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Informational Requirements for Transcriptional Regulation

PATRICK K. O’NEILL,1,* ROBERT FORDER,2,* and IVAN ERILL1

ABSTRACT

Transcription factors (TFs) regulate transcription by binding to specific sites in promoter
regions. Information theory provides a useful mathematical framework to analyze the
binding motifs associated with TFs but imposes several assumptions that limit their appli-
cability to specific regulatory scenarios. Explicit simulations of the co-evolution of TFs and
their binding motifs allow the study of the evolution of regulatory networks with a high
degree of realism. In this work we analyze the impact of differential regulatory demands on
the information content of TF-binding motifs by means of evolutionary simulations. We
generalize a predictive index based on information theory, and we validate its applicability to
regulatory scenarios in which the TF binds significantly to the genomic background. Our
results show a logarithmic dependence of the evolved information content on the occupancy
of target sites and indicate that TFs may actively exploit pseudo-sites to modulate their
occupancy of target sites. In regulatory networks with differentially regulated targets, we
observe that information content in TF-binding motifs is dictated primarily by the fraction of
total probability mass that the TF assigns to its target sites, and we provide a predictive index
to estimate the amount of information associated with arbitrarily complex regulatory sys-
tems. We observe that complex regulatory patterns can exert additional demands on evolved
information content, but, given a total occupancy for target sites, we do not find conclusive
evidence that this effect is because of the range of required binding affinities.

Key words: binding sites, evolution, evolutionary simulation, in silico evolution, information

content, regulation, transcription factor, transcription networks.

1. INTRODUCTION

Regulation of gene expression is a central process in living systems that is addressed primarily

through the regulation of transcription (Ptashne, 2005). At its most fundamental level, transcriptional

regulation is implemented by the binding of a class of proteins, known as transcription factors (TF), to

specific sites in the promoter regions of regulated genes (Huang et al., 1999; Orphanides and Reinberg, 2002).

Binding of a TF to these sites can either facilitate or hinder binding of the RNA–polymerase holoenzyme at

the promoter, resulting in activation or repression of transcription (Ptashne, 2005; Minchin and Busby, 2009).

TF-binding sites are typically short (6–20 bp) and fixed-length and often degenerate DNA sequences that are
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efficiently located and bound by the TF through recognition of specific patterns or motifs. Information theory

provides a robust theoretical framework to analyze the interaction between TF and their binding sites

(Schneider et al., 1986). Given a collection of aligned TF-binding sites (i.e., a TF-binding motif), one can

compute the amount of information present in the TF-binding motif as the difference in uncertainty about

which base occupies each position of the motif when compared with an equivalent number of unaligned

genome subsequences of the same length. More formally, the information Rsequence(i) of the ith position in the

TF-binding motif is defined as the difference between the entropies of the unaligned and aligned sequences:

Rsequence(i) = -
X

s
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At any given position, the frequencies of each base in an unaligned collection of sites will follow the

genomic background frequencies f (S) for each base S, whereas the collection of aligned TF-binding sites

will display position-specific frequencies pi(S) for the ith position. Assuming positional independence, the

total amount of information embedded in the motif is

Rsequence =
XL

i = 1

(Rsequence(i))‚ (2)

where the sum ranges over all positions i of the motif up to its length L.

The formula for Rsequence forms the basis of sequence logos, the standard graphical representation of TF-

binding motifs, and has become the most extended model for TF-binding motifs (Schneider and Stephens,

1990). As defined, Rsequence can be interpreted formally as the amount of information embedded by

evolution in a set of TF-binding sites, and it follows naturally that this value should be linked to the amount

of information required to locate those sites in the genome. Given a genome of size G, the information

required to locate M sites is given by
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which corresponds to the difference between the entropy of a system with an unspecific TF that binds with

equal affinity at all genome positions and that of a system with a specific TF capable of binding with equal

affinity to M target sites and nowhere else in the genome. Rfrequency therefore provides a lower bound on the

information required to identify M target sites in a genome of size G.

It has been shown for several bacterial TFs operating on unbiased genomes that Rfrequency provides a

good approximation to the observed Rsequence (Schneider et al., 1986), and the approximate equality

Rsequence&Rfrequency has come to be seen as a fundamental result of the application of information theory to

TFs and their binding sites. Several analytical models of TF-binding site evolution have been developed

(Gerland and Hwa, 2002; Berg et al., 2004; Mustonen and Lassig, 2005; Stewart et al., 2012) and even

applied to the study of the relationship between Rsequence and Rfrequency (Kim et al., 2003), but for tracta-

bility these models require strong assumptions for the binding model and genomic background, and thus do

not capture the full dynamics of the evolution of mutual information between TFs and their cognate-

binding sites. In previous work, the relationship between Rsequence and Rfrequency has been further sub-

stantiated by explicit evolutionary simulations (Schneider, 2000). Synthetic genomes encoding a simulated

TF (or recognizer) and predefined locations for target sites were evolved using a genetic algorithm

framework. The system modeled the TF as a linear classifier with an evolvable threshold capable of

designating each position of the genome as bound or unbound. The fitness of an organism was evaluated as

the inverse of the total amount of errors made by the recognizer: binding at nontarget locations (false

positives) and failing to bind at predefined targets (false negatives). Using this model, it was shown that the

observed Rsequence at predefined targets evolves to closely match the predicted Rfrequency (Schneider, 2000).

Most experimental techniques used traditionally in the identification of TF-binding sites provide a

qualitative description of potential sites as bound or not bound by the protein. As a consequence, most

theoretical models of the interaction between TFs and their binding sites have traditionally aimed at

matching a binary representation of TF-binding sites. Nonetheless, as ChIP-seq and other high-throughput

quantitative protein–DNA binding assays have made manifest, TFs often display a broad range of affinities
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for target sites and these distinct affinities lead in vivo to different occupancies that can have relevant

physiological effects (Browning and Busby, 2004; Maerkl and Quake, 2007; Mardis, 2007). These findings

have recently led to the emergence of computational methods capable of harnessing high-throughput data

to capture the quantitative nature of TF activity (Roider et al., 2007; Badis et al., 2009; Zhao and Stormo,

2011). Hence, an important theoretical question in the analysis of TF-binding motifs concerns the impact of

regulatory demands on the observed information content (Rsequence). The effect of regulatory demands on

the information content of TF-binding motifs is not obvious. For instance, motifs harboring sites with lower

than average occupancies might require less information because such sites need not be recognized as

precisely by the TF. On the other hand, in such a situation the TF must ensure that different groups of sites

be bound at distinct occupancies, which might require additional information (Erill and O’Neill, 2009).

Predictive estimators of Rsequence, like Rfrequency, are based on a binary definition of TF-binding sites and

cannot be generalized trivially to systems with differential regulation of sites. In this work we develop and

validate a platform to simulate the co-evolution of TFs and their binding motifs, and we use it to explore the

impact of regulatory requirements in TF-binding motifs. We generalize Rfrequency to deal with realistic

evolutionary scenarios, and we validate this generalization using evolutionary simulations. Our results

reveal a logarithmic dependence of the evolved information content on the fraction of total probability mass

associated with target sites. Further, we observe that evolved systems can effectively exploit the genomic

background to enact their regulatory roles. Finally, simulations on arbitrary regulatory patterns reveal that

the evolved information content is predicted by total target occupancy and is invariant with respect to the

complexity of the site-wise arrangement of target occupancies.

2. RESULTS AND DISCUSSION

2.1. In silico evolution of transcriptional regulatory networks

The evolution of simple transcriptional regulatory networks has been studied before by means of explicit

simulation of TFs and their binding sites, leading to fundamental insights into the informational constraints

faced by such networks (Schneider, 2000). In this work we generalize this approach by developing an

evolutionary simulator that incorporates biophysical modeling and addresses several caveats of previous

attempts. Evolutionary simulator of transcriptional regulatory motifs (ESTReMo) uses a genetic algorithm

backbone to simulate the evolution of transcriptional regulatory networks using a modular approach (Fig. 1).

In ESTReMo, each organism contains two evolvable components: a TF model and a set of promoter regions

for target genes. The TF is modeled as a feed-forward artificial neural network that operates on the set of

target promoter regions and on a fixed genomic background. In each generation, the TF model is used to

compute the free energy of binding for all positions in target promoter regions and in a randomly sampled

FIG. 1. Schematic representation of the evolutionary simulator of transcriptional regulatory motifs (ESTReMo).

Diagram summarizes the internal organization of an individual organism and its connection with the fitness model. TF,

transcription factor.
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subset of the genomic background. The occupancy of each promoter position is computed according to a

statistical mechanical distribution on an effective background generated by scaling up the randomly drawn

samples. These occupancies are then used to determine the expression level for each target gene following a

given expression model. Finally, organism fitness is evaluated as the sum of cost–benefit differences for each

target gene and its desired expression level using an empirical fitness model.

The combination of thermodynamic and empirical fitness models with a modular approach taken in

ESTReMo has several advantages. The interpretation of neural network outputs as binding energies permits

their incorporation into a well-described biophysical framework that can explicitly model nonspecific binding

and physical distributions of site occupancy, and makes the results of the simulation directly comparable with

real biological systems (Stormo and Fields, 1998; Djordjevic et al., 2003). This also enables us to couple

predicted expression levels with a fitness model anchored on empirical data that take into account the effects

of both under- and over-regulation of target genes (Dekel and Alon, 2005). The use of continuous energy,

occupancy, and expression levels in conjunction with a continuous fitness function ensures that a fitness

gradient is always available for the evolutionary process. This makes it possible to evolve regulatory systems

on large genomic backgrounds, which is otherwise infeasible with threshold-based approaches. Furthermore,

the use of a fixed genomic background, as opposed to an evolvable one, prevents the system from actively

pruning pseudo-sites and allows us to run simulations on real genome sequences.

As illustrated in Figure 2, ESTReMo simulations are characterized by a period of rapid increase in fitness

(Fig. 2A), in which the TF evolves to associate strong affinities (low energy values) to a primordial core of

FIG. 2. Trace indicators for a complete evolutionary simulation. All values correspond to the fittest organism in the

population at any given generation. (A) Organism fitness. Sequence logos illustrate the step-wise evolution of the

associated TF-binding motif as new sites are recognized. (B) Free energy of binding for each site in the motif. (C)

Information content Rsequence (corrected and uncorrected for small-sample error) of the evolved TF-binding motif. The

predicted Rfrequency for the system is superimposed. (D) Contributions to the partition function from the sampled

background (blue) and the promoter regions (green).
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target sites, while maintaining the background at energies close to nonspecific binding. Thereafter, the

simulation displays a step-wise increase in fitness that results from a progressive refinement of the rec-

ognizer and the gradual incorporation of additional sites. This behavior can also be traced by changes in the

individual binding energies of sites (Fig. 2B) and by changes to the information content (Rsequence) of the

associated TF-binding motif (Fig. 2C), and ultimately results in the TF assigning the preset fraction of

probability mass to its target sites and the remainder to the background (Fig. 2D).

2.2. Evolutionary strategies for modulating regulatory activity

An important caveat of Rfrequency as a predictor of evolved information content for the purposes of

evolutionary simulations is that it assumes a scenario that cannot be evolved in a realistic framework for a

single-molecule model. The posterior entropy in Rfrequency assumes that all M sites targeted by the TF are

bound with equal probability and that no other sites in the genome are bound, thereby assigning all the

probability mass to M sites. Whereas these conditions can be approximated in nature by systems with

multiple molecules of the TF, in a realistic simulation for the single-molecule case this ideal can never be

achieved. In ESTReMo, where nonspecific binding is taken into account and where pseudo-sites cannot be

completely eradicated by selection, the assumptions in Rfrequency result in the uninformative evolution of

systems targeting motifs as close to the consensus as possible. To circumvent this problem, we sought to

evolve systems in which only a fraction (a) of the total probability mass is assigned to target sites. This led

us to explore possible generalizations of Rfrequency to this general case. Such an extension is bound by two

opposing scenarios. If we assume that a fraction a of the total probability mass is assigned uniformly to M

sites, the remaining (1 - a) fraction can be distributed evenly over the genomic background (by extension

of the maximum entropy assumption in Rfrequency):
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or it can be concentrated at a single genomic position:
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leading to a lower bound (R�max) and an upper bound (R�min) on the information content of a system capable

of assigning a fraction a of its total probability mass uniformly among M sites.

In between these two bounds, a theoretical optimum may be defined as follows. On a uniform genomic

background of size G, a classifier operating on R bits of information will recognize 2 -R $ G positives in

expectation. The fraction a of its probability mass assigned to the M target sites is therefore:

a =
M

2 -R†
G

‚ (6)

which leads directly to

R
†
(a) = log2

G

M
+ log2 a: (7)

For any given a, the formula for R{ is therefore equivalent to Rfrequency for a TF targeting M/a sites,

suggesting that the optimal strategy for adjusting the occupancy of target sites in a TF consists in exploiting

a proportional number of pseudo-sites with similar affinity to the target sites. To analyze the general

applicability of this principle, we ran simulations to evolve TFs capable of recognizing sixteen 16-bp-long

binding sites on an effective background of 10,000 bp sampled from either the Escherichia coli K-12 or a

randomly generated genome of equal length. Specifically, we monitored the evolved Rsequence for evolu-

tionary runs in ESTReMo under increasing a values. The results (Fig. 3) reveal that R{ is a robust predictor

of the evolved Rsequence (R2 = 0.59, p < 0.001), validating this particular generalization of Rfrequency. We
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observe similar Rsequence values for simulations operating on E. coli and randomly generated uniform

backgrounds (Mann–Whitney U-test p > 0.05). Despite this, TFs operating on real, larger genomic

backgrounds may be able to exploit imbalances in the distribution of L-mers, already known to be targeted

by restriction enzymes, to effectively decrease the informational demands of their associated TF-binding

motifs (Gelfand and Koonin, 1997; Hahn et al., 2003).

The regulatory properties of a TF are a function of its binding affinity for its target sites, the genome it

operates on, and the number of TF molecules present in the cell. Even though the formal derivation of R{ and

the experimental results presented here apply only to the single-molecule case, they have obvious impli-

cations for the general case of multiple copy number. The binding of TFs to sites that do not directly regulate

the expression of genes (i.e., pseudo-sites) has been traditionally interpreted as genetic noise faced by the TF

and assumed to be indiscriminate following the random occurrence of pseudo-sites in large genomes (Berg

and von Hippel, 1987; Robison et al., 1998). The evolutionary principle behind R{, however, suggests that

TFs may be able to actively exploit pseudo-sites to modulate the effective occupancy of target regulatory

sites, and that they may do so by relying on a small set of low-binding-energy pseudo-sites rather than on

generic genome-wide sequestration by a full range of weak binding sequences. Hence, these results indicate

that strong pseudo-sites may be considered functional and could be actively selected for by evolution.

2.3. Evolution of complex regulatory motifs

Transcriptional regulation of gene expression involves the precise tuning of both expression levels and

temporal patterns of activation through the modulation of interactions between TFs, RNA–polymerase, and

their respective binding sites (Browning and Busby, 2004; Friedman et al., 2005; Alon, 2007). Unfortunately,

the precise effects of regulatory demands on the information content of evolved TF-binding motifs are hard

to anticipate. Furthermore, the generalization of conventional approaches to predict information content in

FIG. 3. Evolution of uniform regulatory systems. Plot shows evolved Rsequence values for simulations on randomly

generated backgrounds (solid circles) and on the Escherichia coli genome (squares) as a function of the fraction of total

probability mass (a) assigned to target sites. Error bars depict the 95% confidence interval for the mean. Corresponding

values of Rfrequency, R�max, R�min, and R{ are shown.
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TF-binding motifs, such as Rfrequency, leads to counterintuitive results. The formula for Rfrequency in Equation

3 can be generalized to incorporate the entropy of a specific system that binds differentially to its target sites

(as opposed to uniformly):
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" #
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Because the posterior entropy is now smaller than in the standard Rfrequency case, the predicted infor-

mation content must be higher. For instance, in a system targeting 16 sites on a 10,000 bp background,

Rfrequency predicts that a recognizer needs 9.29 bits of information to correctly locate its sites. For a

recognizer that binds 75% of its time to 4 of its 16 sites and only 25% of the time to the remaining 12,

however, the generalized Rdiff indicates that 10.8 bits are necessary. This same reasoning applies to R{ and

other generalizations of Rfrequency and suggests that differential regulation imposes additional informational

demands on TFs. It has been suggested that these informational requirements could be linked to guaran-

teeing accurate regulation throughout an extended regulatory range (Erill and O’Neill, 2009). Nonetheless,

sites with decreased affinity for the TF should be more degenerate, from which it follows that a motif

containing a significant number of ‘‘weak’’ sites should display lower information content (Rsequence).

We analyzed the effect of regulatory constraints on the evolution of TFs and their binding motifs by

simulating the evolution of two illustrative types of regulatory systems targeting 16 sites on a 10,000 bp

effective background. In bimodal systems, one half of the 16 sites required higher occupancy (ahigh) than

the other half (alow). In stepwise regulatory ladders, each of the 16 sites was set to evolve a value of

occupancy (ai) that increased gradually from alow to ahigh. In both cases, we defined a reference value for

total probability mass a = 0.5, and we assigned sequential fractional values to alow and ahigh (a/4, a/8, and

a/16 for alow and a$3/4, a/2, and a/4 for ahigh). The results (Figs. 4 and 5) reveal that the evolved

FIG. 4. Evolution of bimodal regulatory systems. The plot shows evolved Rsequence values for different evolutionary

simulation scenarios with half of the sites set to higher occupancy (ahigh) than the other half (alow). Error bars depict the 95%

confidence interval for the mean. For each Rsequence value, the corresponding R{ values for ahigh, alow, and aeff values are shown.
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information content (Rsequence) traces R{ for the effective a (aeff), defined as the total amount of probability

mass assigned to all 16 sites in each setting (R2 = 0.23, p < 0.01 for Fig. 4 and R2 = 0.22, p < 0.001 for

Fig. 5).

The results of bimodal and stepwise ladder systems strongly suggest that the information requirements of

the system are dictated primarily by the effective fraction of total probability mass (aeff) that the TF needs

to assign to its target sites. In essence, the fraction of total probability mass assigned to target sites dictates

the specificity of the TF, which imposes constraints on the required information content (Rsequence) of the

TF-binding motif. As a result, the information content of a TF-binding motif for a system implementing an

arbitrarily complex regulatory pattern can be estimated to first order by R{(aeff). To analyze the possible

role of other contributing factors, such as the regulatory range that the TF needs to target, we conducted a

series of simulations in which the regulatory targets for sixteen sites were sampled uniformly at random

from the set of possible regulatory profiles. The results shown in Figure 6 reveal that the information

content of evolved TF-binding motifs meeting these regulatory demands correlates with R{(aeff) (R2 = 0.66,

p < 0.01), and is effectively bound by R{ computed for 1 site at ahigh and for 1 site at alow (permutation test,

p < 0.01). We detected no relationship, however, between information content and the coefficient of

variation of the target occupancies (R2 = 0.004, p > 0.05), suggesting that the dispersion of the regulatory

targets is not explanatory after correction for mean occupancy. These results therefore support the previ-

ously stated hypothesis that the effective fraction of total probability mass is the major factor dictating the

evolution of information content in TF-binding motifs. Furthermore, they show that for a given effective

occupancy the span of required occupancies does not exact additional informational requirements on TF-

binding motifs.

FIG. 5. Evolution of stepwise regulatory ladders. The plot shows evolved Rsequence values for different evolutionary

simulation scenarios with sites gradually increasing from low (alow) to high (ahigh) occupancy. Error bars depict the

95% confidence interval for the mean. For each Rsequence value, the corresponding R{ values for ahigh, alow, and aeff

values are shown.
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3. CONCLUSIONS

The informational requirements for transcriptional systems with complex regulatory demands are not obvious.

By generalizing Rfrequency into R{ as a predictive indicator for the evolved information content in TF-binding

motifs and assessing its accuracy by means of evolutionary simulations, here we show that the informational

requirements of arbitrarily complex regulatory patterns are dictated primarily by the effective fraction of

probability mass assigned to target sites. We find that the presence of a large number of low-occupancy sites in a

regulatory system can decrease the expected information content, but this effect is weak in comparison to the

influence of the effective fraction of probability mass. As a result, the amount of information in TF-binding

motifs for systems with complex regulatory demands can be effectively estimated to first order by R{.

4. METHODS

4.1. Evolutionary simulator

The evolutionary simulator used in this work, ESTReMo, has been developed integrally in C++ as an

open-source project and is available for download online. ESTReMo implements a genetic algorithm with

fixed population size, generational replacement, mutation, and k-tournament selection (Eiben and Smith,

2007). The genetic algorithm evolves a simulated TF (recognizer) and a set of promoter regions wherein

TF-binding sites are expected to evolve. Promoter sequences are stored as DNA strings and encoded using a

BIN4 notation for processing by the recognizer (Wu and McLarty, 2000). The recognizer is encoded as a

set of weights that are instantiated into a predefined neural network architecture. We use a single-layer

feed-forward network with linear activation function, which effectively maps to a position-specific weight-

matrix model (Workman and Stormo, 2000). Independent mutation rates and operators are used for the

recognizer and for the promoter regions. Mutations in promoter regions change the base at a given position

FIG. 6. Evolution of randomized regulatory scenarios. The plot shows 198 evolved Rsequence values for different

evolutionary simulation scenarios. The full dataset is shown instead of summary statistics because of the uniqueness of

a values. For each Rsequence value, the corresponding R{ values for ahigh and alow are shown.

INFORMATION FOR TRANSCRIPTIONAL REGULATION 381



following predefined nucleotide frequencies. Recognizer weights are mutated by adding or subtracting a

factor (Dw) that is distributed as the cube of a standard uniform random variable. The output of the

recognizer for the ith site Si is interpreted as the change in free-energy (ei) associated with binding in units

of KBT, where KB is the Boltzmann constant and T the absolute temperature. Occupancies for all positions

in all promoter sequences are computed by assuming a Boltzmann distribution (Stormo and Fields, 1998):

P(Si bound) =
e - bei

Z
‚ Z =

X
j2promoter

regions

e - bej +
X

j2genomic
background

e - bej ‚ (9)

where b = 1/KBT is inverse temperature and j is the genome coordinate. The genomic component ZG of the

partition function Z for the Boltzmann distribution is approximated by taking S contiguous samples (in-

dexed by Uj) uniformly at random from a genome sequence and scaling their energy contributions to the

desired effective genome size (G). The scaled partition function is then given by

ZG =
G

S

Xs

j = 1

e - beUj (10)

where eUj is the energy associated with a given random sample Uj and S is the number of samples. For any

given promoter sequence, expression of the associated gene is evaluated as the maximum occupancy for

any site within the promoter sequence. Expression is assumed to encompass transcription and translation,

resulting in a value of enzyme concentration within the cell. Target expression levels are defined as desired

intracellular concentrations. The relationship between target expression level and fitness is assumed to

follow the experimentally fitted cost–benefit function reported for LacZ (Dekel and Alon, 2005):

fitness = d
EL

KY + L
- g

E

1 - E
ME

(11)

where E is the enzyme (LacZ) concentration, L is the amount of lactose present in the medium (mM), KY is the

Michaelis constant of LacY (mM), ME is the maximum enzyme concentration, and d and g are dimensionless

Table 1. Summary of Standard Parameters for the Simulations Reported in This Work

Category Parameter Valuea

Genetic algorithm Tournament size 2

Promoter region mutation rate (lp) 0.001 mutations/bp/generation

Recognizer mutation rate (lr) 0.005 mutations/weight/generation

Population size 500

Maximum number of generations 15,000

Stopping criteria Max generation & optimal fitness

Recognizer weight initialization 0

Promoter region base initialization Uniform

Regulatory network Promoter regions 16

Size of promoter regions 32 bp

Length of binding sites 16 bp

Genome Size 10,000 bp

Sequence Random 50% GC/E. coli

Fitness model Wild-type enzyme concentration 1 lM

Benefit parameter (d) 0.17

Cost parameter (g) 0.02

Maximum enzyme concentration (M) 1.8

Michaelis constant of LacY (KY) 0.4 mM

Occupancy model Distribution of transcription factor Boltzmann

Temperature 30�C

Nonspecific binding -8 kcal/mol

Expression function Max occupancy in promoter

aVariations to these parameters are explicitly noted in the text.
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tuning parameters for benefit and cost, respectively. Equation 11 is defined in terms of wild-type concen-

trations for the enzyme (E, ME). In practice, we assume an enzyme wild-type concentration of 1 lM (Lu et al.,

2007; Flamholz et al., 2013). Values for all parameters in the fitness model are reported in Table 1.

Native ESTReMo C++ code can be compiled to run serially or in conjunction with a CUDA extension

that offloads the estimation of the partition function to a General Purpose Graphical Processing Unit

(GPGPU).

4.2. Evolutionary simulations

All simulations reported in this work targeted the evolution of a simulated TF capable of regulating

sixteen 16-bp-long sites while facing a background genome with an effective size of 10,000 bp sampled

from either the E. coli K-12 (NC_000913) or uniform random sequences of equivalent size. Only the

forward strand was considered for the effects of the simulation. The mutation rate for promoter regions was

set at 10 - 3 mutations per base per generation following previous work (Schneider, 2000), effectively

setting the system slightly below the one mutation per genome per generation limit. The per-weight

mutation rate for the recognizer then was adjusted empirically to a conservative rate below the limit at

which simulations failed to converge. A complete list of parameters for the simulations is provided in Table

1. Simulations were run on a 2.80 GHz · 8 core Intel X58 system with 12 Gb of RAM and an NVidia 580

GPU unit, and on the University of Maryland Baltimore County (UMBC) High Performance Computing

Facility Tara cluster. All simulations were run for 15,000 generations, and only simulations that attained a

fitness value within 1% of the predicted maximum fitness were kept for analysis.

4.3. Data analysis

The ability of R{ to approximate the Rsequence values generated by the evolutionary simulation scenarios

was assessed by computing the Pearson correlation coefficient of determination (R2) and its associated

p-value. Statistical support for the difference in Rsequence values evolved in real and randomly generated

genomic backgrounds was assessed using a Mann–Whitney U-test. Support for bounds on evolved Rsequence

values based on R{ computed at minimum (alow) and maximum (ahigh) occupancy values was assessed by a

permutation test. All statistical tests were performed using the Python Scipy library. All code used to

perform the data analysis may be found online at http://sourceforge.net/projects/estremo/.
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