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Abstract 11 

Human and climate induced land surface changes resulting from irrigation, snow cover 12 

decreases, and greening impact the radiative forcing by changing the surface albedo. Here we use 13 

a partial information decomposition approach and remote sensing data to quantify the effects of 14 

the changes in leaf area index, soil moisture, and snow cover on the surface albedo in High 15 

Mountain Asia (HMA), home to over a billion people, from 2003 to 2020. The study establishes 16 

strong evidence of anthropogenic agricultural water use over irrigated lands (e.g., Ganges-17 

Brahmaputra) which causes the highest surface albedo decreases (£1%/year). Greening and 18 

decreased snow cover from warming also drive changes in visible and near-infrared surface albedo 19 

in different areas of HMA. The significant role of human management and human-induced 20 

greening in influencing albedo suggests the potential of a positive feedback cycle where albedo 21 

decreases lead to increased evaporative demand and increased stress on water resources.  22 

1. Introduction 23 

Surface albedo, the ratio of the solar radiation reflected from the Earth’s surface to the solar 24 

radiation incident upon it, is an essential variable determining the energy balance at the land 25 

surface1,2, in turn influencing local and global climates. A decrease in surface albedo gives rise to 26 

a positive radiative forcing, which can counterbalance the negative radiative forcing created by 27 

carbon sequestration3 and promote surface warming. Surface albedo also has an influence on the 28 

fraction of energy transformed into sensible and latent heat fluxes4–6. Variations of surface albedo 29 

are driven by the changes of Earth surface (vegetation, snow coverage, soil moisture, etc.), the 30 

solar illumination, and the zenith angle7–12. Also, vegetation phenology and seasonality of 31 

climate13,14 exert influences on the albedo changes at longer timescales. Consequently, natural 32 

disturbances such as warming and human activities such as deforestation and irrigation could alter 33 
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the surface albedo15, often larger than the biogeophysical mechanisms acting on the radiation 34 

budgets at both surface and atmospheric levels16–20. Therefore, quantifying the drivers of surface 35 

albedo changes can provide critical inferences on land-use change impacts on the radiative forcing.  36 

High-Mountain Asia (HMA, Figure 1) covering the Tibetan Plateau and its surroundings 37 

consists of densely populated hydrologic basins (e.g., Ganges-Brahmaputra and the Yangtze) 38 

serving over a billion people30–33. HMA basins play a critical role in sustaining the economy, 39 

agriculture, and energy of around 10 countries including China, Nepal, Bangladesh, India, 40 

Pakistan, and Afghanistan. Land structure heterogeneity over HMA is tremendous, with elevation 41 

ranging from the sea level to the world’s highest point, different climatic conditions (westerlies 42 

and monsoons), footprints of human activities, and large variations in land cover types. HMA 43 

experiences strong changes of land surface characteristics caused by greening34,35, decreases in 44 

snow30, and irrigation73. Because greening changes the optical and structural properties of the 45 

vegetation canopy and increases the Leaf Area Index (LAI), it affects the surface albedos25,36,37. 46 

Decreases in cryospheric storages resulting from warming, changes of precipitation phases, and 47 

dust and black carbon deposits also contribute to surface albedo decreases38–40. Lastly, significant 48 

irrigation activities also influence surface albedo by decreasing ground reflectance and enhancing 49 

vegetation growth.  50 

 Quantifying the relationships between these cryospheric and biospheric changes and the 51 

surface albedo in HMA where land surface processes play a significant role in the 52 

hydrodynamics41–43 will provide a better understanding of (1) their impacts on the climate system 53 

and water resources44,45, (2) the impacts of land surface changes on the radiative forcing, crucial 54 

for designing climate change mitigation and adaptation strategies46–48, and (3) the contributions of 55 

human management to Earth’s warming and/or cooling. Even though irrigation, warming, and 56 



   

 

4 

 

greening are occurring at high rates in HMA, previous studies assessing surface albedo changes 57 

were limited to the Tibetan Plateau49,50 and the Himalayas39.  58 

Satellite remote sensing is an essential technique for estimating surface albedo at various 59 

spectral, spatial, and temporal resolutions22. Examining the broadband components of surface 60 

albedo such as visible radiation (VIS) with a wavelength between 0.3 and 0.7 µm and near-infrared 61 

radiation (NIR) with a wavelength between 0.7 and 5.0 µm22,23 allows assessing changes in 62 

different land surface and vegetation states. For example, vegetation canopies reflect a much larger 63 

fraction in the NIR than in the VIS, because plant canopies scatter NIR energy24,25,26 whereas the 64 

VIS has a stronger correlation with the soil moisture and snow cover19,27–29. Here, we rely on a 65 

partial information decomposition analysis with remote sensing data to quantify the impacts of 66 

changes in (1) LAI, (2) soil moisture, and (3) snow cover on the black sky and white sky surface 67 

albedos in VIS and NIR broadband over HMA from 2003 to 2020. We use the albedo climatology 68 

provided by MODIS V006 (MCD43A351), LAI provided by MCD15A2H Version 6 of MODIS52, 69 

snow cover fraction provided by MODIS MOD10CM53, and soil moisture provided by the 70 

European Space Agency Climate Change Initiative ESA CCI54. 71 

Based on the analysis of remote sensing datasets of surface albedo and other land surface 72 

variables, this study establishes strong evidence of anthropogenic agricultural water use, with 73 

implications for the development of positive radiative forcing in HMA79. Specifically, the study 74 

demonstrates that increases in soil moisture in irrigated lands (Ganges-Brahmaputra and Indus) 75 

drive the highest decreases in surface albedo. Soil moisture drives the reductions in surface albedo 76 

in non-irrigated lands of the Indus and the northern HMA while the declines in snow cover from 77 

warming decrease surface albedos in the Tibetan Plateau. Although warming, dust, and black 78 

carbon induced snow cover decreases exert an influence of the positive radiative forcing, these 79 
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impacts are limited to the water towers and the winter season. While greening enhances NIR and 80 

decreases VIS in snow-free forests (e.g., Yangtze), in snow-covered vegetated areas (e.g., 81 

Himalayas, Amu Darya, and Hwang Ho), it increases both the VIS and the NIR. In addition to the 82 

established snow albedo feedback where the reduction in surface albedo over snow-covered areas 83 

leads to increased net radiation and sustained melt75, the current study outlines another possible 84 

positive feedback cycle related to surface albedo. In densely populated areas downstream of the 85 

high elevation mountains, human management, and human-induced greening dominate the highest 86 

decreases in surface albedo (up to 1%/year), which can lead to increases in the evaporative demand 87 

and subsequent increased irrigation water use in a positive feedback cycle. The increased stress on 88 

the limited water resources in this region from such impacts is a significant concern. These 89 

anthropogenic amplifications should be accounted for in climate modeling studies and in designing 90 

mitigation strategies for managing the impacts on the water cycle.  91 

2. Results 92 

2.1.Surface albedo changes in HMA  93 

Forested basins (Yangtze, Si, Song Hong, and Irrawaddy) have the lowest surface albedos 94 

due to their dense canopy (Figure 2). The highest surface albedos (NIR >0.35 and VIS >0.2) are 95 

in the Himalayas and the northern HMA due to the presence of snow. In the irrigated lands of 96 

Indus and Ganges-Brahmaputra, surface albedo values are in between those of forests and bare 97 

soil. Surface albedo trends are bidirectional although the VIS has a decreasing trend almost 98 

everywhere (Figure 2). The irrigated lands and Hwang Ho have the highest decreases in both NIR 99 

and VIS (> -2.10-3/year). The northwestern basins have an increasing trend in NIR (>10-3/year) 100 

whereas some areas show no significant trends to increasing trends of VIS. Tarim and the northern 101 

HMA are characterized by decreasing trends in NIR (<10-3/year) and VIS (~ -2.10-3/year). Forested 102 
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basins show an increasing trend in NIR (~10-3/year) and a decreasing trend in VIS (from 10-4 to 103 

10-3/year). Previous studies have reported an increasing trend of surface albedo in central Asia55 104 

in general and a decreasing trend in the Tibetan Plateau49,50 whereas our study highlights that these 105 

trends are bidirectional in the surface albedos constituents.  106 

Trends of snow cover and LAI are unidirectional with decreasing and increasing trends 107 

respectively, whereas the soil moisture has a bidirectional trend (Supplementary Figure 1). Forests 108 

have the highest LAI increase and snow cover decrease yet they depict low surface albedo changes. 109 

Moreover, Hwang Ho and Tarim characterized by high surface albedos changes do not have large 110 

changes of LAI, snow cover, and soil moisture. The long-term patterns of surface albedo changes 111 

are, therefore, not explained by the changes in vegetation, snow, and soil moisture alone. This 112 

following section describes the key land surface processes and their interactions on influencing 113 

albedo.  114 

2.2.Drivers of surface albedo changes in HMA 115 

Figure 3 which shows the unique, synergistic, and redundant information in various drivers 116 

of surface albedo changes, indicates that these factors are spatiotemporally heterogeneous in 117 

HMA. The unique information from soil moisture, LAI, or snow cover dominates the surface 118 

albedo, though in some instances the redundant information across these variables also becomes 119 

important. The synergistic information across these factors is generally small. Overall, LAI is the 120 

main driver of surface albedo changes in HMA as it dominates the surface albedo changes in 121 

forested and northwestern basins. Due to intense irrigation activities, soil moisture is the primary 122 

factor influencing surface albedo changes over the irrigated lands of Indus and Ganges-123 

Brahmaputra. For example, the unique information of soil moisture is three to four times higher 124 

than those of LAI and snow cover in Indus and Ganges-Brahmaputra. Compared to different areas 125 
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of HMA, the redundant information between LAI and soil moisture is non-significant over Indus 126 

and Ganges-Brahmaputra basins, which reaches a peak in July when the high soil moisture 127 

interferes with the soil reflectance by decreasing the VIS component. Further, the enhanced 128 

vegetation growth also leads to increasing NIR. LAI is the dominant factor with large unique 129 

information in the forested areas of Irrawaddy, Song Hong, and Si; this influence progressively 130 

reduces depending on the density of the forest canopy (68% in Irrawaddy, 56% in Song Hong, and 131 

32% in Si). Though the unique information of soil moisture is low in these areas, it increases during 132 

the monsoon. Snow is a significant factor in influencing the surface albedo in the Tibetan Plateau, 133 

the Karakoram and the western Himalayas, and the central Ganges-Brahmaputra and Eastern 134 

Himalayas. There is a seasonality to the snow cover unique information which increases in winter. 135 

The contrasting seasonal influences of snow cover, soil moisture, and LAI are also observed in 136 

several areas. Because multiple processes govern the water and energy balances in the central and 137 

eastern Himalayas, Hwang Ho, Tarim, and the northwestern basins (Amu Darya, Syr Darya, and 138 

Ili), surface albedo changes in these zones have multiple drivers whose contributions are 139 

seasonally dependent. In the Hwang Ho and Yangtze, for example, surface albedo variations are 140 

primarily governed by the changes of LAI though snow cover has a non-trivial contribution in 141 

winter. Additionally, soil moisture changes in Hwang Ho also affect surface albedo because its 142 

vegetated areas (48% of the basin area) are not dense enough to absorb all the solar radiation, 143 

hence nonnegligible radiation reaches the soil. In the central and eastern Himalayas, the unique 144 

information of LAI and soil moisture peaks in July. Because the increases in soil moisture are due 145 

to snowmelt, the unique information of snow cover and soil moisture have opposite monthly 146 

variations. During the growing season, the unique information of LAI is two times higher than 147 

those of snow cover and soil moisture combined. The partial information analysis presented here 148 
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provides important insights about the key processes that drive the surface albedo and the 149 

subsequent radiative changes in HMA basins. Next, we describe the seasonal and long-term 150 

changes in these processes toward influencing surface albedo changes over HMA.   151 

2.2.1. Irrigation induces the highest surface albedo decreases in HMA 152 

The Ganges-Brahmaputra and the Indus are subject to agricultural activities involving 153 

intense irrigation56 and groundwater pumping57. Irrigated lands occupy 49% of the Ganges-154 

Brahmaputra and 22% of the Indus. They have the highest yearly decreases in VIS and NIR in 155 

HMA on average equal to -4.4 10-4/year and -2 10-4/year, respectively in the Ganges-Brahmaputra 156 

and -6 10-4/year for the VIS and -2 10-4/year for the NIR in the Indus. The highest yearly decreases 157 

in VIS and NIR are from February to June when the soil moisture increases significantly (Figure 158 

4a). In the average seasonal cycle, the VIS increases from January to April because of the decreases 159 

in LAI and soil moisture. As soil moisture and LAI keep decreasing to reach their lowest values, 160 

the VIS reaches its maximum value (0.1) in June (Figure 4a). The beginning of the rainy season 161 

triggers increases in soil moisture and LAI. Hence the VIS starts to decrease. With the increases 162 

in LAI, more incoming solar energy is reflected and scattered by the vegetation canopy and only 163 

a small proportion of the incoming radiation reaches the ground73. The VIS remains at its lowest 164 

value (~0.05) for two consecutive months August and September when the average LAI and soil 165 

moisture have their highest values 2.5 and 0.29 respectively. The NIR has a monthly variation 166 

analogous to that of LAI because of its sensitivity to vegetation reflectance. Though not from 167 

irrigation, the influence of soil moisture on albedo is also seen in other areas.  In the northern HMA 168 

and parts of Indus, soil moisture increases originating from increases in precipitation77 decrease 169 

the surface albedo at rates equal to -2.3 10-4/year for the VIS and -1.6 10-4/year for the NIR 170 

(Supplementary Figure 4).  171 
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2.2.2. Greening decreases the VIS and increases the NIR surface albedo over 172 

forested regions of HMA 173 

Though HMA experiences greening at high rates73, LAI only controls surface albedo 174 

changes in forests of Ganges-Brahmaputra, Yangtze, Irrawaddy, Song Hong, and Si. Because of 175 

its dense canopy and high precipitation (970 to 1200 mm/year) leading to high soil moisture, 176 

annual averages of NIR and VIS surface albedos in the Yangzte are low equal to 0.275 and 0.187 177 

respectively (Figure 4b). The Yangtze has one of the highest trends of LAI in HMA (up to 0.02 178 

m2m-2/year). Nevertheless, the surface albedo trends are low likely due to their small magnitudes. 179 

The VIS and NIR surface albedos have contrasting trends and monthly variations due to the 180 

presence of forests. The VIS is high in winter due to vegetation senescence with a peak in March 181 

while the NIR component becomes high in summer. The lowest VIS (0.05) is from May to August 182 

when LAI and soil moisture are high, and snow cover low. VIS decreases as the canopy becomes 183 

dense and the wetness of the soil increases to dampen the effects of ground reflectance. As the 184 

canopy develops, its NIR reflectance increases due to increased multiple scattering74. Similar 185 

patterns are found in the forested areas of Ganges-Brahmaputra and Irrawaddy. Ganges-186 

Brahmaputra forests are characterized by a low VIS (0.027, Supplementary Figure 2b). The yearly 187 

increasing trends of LAI cause the NIR to increase (6 10-4/year) and the VIS to decrease (-2.8 10-188 

4/year), consistent with prior studies59. In the Irrawaddy, greening increases the NIR (up to 4 10-189 

4/year) and decreases the VIS (Supplementary Figure 3a). In these domains, the pattern of monthly 190 

variations of trends and seasonality in LAI and soil moisture is similar. Consequently, the pattern 191 

of their impacts on surface albedo components is also similar.  192 

2.2.3. Snow cover dominates surface albedo changes in high-elevation zones 193 
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Snow cover drives surface albedos changes in the Tibetan Plateau, the Karakoram, and the 194 

western Himalayas. The latter has an overall increasing trend of surface albedo stemming from an 195 

increasing snow cover (Figure 4c). However, this increasing trend is only limited to the winter, as 196 

surface albedo has a decreasing trend in summer and fall (Supplementary Figure 7) likely because 197 

of dust and black carbon deposits that darken the snow38,39,60. Similar patterns are also observed in 198 

the Tibetan plateau, where surface albedo decreases because of the decrease in snow cover 199 

(Supplementary Figure 5). The latter has also been attributed to black carbon40 and greening in 200 

prior studies50,61. The albedo decrease from snow cover influence is, therefore, strongly related to 201 

human impacts and climate induced warming on snow cover.  202 

2.2.4. Interactions between decreases in snow cover, increase in soil moisture, 203 

and greening 204 

In a number of basins in HMA, the simultaneous influence of the changes in snow cover, 205 

soil moisture, and vegetation impacts surface albedo changes. For example, because all the three 206 

factors controlling surface albedos are preponderant, the Hwang Ho has one of the highest 207 

decreasing trends of NIR and VIS in HMA equal to 5 10-4/year. In the Hwang Ho, the VIS 208 

decreases from January to August to reach its lowest value (~0.08) then increases as the winter 209 

season begins on contrary to the NIR (Figure 5a). In the Tarim, the decreasing trends of NIR and 210 

VIS (>-2 10-4/year) are due to the decreasing trends of snow cover in winter and soil moisture and 211 

LAI from April to November (Supplementary Figure 5). In the Amu Darya and the other 212 

northwestern basins, the NIR has an increasing yearly trend and the VIS has an increasing trend 213 

due to the yearly increase in LAI (Figure 5b). The increases in VIS are also related to the decreasing 214 

trends of soil moisture (Supplementary Figure 6).  215 
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Decreases in surface albedo equal to -4 10-4/year and -8 10-5/year for NIR and VIS, 216 

respectively in the central and eastern Himalayas characterized by high VIS (0.09) and low NIR 217 

(0.11) are governed by LAI, soil moisture, and snow cover (Supplementary Figure 2a). Although 218 

surface albedo is decreasing over the years, in winter it is increasing likely because greening 219 

enhances snow interception. In forests where snowfall occurs, the canopy increases both VIS and 220 

NIR because the intercepted snow offsets the canopy reflectance in all wavelengths58. The NIR 221 

and VIS increase from January to reach their peak in March as the snow cover is high. As the 222 

canopy becomes snow-free and it starts reflecting in the NIR. As such, the decreases in NIR due 223 

to the decline of snow are compensated with the increases induced by the canopy reflectance. 224 

Therefore, the decreases in NIR are not as sharp as in the VIS. The NIR and VIS increase again in 225 

November when the winter begins. Due to the opposite effects of snow and forests on the NIR, the 226 

second increase is only detectible in the VIS (Supplementary Figure 2).  227 

3. Discussion 228 

Because irrigated lands have the highest surface albedo decreases, irrigation in HMA could 229 

significantly reshape its climate dynamics. Surface albedo decreases driven by human 230 

management are likely to have a positive feedback impact on water resource requirements. For 231 

example, the reduction in surface albedo due to irrigation could lead to more warming and high 232 

evaporative demand, which could subsequently lead to more irrigation demand and the overuse of 233 

water resources. Over the Ganges-Brahmaputra and Indus with large populations reliant on 234 

irrigated agriculture, these surface albedo decreases are a significant concern. Another positive 235 

feedback mechanism related to cold season processes also raises concerns about the shifts in water 236 

availability. Surface albedo changes derived from the decreases in snow will further enhance this 237 

decrease in snowpack and warming. A decrease in surface albedo increases the surface absorption 238 



   

 

12 

 

of the solar radiation, leading to decreases in snow and more water available for vegetation growth 239 

and, therefore, boosts greening. In snow-covered forests, on the other hand, greening increases 240 

surface albedo and could attenuate warming. The impacts of the changes of land surface features 241 

(irrigation, greening, decreases in snow) on the radiative forcing will in turn accentuate these 242 

changes and the practices that have caused them. The attributions of the surface albedo changes 243 

developed in this study, therefore, are important inferences for future modeling studies for 244 

representing these interactions and feedbacks and evaluating their role in climate change. It is also 245 

important to account for this feedback in designing climate change mitigation strategies as 246 

counterbalancing Earth’s warming could involve changes of practices such as irrigation. 247 

4. Methods 248 

4.1.Selected satellite-based products  249 

We use remote sensing datasets to quantify the changes in surface albedo, LAI, soil 250 

moisture, and snow cover.  251 

MODIS MCD43 surface albedo: We use the surface albedos provided by NASA’s MODIS 252 

version V006 (MCD43A3) and their associated quality layers62. MODIS surface albedo products 253 

are generated every 8 days and have a spatial resolution of approximately 500 m. MCD43 provides 254 

BSA (directional hemispherical reflectance) which described the albedo under direct illumination 255 

condition in the absence of a diffuse component (i.e., when the sun as a point of source of 256 

illumination) and WSA (bihemispherical reflectance) is defined as albedo in the absence of a direct 257 

component when the diffuse component is isotropic in NIR and VIS.  258 

MODIS MCD14A2H LAI: LAI, defined as the area of green leaves per unit ground horizontal 259 

surface area, is a good indicator of changes in vegetation greenness on Earth. LAI is widely used 260 
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to analyze greening on Earth63,64. We use the LAI values provided by the MCD15A2H Version 6 261 

of MODIS52 at a spatial resolution of 500 m and a temporal resolution equal to 8 days.  262 

MODIS Snow Cover fraction: we assess the monthly snow cover fraction estimates provided by 263 

MODIS Snow Cover fraction L3 at a spatial resolution of 0.05°53.  264 

ESA CCI Soil moisture: we analyze the daily soil moisture provided by the European Space 265 

Agency Climate Change Initiative ESA CCI54. The ESA CCI soil moisture v05.2 consists of three 266 

surface soil moisture data sets. In this study, we use the dataset generated by blending the soil 267 

moisture retrievals from active and passive microwave remote sensing instruments.  268 

Statistical analyses 269 

To capture the influence of HMA heterogeneity on albedo changes, we perform our 270 

analysis at 500 m, which is the spatial resolution of the surface albedo data. The changes of surface 271 

albedo and its potential control variables (LAI, snow cover, and soil moisture) over the past two 272 

decades are quantified by computing their trends using the Mann-Kendall test with a confidence 273 

level of 95%70–72 given by: 274 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥! − 𝑥"+#
!$%&'

#('
"$'                (1) 275 

where x is the time series variable. The subscript j and k are the observation 276 

time. 𝑠𝑖𝑔𝑛(𝑥! − 𝑥"+is equal to +1, 0, or -1, which means increasing, no, and decreasing trends, 277 

respectively.  278 

Because three variables are likely controlling the changes of surface albedo, we employ 279 

the partial information decomposition framework to quantify the interactions and dependencies 280 

between these variables and the surface albedo. The partial information decomposition allows to 281 

quantify (1) the amount of information that each control variable uniquely contributes to the 282 

surface albedo, (2) the redundant information between the three variables, and (3) the information 283 
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due to the combined knowledge of the three variables called synergistic information. More details 284 

about the computation of these metrics can be found in69–71. Land surface processes are 285 

characterized by strong seasonality and depending on the season the dominant factors, as well as 286 

the values of surface albedos, may change16,19, we, therefore, analyze the monthly variations of 287 

yearly trends and averages.  288 
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Figure caption 473 

Figure 1: Maps of High Mountain Asia. (a) elevation, (b) land cover76, and (c) percent of irrigated 474 

areas per pixel56. The black lines indicate the limits of the hydrologic basins, and their names are 475 

indicated in (c). 476 

Figure 2: Surface albedo changes and values in High Mountain Asia. Spatial distributions of the 477 

yearly (a) averages and (b) trends from 2003 to 2020 of BSA (Black Sky) and WSA (White Sky) 478 

surface albedos in both NIR and VIS wavelengths. Trends were computed using the Mann-Kendall 479 

test with a confidence level of 95%. 480 

Figure 3: Dominant drivers of the surface albedo changes. Spatiotemporal variations of the unique 481 

and redundant information of leaf area index, soil moisture, and snow cover about the visible 482 

white-sky surface albedo of 16 zones (basin names are indicated in Figure 1c). Note that y-axis is 483 

a stacked graph and is not cumulative. 484 

Figure 4: Monthly variations of trends and averages of surface albedo, LAI, soil moisture and snow 485 

cover. (a) in a basin where irrigation decreases surface albedo: irrigated lands of the Ganges-486 

Brahmaputra, (b) in a basin where greening decreases VIS and increases NIR surface albedo: 487 

Yangtze, (c) in a basin where changes in snow cover decreases surface albedo: the Karakoram and 488 

Western Himalayas in the Indus. Trends were computed using the Mann-Kendall test with a 489 

confidence level of 95%. 490 

Figure 5: Monthly variations of trends and averages of surface albedo, LAI, soil moisture and snow 491 

cover in basins where surface albedo changes are controlled by greening, soil moisture, and snow 492 

cover (a) Hwang Ho, and (b) Amu Darya. Trends were computed using the Mann-Kendall test 493 

with a confidence level of 95%. 494 
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 495 

Figure 1: Maps of High Mountain Asia. (a) elevation, (b) land cover76, and (c) percent of irrigated 496 

areas per pixel56. The black lines indicate the limits of the hydrologic basins, and their names are 497 

indicated in (c).  498 
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 499 

Figure 2: Surface albedo changes and values in High Mountain Asia. Spatial distributions of the 500 

yearly (a) averages and (b) trends from 2003 to 2020 of BSA (Black Sky) and WSA (White Sky) 501 

surface albedos in both NIR and VIS wavelengths. Trends were computed using the Mann-Kendall 502 

test with a confidence level of 95%.  503 
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 504 

Figure 3: Dominant drivers of the surface albedo changes. Spatiotemporal variations of the unique 505 

and redundant information of leaf area index, soil moisture, and snow cover about the visible 506 

white-sky surface albedo of 16 zones (basin names are indicated in Figure 1c). Note that y-axis is 507 

a stacked graph and is not cumulative.  508 
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 509 

Figure 4: Monthly variations of trends and averages of surface albedo, LAI, soil moisture and snow 510 

cover. (a) in a basin where irrigation decreases surface albedo: irrigated lands of the Ganges-511 

Brahmaputra, (b) in a basin where greening decreases VIS and increases NIR surface albedo: 512 

Yangtze, (c) in a basin where changes in snow cover decreases surface albedo: the Karakoram and 513 

Western Himalayas in the Indus. Trends were computed using the Mann-Kendall test with a 514 

confidence level of 95%.  515 
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 516 

Figure 5: Monthly variations of trends and averages of surface albedo, LAI, soil moisture and snow 517 

cover in basins where surface albedo changes are controlled by greening, soil moisture, and snow 518 

cover (a) Hwang Ho, and (b) Amu Darya. Trends were computed using the Mann-Kendall test 519 

with a confidence level of 95%. 520 
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