korean J. Anesthesiol., vol. 68,
no. 6, pp. 540–546, 2015.

[32] T. Dahiru, “P-value, a true test of statistical significance? A cautionary
note,” Ann. Ibadan Postgraduate Med., vol. 6, no. 1, pp. 21–26, 2008.

[33] F. Chirigati, R. Rampin, D. Shasha, and J. Freire, “ReproZip: Computa-
tional reproducibility with ease,” in Proc. Int. Conf. Manage. Data, 2016,
pp. 2085–2088.

[34] Y. Janin, C. Vincent, and R. Duraffort, “Care, the comprehensive archiver
for reproducible execution,” in Proc. 1st ACM SIGPLAN Workshop Re-
producible Res. Methodol. New Publication Models Comput. Eng., 2014,
pp. 1–7.

[35] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Syst. Rev., vol. 49, no. 1, pp. 71–79, 2015.

[36] W. Gerlach et al., “Skyport-container-based execution environment man-
agement for multi-cloud scientific workflows,” in Proc. IEEE 5th Int.
Workshop Data-Intensive Comput. Clouds, 2014, pp. 25–32.
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