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Abstract

Stochastic precipitation generators (SPGs) are a class of statistical models which gen-
erate synthetic data that can simulate dry and wet rainfall stretches for long du-
rations. Generated precipitation time series data are used in climate projections,
impact assessment of extreme weather events, and water resource and agricultural
management. We construct an SPG for daily precipitation data that is specified as a
semi-continuous distribution at every location, with a point mass at zero for no pre-
cipitation and a mixture of two exponential distributions for positive precipitation.
Our generators are obtained as hidden Markov models (HMMs) where the underly-
ing climate conditions form the states. We fit a 3-state HMM to daily precipitation
data for the Chesapeake Bay watershed in the Eastern coast of the USA for the wet
season months of July to September from 2000–2019. Data is obtained from the GPM-
IMERG remote sensing dataset, and existing work on variational HMMs is extended
to incorporate semi-continuous emission distributions. In light of the high spatial
dimension of the data, a stochastic optimization implementation allows for compu-
tational speedup. The most likely sequence of underlying states is estimated using
the Viterbi algorithm, and we are able to identify differences in the weather regimes
associated with the states of the proposed model. Synthetic data generated from the
HMM can reproduce monthly precipitation statistics as well as spatial dependency
present in the historical GPM-IMERG data.

Key words: Variational Bayes; Hidden Markov models; Spatio-temporal statistics;
Stochastic optimization; Semi-continuous distributions
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1 Introduction

Precipitation is the major component of the global water cycle and plays an important
role in atmospheric and land surface processes in the climate system. While numeri-
cal weather models study precipitation over large areas, observational data are used to
develop statistical models for precipitation over smaller areas at higher temporal fre-
quencies and higher spatial resolution. The measurement and modeling of precipitation
has historically relied on sparsely located rain gauges that are spatially irregular, with
remote sensing products becoming more easily available in recent years. A common
class of statistical models which are of interest for analyzing meteorological data are
known as stochastic weather generators (SWGs). SWGs can be used to generate long
time series of synthetic data to simulate weather patterns and are useful in weather and
climate research; for precipitation data, the corresponding generator is a stochastic pre-
cipitation generator (SPG). The modeling and forecasting of seasonal and inter-annual
variations in precipitation is used to determine water allocation and resource manage-
ment for regions dependent on precipitation as a primary water source. To this end,
SPGs produce time series of synthetic data representative of the general rainfall patterns
within a region. In particular, they aim to replicate key statistical properties of the his-
torical data like dry and wet stretches, spatial correlations, and extreme weather events.
SPGs are also used to downscale numerical weather models, and simulations from them
are used for climate projections, impact assessments of extreme weather events, water
resources and agricultural management, and for public and veterinary health. In gen-
eral, SWGs complement numerical models which tend to be sensitive to starting values.
While the output provided from these models are statistical estimates and therefore have
uncertainty built in, ensemble datasets generated from these models can improve other
climate and weather models. Breinl et al. (2017) provides a review of current SPG ap-
proaches and applications.

Like most meteorological data, precipitation is distributed in the form of a multivari-
ate time series whose univariate components each correspond to a location. However,
modeling it directly using time series methodology would require the estimation of a
large number of parameters and high-dimensional autocovariance matrices. Daily pre-
cipitation data is distributed as a semi-continuous mixture with a point mass at 0 for
no rainfall and one or more Gamma or exponential distributions for positive rainfall
(Hughes and Guttorp, 1994; Wilks, 1998; Robertson et al., 2004; Mhanna and Bauwens,
2012), introducing an additional layer of complexity. The statistical analysis of such
datasets at scale calls for parameter estimation approaches that are computationally
efficient while being able to represent the dynamics of the underlying processes to a
satisfactory degree. Hidden Markov models (HMMs), initially introduced and studied
since the late 1960s (Rabiner, 1989; Cappé et al., 2005), are an attractive class of models
that have seen widespread use for constructing SPGs. HMMs assume that the observed
data, known as the emission process, are generated by a finite-valued latent variable.
The latent variable is assumed to follow a first order Markov process and is referred
to as the state process. The Markov property of the state process serves to capture the

2



temporal dependency in the data, and the emission process at each time point describes
the spatial patterns in the data. Much of the groundwork for using HMMs for daily pre-
cipitation was laid in Hughes and Guttorp (1994), with Bellone et al. (2000) proposing
different emission distributions for precipitation amounts and precipitation occurrence
models. This was extended to non-homogeneous hidden Markov models in (Robert-
son et al., 2004, 2006; Kirshner, 2005), where the transition probabilities of the HMM’s
Markov process change over time.

The overwhelming majority of HMM studies use the Baum-Welch algorithm (Baum
and Petrie, 1966; Baum and Eagon, 1967; Baum and Sell, 1968; Baum et al., 1970; Baum,
1972) for parameter estimation. The algorithm is a variant of the expectation-maximization
(EM) algorithm (Dempster et al., 1977) for efficient parameter estimation in HMMs which
takes into account the Markov assumptions of the model. The Viterbi algorithm (Viterbi,
1967) can then estimate the most likely sequence of states that has generated the data.
The ability to estimate and interpret the underlying states of a relatively parsimonious
model has made HMMs a popular approach for sequential data. However, the Baum-
Welch algorithm, being a maximum likelihood based method, can run into problems
for large datasets with complex dependencies. In particular, it can lead to model over-
fitting for graphs with complex structures (Attias, 1999). Holsclaw et al. (2016) use a
Bayesian approach to model daily precipitation, but in general, Bayesian alternatives
which use Gibbs sampling (Scott, 2002; Cappé et al., 2005) tend to be computationally
intensive. Historically, the reliance on weather stations for data has prevented these from
being practical issues. However, as gridded remote sensing data which tend to be highly
correlated become more easily available, alternative approaches which are scalable and
can incorporate prior information are desirable. This is where variational Bayes (VB)
provides an attractive alternative for parameter estimation. While MCMC methods use
sampling to find the posterior distribution, VB uses optimization to calculate an ap-
proximate posterior; the posteriors are obtained by an iterative EM-like algorithm which
always converges (Attias, 1999). The variational posteriors have analytical forms under
certain conditions (Ghahramani and Beal, 2000) and can be used to perform approximate
Bayesian inference. A review of VB methods can be found in Blei et al. (2017). However,
while VB estimation has been implemented for state space models and HMMs (MacKay,
1997; Ghahramani and Beal, 2000; Beal, 2003; Ji et al., 2006; McGrory and Titterington,
2009), studies have usually only focused on cases where emissions are distributed as
Normal or mixtures of Normal distributions.

In this paper, we outline VB estimation for HMMs with semi-continuous emissions,
with the motivation of constructing an SPG for daily precipitation using gridded remote
sensing data from GPM-IMERG (Huffman et al., 2019) for a large spatial domain. Our
model is constructed using precipitation data for the Chesapeake Bay watershed in East-
ern US for the wet season months of July–September of 2000–2019. Restricting ourselves
to a season allows us to keep the Markov chain parameters constant over time, i.e., a
homogeneous HMM. The SPG aims to replicate the spatial correlation present in the
data, as well as key properties of the original data, e.g., the proportion of dry days and
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Figure 1: A graphical model representation of the conditional independence structure
for an HMM.

mean seasonal rainfall. Estimates for these can be calculated using data simulated from
the fitted model.

The rest of this paper is organized as follows: Section 2 provides background for
HMMs and VB. Section 3 introduces the dataset and discusses the HMM for precipita-
tion as well as VB estimation for the model. Section 4 presents a numerical study for
multi-site precipitation, and also presents our case study for daily precipitation over the
Chesapeake Bay watershed. Section 5 concludes with a discussion.

2 Background

We provide some background on parameter estimation for hidden Markov models and
on variational Bayes in this section. A more thorough treatment of learning procedures
for HMMs as well as parameter estimation using variational Bayes can be found in
Majumder (2021, Chapter 2).

2.1 Hidden Markov models

An HMM consists of a sequence of multivariate observations y1:T = [y1, . . . , yT], to-
gether with a sequence of hidden (unobserved) states s1:T = [s1, . . . , sT]. The states
are assumed to follow a first order Markov process, and the multivariate observation
yt = (yt1, . . . , ytL)

′ is emitted by the corresponding state st ∈ {1, . . . , K}. For the pur-
poses of this study, L can be considered the number of spatial locations. Figure 1 shows
a graphical model representation of an HMM. The state process s is parameterized
by an initial probability π1j = Pr[s1 = j] and a K × K matrix A, whose elements are
ajk = Pr[st+1 = k|st = j] for j, k = 1, . . . K. The probability density of the emission ytl at
location l and time t, given that the system is in state j , is:

p(ytl|st = j) = pj(ytl|θjl),
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where θjl are the parameters associated with the distribution of ytl. The distribution
at each location are assumed to be independent conditional on the state, and the full
likelihood can be expressed as:

p(y, s|Θ) = π1j

T−1

∏
t=1

K

∏
j=1

K

∏
k=1

ajk

T

∏
t=1

K

∏
j=1

L

∏
l=1

pj(ytl|stj),

where stj = I{st = j}. We refer the reader to Rabiner (1989) for a detailed tutorial on
parameter estimation using the Baum-Welch algorithm.

2.2 Variational Bayes inference

Variational Bayes (VB) methods aim to approximate the posterior distribution through
optimization. VB tends to be faster than MCMC for intractable likelihoods, but it only
provides approximate inference. VB is suited for large datasets, and can take advantage
of stochastic optimization (Robbins and Monro, 1951) which makes it scalable. VB posits
a family of approximate posterior distributions Q over the latent variables z and param-
eters θ, and optimizes within this family to find the member closest to the true posterior
p(z, θ|y). In its most widely applied form, the VB posterior minimizes the Kullback-
Leibler (KL) divergence (Kullback and Leibler, 1951) to the true posterior among all
candidates q(·) ∈ Q, i.e.,

q̃(·) = arg min
q(·)∈Q

KL
(
q(z, θ) ‖ p(z, θ|y)

)
. (1)

Optimizing the KL divergence is typically difficult in practice since it involves computing
the log marginal likelihood log p(y). However, it is possible to find a lower bound for
log p(y) and equivalently maximize a quantity known as the evidence lower bound
(ELBO) (Jordan et al., 1999), defined as

ELBO(q) = E[log p(z, θ,y)]−E[log q(z, θ)]. (2)

The so called mean-field assumption is commonly made to factorize q(z, θ) by assuming
independence between the variational posterior of the parameters and latent variables:

q(z, θ) ≈ q(z)q(θ). (3)

The ELBO is optimized by updating q(z) and q(θ) in turn by using a variational Bayes
expectation-maximization (VBEM) algorithm. In particular, if the complete data likeli-
hood is in the exponential family and we choose conjugate priors, the VBEM updates
have analytical expressions. The mean-field assumption often extends to the components
of q(z) and q(θ) as well; Ghahramani and Beal (2000) provide the general forms of the
variational updates for these conjugate exponential models under complete mean-field
factorization. This is known as mean-field variational Bayes, and optimizing the ELBO
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one parameter at a time using the entire available data is often referred to as coordinate
ascent variational inference (CAVI) (Blei et al., 2017).

2.3 Stochastic variational Bayes

The VBEM algorithm can be bottlenecked by the data length since posterior means for
the parameters and latent variables need to be computed at every iteration, requiring
a pass through the entire data. Stochastic optimization methods can provide computa-
tional speedup, and stochastic variational Bayes (SVB) (Hoffman et al., 2013) is one such
approach which modifies the VBEM algorithm into a stochastic gradient ascent algo-
rithm for each parameter. Instead of computing gradients based on the entire data, SVB
uses an unbiased estimate of the gradient at each iteration. Let L(λ) be the ELBO for a
parameter λ that needs to be maximized using VB optimization, with ∇λL(λ) denoting
its gradient. Next, let B(λ) be a random function that is unbiased estimator of ∇λL(λ),
i.e. EqB(λ) = ∇λL(λ). For example, B(λ) could be the gradient computed from ran-
dom samples, or minibatches, taken from the entire data. Then the stochastic gradient
ascent step for optimizing the ELBO for λ is

λi = λi−1 + τi · bi(λ
i−1)

for step size τi, where bi(·) is an independent draw from the noisy gradient B(·). If τi
satisfies the Robbins-Monro conditions (Robbins and Monro, 1951), namely

∑
i

τi = ∞

and ∑
i

τ2
i < ∞,

then λi converges to a local optimum. If Gi is any positive definite matrix of appro-
priate dimensions, a similar gradient ascent property holds (Hoffman et al., 2013), with
parameter update at step i given by:

λi = λi−1 + τi · G−1
i bi(λ

i−1). (4)

In particular, if we choose Gi = Gi, the Fisher information matrix, the resulting natural
gradient provides the direction of the steepest ascent for the optimization. In the mean
field setup, the noisy gradient is often obtained by randomly sampling a single data
point and doing all computations based on that single data point. Hoffman et al. (2013)
have showed a direct relationship between CAVI updates and SVI updates for models
belonging to the conjugate exponential family that we take advantage of in our study.

The main difficulty in implementing SVI for HMMs comes from the dependency
of stochastic optimization on samples, or minibatches, from the data. HMMs are time
dependent, and thus sequential draws are required if we want to sample from the pro-
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Figure 2: Proportion of dry days and mean daily precipitation (mm) during Jul–Sep for
the Chesapeake Bay watershed from GPM-IMERG data, averaged over 2000–2019.

cess. We denote this sequential sample, or minibatch, as y∗. The nature of the dataset
dictates the procedure for selecting y∗. If the data consists of a single long chain, Foti
et al. (2014) proposed subsampling from the chain and buffering the beginning and end
with extra observations to preserve the Markov properties of the states. If, however, the
data is seasonal or cyclical in nature that can be represented as N blocks each of size
D, then a minibatch is constructed at each optimization iteration by randomly sampling
blocks with replacement and selecting all D time points within the block. This approach
is discussed in Johnson and Willsky (2014). In both cases, the variational E-step em-
ploys the Forward-Backward algorithm, and the variational M-step can take advantage
of conjugate priors and provides parameter updates through stochastic gradient ascent.

3 Data and Methodology

3.1 Remote sensing data from GPM-IMERG

The Global Precipitation Measurement (GPM) mission is an international satellite mis-
sion co-led by the National Aeronautics and Space Administration (NASA) and the
Japanese Aerospace and Exploration Agency (JAXA). It aims to unify precipitation mea-
surements from multiple research and operational microwave sensors for delivering
next-generation global precipitation products. The Integrated Multi-satellitE Retrievals
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for GPM (IMERG) algorithm1 (Huffman et al., 2019) combines the information that is
made available through the GPM satellites to provide global precipitation estimates.
The GPM-IMERG product fuses precipitation estimates collected during the operation
of the Tropical Rainfall Measuring Mission (TRMM) research satellite (2000–2015) with
more recent precipitation estimates from GPM (2014–present). This provides a longer
record of global precipitation that can be used by researchers to formulate better climate
and weather models and understand long-term global mean and extreme precipitation
patterns.

Our case study encompasses the Chesapeake Bay watershed in Eastern USA. We
use daily data from the GPM-IMERG dataset for the months of July to September from
2000–2019. At a spatial resolution of 0.1◦ × 0.1◦, The IMERG dataset covers the 64,000
square mile watershed with 1927 grid points. Figure 2 plots the proportion of dry days
and daily mean precipitation averaged over the 20 years, which show a high degrees
of spatial variation between the grid points. Our analysis focuses on July–September
since they are the wettest months of the year for this area. Figure 2a identifies the driest
regions of the watershed during the wet season, mostly in the north-west and central
areas. Figure 2b shows smooth precipitation gradients over most of the watershed.
Overall, there are a wide range of precipitation values observed in the data. The HMM
aims to identify the underlying precipitation patterns and be able to generate synthetic
precipitation from the model which can replicate the empirical behavior of the data.

3.2 The HMM for precipitation

For daily precipitation data at L locations, we consider ytl to be distributed as an M + 1
component mixture with a point mass at 0 for no rainfall, and M exponential distri-
butions for positive rainfall. For each state j, we define the indicator variable rtjlm to
connect the underlying state to the emission distribution such that:

rtjlmstj =I{ytl comes from the mth mixture component and st = j},

with m = 0, 1, . . . , M, and l = 1, . . . , L. The number of states (K), the number of loca-
tions (L), and the number of mixture components (M+1) in the HMM are assumed to
be known. For each state j and location l, rtjl = (rtjl0, . . . , rtjlm) follows a categorical
distribution:

p(rtjl|cjl, st = j) =
M

∏
m=0

c
rtjlm
jlm , (5)

with m = 0, 1, . . . , M and l = 1, . . . , L; cjlm ≥ 0 for all m, and ∑M
m=0 cjlm = 1. If we assume

that positive rainfall at the lth location from the mth mixture component (where m > 0)
arising from state j follows an exponential distribution with rate λjlm, the distribution of

1https://gpm.nasa.gov/data/imerg
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an observation from state j across all locations is given by

L

∏
l=1

pj(ytl, rtjl|λjl, cjl, st = j) =
L

∏
l=1

p(rtjl|cjl, st = j) · p(ytl|λjl, rtjl, st = j)

=
L

∏
l=1

{
c

rtjl0
jl0

M

∏
m=1

[
cjlmλjlm exp{−λjlmytl}

]rtjlm

}
.

(6)

Note that the distributions of rainfall at different locations are mutually dependent
through the underlying state process s. We denote Cl = ((cjlm)) as the K × (M + 1)
matrix of mixture probabilities for each location l, with C = (C1, . . . , CL). Similarly,
Λl = ((λjlm)) is a K×M matrix whose elements are the independently distributed rate
parameters of the exponential distributions, with Λ = (Λ1, . . . , ΛL). The complete data
likelihood can be expressed as:

p(y, s, r|Θ) =
K

∏
j=1

{
π1j
}s1j

T

∏
t=1

K

∏
j=1

L

∏
l=1

{
pj(ytl, rtjl|Θ)

}stj
T−1

∏
t=1

K

∏
j=1

K

∏
k=1

{
ajk
}stjst+1,k

= exp
{ K

∑
j=1

s1j log π1j +
T

∑
t=1

K

∑
j=1

L

∑
l=1

[ M

∑
m=1

stjrtjlm(log cjlm + log λjlm − ytλjlm)

+ stjrtjl0 log cjl0

]
+

T−1

∑
t=1

K

∑
j=1

K

∑
k=1

stjst+1,k log ajk

}
.

(7)

Similarly, we write the prior as:

p(Θ|ν(0)) = p(π1) · p(λ) · p(C) · p(A)

= exp
{ K

∑
j=1

{
(ξ

(0)
j − 1) log π1j +

L

∑
l=1

M

∑
m=1

[
−δ

(0)
jlmλjlm + (γ

(0)
jlm − 1) log λjlm

]
+

L

∑
l=1

(ζ
(0)
jl0 − 1) log cjl0 +

L

∑
l=1

M

∑
m=1

(ζ
(0)
jlm − 1) log cjlm

+
K

∑
k=1

(α
(0)
jk − 1) log ajk

}
− log h(0)

}
,

(8)

where h(0) = h(ν(0)) is the normalizing constant for the prior. There are O(KLM)
parameters in the model. For the Chesapeake Bay watershed, L = 1927 and M = 2,
whereas the number of data points T = 1840. In general, the number of parameters
will always exceed the data size for even moderately large spatial problems. Bayesian
approaches are especially useful in this context since they can add prior information
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which also makes the model identifiable.

3.3 VB parameter estimation for the HMM

Parameter estimation in HMMs employ the Baum-Welch (BW) algorithm (Baum et al.,
1970), which can be expressed as a special case of the EM algorithm. The primary
difference is in the E-step, where recursive forward and backward algorithms maintain
the Markov nature of the state process. The BW algorithm translates seamlessly to a
variational context. Since the distribution of the state process in HMMs does not factorize
completely due to its Markov property, this is considered part of a more general class
of variational procedures called structured variational Bayes which partially relaxes the
mean-field assumption. Ji et al. (2006) describes the VBEM algorithm for HMMs where
the emissions are mixtures of continuous distributions. However, there is not, to the best
of our knowledge, studies exploring semi-continuous mixture models and how their
posteriors are affected by the variational approximation.

For our HMM for precipitation, the complete data likelihood is given by:

p(y, s, r|Θ) = p(y, r|s, Θ) · p(s|Θ),

where Θ = (A, C, Λ, π1) parameterizes the HMM. The variational family Q for the pos-
terior is constrained to distributions which are separable in the following manner:

q(Θ, s, r) = qΘ(Θ) · qs,r(s, r), (9)
where qΘ(Θ) = q(π1) · q(A) · q(C) · q(Λ). (10)

We assume the prior decomposes as:

p(Θ|ν(0)) = p(π1) · p(A) · p(C) · p(Λ),

where ν(0) are known hyperparameters. The individual components of the prior are
distributed as:

p(π1) = Dirichlet(π1|ξ(0)),

p(A) =
K

∏
j=1

Dirichlet(aj|α
(0)
j ),

p(C) =
K

∏
j=1

L

∏
l=1

Dirichlet(cjl|ζ
(0)
jl ),

and p(Λ) =
K

∏
j=1

L

∏
l=1

M

∏
m=1

Gamma(λjlm|γ
(0)
jlm, δ

(0)
jlm),
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where aj = (aj1, . . . , ajK), π1 = (π11, . . . , π1K), ζ
(0)
jl = (ζ

(0)
jl0 , . . . , ζ

(0)
jlM), α

(0)
j = (α

(0)
j1 , . . . , α

(0)
jK ),

and ξ(0) = (ξ
(0)
1 , . . . ξ

(0
K ). γ

(0)
jlm and δ

(0)
jlm are the shape and rate parameters of the Gamma

distribution respectively.
The VBEM algorithm iterates between updating the posterior for the model param-

eters, qΘ(Θ), and the posterior for the latent variables, qs,r(s, r). Posterior updates of
qΘ(Θ) and qs,r(s, r) can be obtained as closed form expressions since our model is in
the conjugate exponential family (Ghahramani and Beal, 2000). The M-step (VBM) and
E-step (VBE) of the VBEM algorithm are outlined below.
VBM step: Fix qs,r(s, r) at its expected values and update qΘ(Θ).

Since qΘ(Θ) is conjugate to the prior, its posterior distribution is obtained by up-
dating the coordinates of ν(0) with the expected values of the corresponding sufficient
statistics u(s, y, r). To this end, we denote the expectations of the latent variables in (7)
under qs,r(s, r) as

q1j = E(s1j),

qtj = E(stj),

qtjlm = E(rtjlm),

and qjk = E(stjst+1,k),

where j, k = 1, . . . , K, l = 1, . . . , L, and m = 0, 1, . . . , M. The variational updates at each
iteration of the VBM step are then given by

ξ j ← ξ
(0)
j + q1j,

ζ jl0 ← ζ
(0)
jl0 +

T

∑
t=1

qtjqtjl0,

ζ jlm ← ζ
(0)
jlm +

T

∑
t=1

qtjqtjlm,

γjlm ← γ
(0)
jlm +

T

∑
t=1

qtjqtjlm,

δjlm ← δ
(0)
jlm +

T

∑
t=1

qtjqtjlmytl,

αjk ← α
(0)
jk +

T−1

∑
t=1

qjk,

where j, k = 1, . . . , K, l = 1, . . . , L, and m = 1, . . . , M.
VBE step: Fix qΘ(Θ) at its expected values and update qs,r(s, r).

The variational posterior qs,r(s, r) has a form similar to the complete data likelihood,
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i.e.,

qs,r(s, r) ∝
K

∏
j=1

{
a∗1j
}s1j

T

∏
t=1

K

∏
j=1

L

∏
l=1

M

∏
m=0

{
b∗tjlm

}stjrtjlm
T−1

∏
t=1

K

∏
j=1

K

∏
k=1

{
a∗jk
}stjst+1,k , (11)

with the natural parameters φ(Θ) replaced by their expectations under qΘ(Θ). Compar-
ing with (7), we get

a∗1j = exp
{

Eq log π1j
}
= exp

{
Ψ(ξ j)−Ψ(ξ.)

}
,

and a∗jk = exp
{

Eq log ajk
}
= exp

{
Ψ(αjk)−Ψ(αj.)

}
,

where ξ· = ∑K
j=1 ξ j , αj. = ∑K

k=1 αjk. Similarly,

b∗tjlm =

{
exp

{
Eq log

[
cjl0
]}

if m = 0,
exp

{
Eq log

[
cjlm f (ytl|λjlm)

]}
if m > 0.

The expectations of the individual terms in b∗tjlm are:

c∗jlm = exp
{

Eq log cjlm
}
= exp

{
Ψ(ζ jlm)−Ψ(ζ j.)

}
, where ζ j. =

M

∑
m=0

ζ jlm,

λ∗jlm = exp
{

Eq log λjlm
}
= exp

{
Ψ(γjlm)− log δjlm

}
,

λ̂jlm = Eqλjlm = γjlm/δjlm.

Therefore, b∗tjlm =

{
exp

{
Ψ(ζ jl0)−Ψ(ζ jl·)

}
if m = 0,

exp
{

Ψ(ζ jlm)−Ψ(ζ jl·) + Ψ(γjlm)− log δjlm − ytl
γjlm
δjlm

}
if m > 0,

and b∗tj =
L

∏
l=1

M

∑
m=0

b∗tjlm.

The quantities a∗1j, a∗jk and b∗tj can be used as part of the Forward-Backward Algorithm
to get our desired variational posterior estimates for the state probabilities as well as
the cluster assignment probabilities. Implementation details of the variational Forward-
Backward Algorithm is provided in Appendix A. The updates to the variational posterior
on the latent variables are:

qtj =
F̃tj · B̃tj

∑K
k=1 F̃tk · B̃tk

,

qjk =
F̃tj · a∗jk · b∗t+1,k · B̃t+1,k

∑K
j=1 ∑K

k=1 F̃tj · a∗jk · b∗t+1,k · B̃t+1,k
.
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where F̃tj and B̃tj are the scaled Forward and Backward variables respectively. The
posterior update of q1j is the first entry of qtj. The posterior for the mixture assignments
for the lth location is given by

qtjlm ∝


1 if m = 0, ytl = 0,
0 if m > 0, ytl = 0 or m = 0, ytl > 0,
c∗jlm f (ytl|λ∗jlm, λ̂jlm) if m > 0, ytl > 0,

where c∗jlm f (ytl|λ∗jlm, λ̂jlm) = exp
{

Ψ(ζ jlm)−Ψ(ζ jl·) + Ψ(γjlm)− log δjlm − ytl
γjlm
δjlm

}
.

Stochastic variational Bayes: For SVB, we partition the data into N years of D days
each, and assume exchangeability of the emission distributions for each year. Iterations
of the VBEM are carried out on a minibatch randomly sampled using the sampling
scheme described in Majumder et al. (2021, Chapter 3.8). The sample is of size D; in
the context of our current application, D = 92 and N = 20. The VBE step remains
unchanged, and the VBM step is a stochastic gradient ascent of step size τ. The expecta-
tions of the latent variables in the VBM step are scaled up by a factor of N to reflect the
entire data. The hyperparameter updates in the VBM step for the ith iteration for step
size τi is given by:

ξ
(i)
j ←

(
1− τi

)
ξ
(i−1)
j + τi

(
ξ
(0)
j + q1j

)
,

ζ
(i)
jl0 ←

(
1− τi

)
ζ
(i−1)
jl0 + τi

(
ζ
(0)
jl0 + N ·

D

∑
t=1

qtjqtjl0
)
,

ζ
(i)
jlm ←

(
1− τi

)
ζ
(i−1)
jlm + τi

(
ζ
(0)
jlm + N ·

D

∑
t=1

qtjqtjlm
)
,

γ
(i)
jlm ←

(
1− τi

)
γ
(i−1)
jlm + τi

(
γ
(0)
jlm + N ·

D

∑
t=1

qtjqtjlm
)
,

δ
(i)
jlm ←

(
1− τi

)
δ
(i−1)
jlm + τi

(
δ
(0)
jlm + N ·

D

∑
t=1

qtjqtjlmytl
)
,

α
(i)
jk ←

(
1− τi

)
α
(i−1)
jk + τi

(
α
(0)
jk + N ·

D−1

∑
t=1

qjk
)
,

where j, k = 1, . . . , K, l = 1, . . . , L, and m = 1, . . . , M.
To assess the convergence of the VBEM algorithm, we compute and track the ELBO

at each iteration. The ELBO for our model can be expressed as:

ELBO(q) = Eq(s,r) log p(y, s, r) + Eq(Θ) log p(Θ) + H
(
q(s, r)

)
−Eq(Θ) log q(Θ),

13



where H
(
q(s, r)

)
is the entropy of the variational posterior distribution over the latent

variables. This simplifies to (Beal, 2003; Ji et al., 2006):

ELBO(q) = log q(y|Θ)− KL
(
q(π1) ‖ p(π1)

)
− KL

(
q(A) ‖ p(A)

)
− KL

(
q(C) ‖ p(C)

)
− KL

(
q(Λ) ‖ p(Λ)

)
,

(12)

where the first term on the right hand side is calculated as part of the forward algorithm
in (13). This relationship is used to compute the ELBO at each iteration, and we declare
convergence once the change in ELBO falls below a desired threshold.

4 Results

4.1 Simulation Study

We generate 1800 time steps of data from the proposed HMM at L = 3 locations, with
the number of states assumed known and fixed at K = 3. At every location, positive
precipitation is generated from a mixture of two exponential distributions, i.e. M = 2.
Conditional on the state, precipitation is independently distributed at the 3 locations.
The true parameter values are:

1. Initial probability vector π1 = (0.38, 0.34, 0.28) and transition matrix

A =


0.60 0.30 0.10

0.20 0.50 0.30

0.30 0.20 0.50


2. Matrices C1, C2, and C3 of mixture probabilities for the 3 locations

C1 =


0.10 0.60 0.30

0.20 0.40 0.40

0.30 0.40 0.30

 , C2 =


0.20 0.70 0.10

0.40 0.20 0.40

0.50 0.20 0.30

 , C3 =


0.20 0.60 0.20

0.50 0.30 0.20

0.60 0.20 0.20


3. Matrices Λ1, Λ2, and Λ3 with exponential distribution rate parameters for the 3

locations

Λ1 =


0.08 1

0.60 5

1.00 8

 , Λ2 =


0.05 1

0.50 4

1.00 10

 , Λ3 =


0.10 1

0.10 5

0.90 6

 .
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The values of the mixture component assignments and the exponential rates are ordered
such that state 1 corresponds to the wettest rainfall regime, and state 3 corresponds to
the driest rainfall regime. This ensures model identifiability. For l = 1, 2, and 3, the
rows of Cl and Λl correspond to the parameter values for each state.

We keep our prior specifications as broad as possible, and assign symmetric Dirichlet
priors to π1 and A. The concentration of a Dirichlet distribution is defined as the sum
of its parameters, and it indicates the amount of weight we put on the prior. We fix the
concentration of p(π1) at 1, and the concentration for each row of p(A) at 10. For each
location l, the rows of Cl have Dirichlet priors, and elements of Λl have Gamma priors.
The parameters for each location are assigned identical priors. The priors for the rows
of Cl are parameterized by ζ

(0)
l . Similarly, the Gamma priors of the elements of Λl have

shape γ(0) and rate δ(0). They are assigned the following values:

ζ
(0)
l =


3.0 4.0 3.0

3.0 3.5 3.5

4.0 3.0 3.0

 γ
(0)
l =


0.5 2

1.5 9

2.0 16

 δ
(0)
l =


2 2

2 2

2 2


These assignments follow the reasoning that wetter states will have lower exponential
rates and higher mixture probabilities for exponential components, while drier states
will have higher rates and more weight placed on the dry component corresponding to
m = 0.

The VBEM algorithm converges at 752 iterations when we set the threshold to 10−9.
The posterior for the initial state probability is π̃1 = (0.21, 0.62, 0.17). The posterior for
the transition probability matrix is

Ã =


0.62 0.23 0.15

0.24 0.44 0.32

0.29 0.34 0.37

 ,

and the posterior distributions of the mixture components and exponential rates are

C̃1 =


0.10 0.61 0.29

0.24 0.47 0.29

0.29 0.43 0.29

 C̃2 =


0.19 0.70 0.11

0.36 0.23 0.41

0.55 0.21 0.24

 C̃3 =


0.20 0.65 0.15

0.58 0.32 0.10

0.49 0.21 0.30

 ,

Λ̃1 =


0.09 1.06

0.71 8.06

1.25 7.64

 Λ̃2 =


0.05 1.27

0.51 5.13

1.00 9.78

 Λ̃3 =


0.10 1.62

0.12 4.80

1.00 7.42

 .
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Table 1: Comparison of true HMM states and states decoded using the Viterbi algorithm
after parameter estimation.

True states

1 2 3

Decoded

states

1 631 71 11

2 50 363 207

3 24 162 281

The posterior distributions are generally close to the true values, with the exception
of the initial distribution. Moreover, the posteriors for the wet states and for heavy
rainfall are better estimated in this study. The quality of the estimates do not seem to be
noticeably affected by the broad priors, and as long as the model is identifiable, we do
not anticipate this being a problem.

One of the goals for our study is to characterize the underlying weather regimes
present in the data, which requires the identification, or decoding, of the hidden states.
We apply the Viterbi algorithm (Viterbi, 1967) to decode the most likely sequence of
states that could have generated the data based on our fitted model. Table 1 contains a
comparison of the true and decoded states for the study. We note that State 1 has the
highest classification accuracy of 89.5%, followed by State 2 with an accuracy of 60.9%
and State 3 with 56.3%. This is consistent with our observations about the posterior
estimates, that the wettest state (State 1) has the most accurate posterior mean. Overall,
we see that State 1 is well discriminated from the others, whereas States 2 and 3 have
much more mis-classification error. This is not unexpected if our data arises from a wet
season, as this simulation study is designed to reflect. It is likely that a study of the dry
seasons could lead to the highest classification accuracy for the dry state.

To verify whether the model can estimate key sample statistics of interest, we gener-
ated 1000 datasets each 1800 days long from the variational posterior. We compute the
proportion of dry days and mean rainfall for wet days from each of these 1000 datasets,
and compare them with the values in the training data. Figure 3 plots the distribution
of the proportion of dry days and mean precipitation based on data generated from the
posterior at each of the 3 locations. The dotted lines in the figures represent the values
in the original data. In all cases, the posterior estimates are centered around the values
in the training (original) data. In Figure 3a, the root mean square error (RMSE) between
the posterior estimates and the training data values is 0.01 at all 3 locations. Similarly,
the RMSE in mm between the mean precipitation estimates from the posterior and the
training data values is 0.2, 0.35, and 0.19 at the three locations. The fitted model func-
tions well as an SPG, and can replicate the marginal distributions of precipitation at least
in cases where the number of locations is not too large.
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Figure 3: Proportion of dry days and mean precipitation (mm) estimated from 1000
datasets each generated using the variational posterior estimates. Each dataset consists
of a sequence of 1800 days. The dotted lines represent the values in the training data.

4.2 HMM for daily precipitation over the Chesapeake Bay watershed

We now fit an HMM to daily precipitation data from GPM-IMERG over the Chesapeake
Bay watershed using 20 years of wet season data. Our objectives are twofold - identify
the underlying states and the weather regimes they correspond to, and construct an SPG
to replicate the marginal and spatial characteristics of the remote sensing data. We fit
a 3-state HMM to the data corresponding to the model presented in Section 3.2. Our
model priors are nearly identical to what was used in the simulation study. We assign
symmetric Dirichlet priors to π1 and A. The prior p(π1) has a concentration of 1, and
each row of the prior p(A) has a concentration of 10. Without loss of generality, we
order the states to correspond to heavy, medium, and low rainfall respectively. For each
location l = 1, . . . , 1927, precipitation is specified as a mixture with a point mass at zero
and two exponential distributions for positive precipitation. The prior parameters ζ

(0)
l ,

γ
(0)
l , and δ

(0)
l are defined as before and assigned the following values:

ζ
(0)
l =


3.0 4.0 3.0

3.0 3.5 3.5

4.0 3.0 3.0

 , γ
(0)
l =


0.5 2

1.5 5

2.0 10

 , δ
(0)
l =


2 2

2 2

2 2

 .
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Figure 4: Distribution of the proportion of dry days for each of the 3 HMM states for the
Chesapeake Bay watershed data.

Model identifiability is ensured by ordering the components such that wetter states will
have lower exponential rates and higher mixture probabilities for the exponential com-
ponents, while drier states will have higher rates and more weight placed on the dry
component corresponding to m = 0.

To fit the model, we ran SVI optimization with step sizes τi = (1 + i)−0.9 for 500
iterations. This was followed by 50 iterations of CAVI using the entire data to ensure
convergence of the algorithm. The fitted model has a posterior initial probability π̃1 =
c(0.11, 0.44, 0.45) and the transition probability matrix

Ã =


0.40 0.38 0.22

0.32 0.38 0.30

0.12 0.32 0.56

 .

We note that the two lowest probabilities in the transition matrix occur when the driest
state transitions to the wettest state (0.12), and vice versa (0.22). States 1 and 3 tend to
transition between each other through state 2 most of the time.

Running the Viterbi decoding on the fitted model, we find that 492 days are estimated
to be in State 1, 659 in State 2, and 689 in State 3. As we have seen in Figure 2, the heaviest
precipitation occurs in the northern part of the watershed, and most of the remaining
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Figure 5: Distribution of mean precipitation intensity (mm) for each of the 3 HMM states
for the Chesapeake Bay watershed data. Gray pixels denote areas with no data.

Table 2: Percentage of days in each month that correspond to the decoded Viterbi states
for the HMM.

Month

Jul Aug Sep

Decoded

states

1 27 25 27

2 34 39 34

3 38 36 38
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Figure 6: Proportion of dry days and mean daily precipitation during Jul–Sep for the
Chesapeake Bay watershed based on synthetic data generated from a fitted 3-state HMM.

area gets significantly less rainfall. Table 2 breaks down the distribution of states by
month. Each cell represents the percentage of days in a particular month that the HMM
was in that state, averaged over the 20 years of data. Each column thus adds up to 100%.
We see that July and September have similar state distributions. August on the other
hand has the highest proportion of days in State 2.

Figures 4 and 5 plot the spatial distributions of the proportion of dry days and the
mean precipitation intensity over the watershed for each of the 3 states respectively.
We define the mean intensity as the mean precipitation on days when it has rained.
State 1 corresponds to high precipitation amounts across the watershed except for a
small section in the north. State 3 is the driest state, and is the only state where some
locations have had zero precipitation days. This is denoted by the greyed out pixels
in Figure 5 where there is no non-zero precipitation data available based on the fitted
model. This is coupled with the highest proportion of dry days for the same area seen
in Figure 4. Interestingly, the northern part of the watershed which gets some of the
lowest precipitation for State 1, gets the highest precipitation in State 3. This suggests
that the northernmost part of the watershed could have different underlying weather
patterns compared to the rest of the Bay. Finally, State 2 has precipitation patterns that
are somewhere between States 1 and 3. In Figure 4, we see areas of the south-west and
the east that are wetter than the rest of the watershed in States 2 and 3, and in Figure
5, State 2 outlines the driest part of the watershed which is the same area with zero
precipitation days under State 3.

To test this model as a precipitation generator, we generated 1840 days of synthetic
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Figure 7: Proportion of dry days and mean daily precipitation (mm) during Jul–Sep for
the Chesapeake Bay watershed based on historical GPM-IMERG data and synthetic data
generated from the fitted 3-state HMM.

data from the 3-state HMM. The generated data replicates the spatial and temporal
structure of the GPM-IMERG data. Figure 6 shows a plot of total precipitation at each
grid point over the 3 months of Jul–Sep averaged over 20 years, based on the synthetic
data simulated from the model. While the plot is noisier compared to the corresponding
plot of the historical data in Figure 2, it is largely able to recreate seasonal precipitation
patterns at individual locations.

Figure 7a plots the proportion of dry days averaged over 20 years at each location
based on historical IMERG data on the x-axis and synthetic data from the HMM on the y-
axis, which has an RMSE of 0.009. Similarly, Figure 7b plots the mean daily precipitation
averaged over 20 years at each location based on historical IMERG data on the x-axis
and synthetic data from the HMM on the y-axis, with an RMSE of 0.181 mm. In both
cases, the line through the middle of the plot corresponds to y = x. In both plots, the
points show a linear pattern, and aside from a slight underestimation of low values in
Figure 7b, the 3-state HMM with VB parameter estimation is able to reproduce seasonal
characteristics of precipitation at each location.

5 Discussion

The spatiotemporal analysis of remote sensing data requires approaches which can ac-
count for spatial surfaces with highly localized behavior while retaining computational
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efficiency. This is complicated further by datasets like precipitation whose distributions
are not only non-normal, but are semi-continuous in nature. In this paper, we have
developed a workflow for efficient parameter estimation in HMMs for semi continuous
emissions using VB. The Bayesian approach allows us to incorporate prior information,
and the variational approximation enables fast computations. We are able to exploit
the seasonal structure of the data to implement stochastic optimization which reduces
computation time further by making it a function of the number of locations and season
length, instead of the entire data length.

We use the variational HMM to study precipitation dynamics for the wet season
months of July–September over the Chesapeake Bay watershed. We note distinct precip-
itation patterns associated with the 3 states, and that different parts of the watershed are
often affected differently under the 3 states even if their overall seasonal precipitation is
similar. To determine the model’s capability as an SPG, we generated a synthetic dataset
from the model and compared two metrics at each location - the proportion of dry days,
and the mean daily precipitation. A linear trend is seen between the historical and syn-
thetic data for both metrics as well as low RMSE values. This indicates a well specified
model which can capture and replicate the mean behavior of the data.

One of the assumptions made in our work is stationarity over time. There are two
types of stationarity to consider here. The first is stationarity within a year’s data. This
is addressed by considering only seasonal data - an approach previous studies have also
taken. However, there is the additional assumption that the states are unchanged from
year-to-year, and the emission distributions for different years are interchangeable. This
assumption has been exploited for stochastic optimization. For our data duration of
20 years, this is reasonable since the underlying climate is unlikely to have noticeably
changed over this period. However, a more comprehensive study is needed to verify
this assumption for longer durations of time over which climate patterns are expected
to change. In particular, any prediction or forecasting needs to consider climate model
outputs to reliably track the change in precipitation patterns over time.

Future work will focus on explicitly parameterizing the spatial dependence by aug-
menting the emission distribution with a copula. While the current model can by and
large captures the spatial patterns in the data, parameterizing the dependence will help
identify states or areas where it plays the biggest role. This is especially important for
precipitation, whose spatial distribution is not as smooth as, say, temperature. We have
used copulas in previous work to estimate spatial correlations in an HMM (Majumder
et al., 2020), but it has been in the context of maximum-likelihood estimation using
the Baum-Welch algorithm and not in a Bayesian setup. We would also like to incor-
porate downscaled climate model outputs as covariates for the model as in Robertson
et al. (2004). This has two benefits - it will allow us to tune its behavior, and we would
also be able to specify a more sophisticated non-homogeneous HMM (NHMM) where
the Markov chain parameters can be made to vary by month, or even by season. An
NHMM, however, has additional computational complexity; the transition matrix pa-
rameters tend to be linked to covariates by a probit or logistic link function, and the
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resulting model is no longer in the conjugate exponential family. Finally, we would like
to explore model selection in more detail, both in terms of the model size as well as our
choice of distribution used to specify positive precipitation.

Acknowledgements

The hardware used in the computational studies is part of the UMBC High Perfor-
mance Computing Facility (HPCF). The facility is supported by the U.S. National Sci-
ence Foundation through the MRI program (grant nos. CNS–0821258, CNS–1228778,
and OAC–1726023) and the SCREMS program (grant no. DMS–0821311), with addi-
tional substantial support from the University of Maryland, Baltimore County (UMBC).
See hpcf.umbc.edu for more information on HPCF and the projects using its resources.
Co-author Reetam Majumder was supported by the Joint Center for Earth Systems Tech-
nology and by the HPCF as a Research Assistant.

References

Attias, H. (1999) Inferring parameters and structure of latent variable models by varia-
tional Bayes. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelli-
gence, UAI’99, 21–30. Morgan Kaufmann Publishers Inc.

Baum, L. E. (1972) An inequality and associated maximization technique in statistical es-
timation for probabilistic functions of Markov processes. In Inequalities III: Proceedings
of the Third Symposium on Inequalities, 1–8. University of California, Los Angeles.

Baum, L. E. and Eagon, J. A. (1967) An inequality with applications to statistical estima-
tion for probabilistic functions of Markov processes and to a model for ecology. Bull.
Amer. Math. Soc., 73, 360–363.

Baum, L. E. and Petrie, T. (1966) Statistical inference for probabilistic functions of finite
state Markov chains. Ann. Math. Statist., 37, 1554–1563.

Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970) A maximization technique occur-
ring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math.
Statist., 41, 164–171.

Baum, L. E. and Sell, G. R. (1968) Growth transformations for functions on manifolds.
Pacific J. Math., 27, 211–227.

Beal, M. J. (2003) Variational algorithms for approximate Bayesian inference. Ph.D. The-
sis, Gatsby Computational Neuroscience Unit, University College London.

23

hpcf.umbc.edu


Bellone, E., Hughes, J. and Guttorp, P. (2000) A hidden Markov model for downscaling
synoptic atmospheric patterns to precipitation amounts. Clim. Res., 15, 1–12.

Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017) Variational inference: A review
for statisticians. J. Am. Stat. Assoc., 112, 859–877.

Breinl, K., Di Baldassarre, G., Girons Lopez, M., Hagenlocher, M., Vico, G. and Rutgers-
son, A. (2017) Can weather generation capture precipitation patterns across different
climates, spatial scales and under data scarcity? Sci. Rep.-UK, 7.

Cappé, O., Moulines, E. and Ryden, T. (2005) Inference in Hidden Markov Models (Springer
Series in Statistics). Berlin, Heidelberg: Springer-Verlag.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incom-
plete data via the EM algorithm. J. R. Stat. Soc. B, 39, 1–22.

Foti, N., Xu, J., Laird, D. and Fox, E. (2014) Stochastic variational inference for hidden
Markov models. In Advances in Neural Information Processing Systems, vol. 27. Curran
Associates, Inc.

Ghahramani, Z. and Beal, M. J. (2000) Propagation algorithms for variational Bayesian
learning. In 13th International Conference on Neural Information Processing Systems,
NIPS’00, 486–492. MIT Press.

Hoffman, M. D., Blei, D. M., Wang, C. and Paisley, J. (2013) Stochastic variational infer-
ence. J.Mach. Learn. Res., 14, 1303–1347.

Holsclaw, T., Greene, A. M., Robertson, A. W. and Smyth, P. (2016) A Bayesian hidden
Markov model of daily precipitation over South and East Asia. J. Hydrometeorol., 17,
3–25.

Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J. and Tan, J. (2019) GPM IMERG
final precipitation L3 1 day 0.1 degree × 0.1 degree V06. Edited by Andrey Savtchenko,
Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES
DISC), https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary, accessed
on Aug 28, 2020.

Hughes, J. P. and Guttorp, P. (1994) Incorporating spatial dependence and atmospheric
data in a model of precipitation. J. Appl. Meteorol., 33, 1503–1515.

Ji, S., Krishnapuram, B. and Carin, L. (2006) Variational Bayes for continuous hidden
Markov models and its application to active learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28, 522–532.

Johnson, M. J. and Willsky, A. S. (2014) Stochastic variational inference for Bayesian time
series models. In ICML, 1854–1862.

24

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary


Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. and Saul, L. K. (1999) An introduction to
variational methods for graphical models. Mach. Learn., 37, 183–233.

Kirshner, S. (2005) Modeling of multivariate time series using hidden Markov models.
Ph.D. Thesis, University of California, Irvine.

Kullback, S. and Leibler, R. A. (1951) On information and sufficiency. Ann. Math. Stat.,
22, 79–86.

MacKay, D. J. C. (1997) Ensemble learning for hidden Markov models. Tech. rep., Depart-
ment of Physics, University of Cambridge.

Majumder, R. (2021) Hidden Markov models for high dimensional data with geostatisti-
cal applications. Ph.D. Thesis, University of Maryland, Baltimore County.

Majumder, R., Gobbert, M. K. and Neerchal, N. K. (2021) A modified minibatch sam-
pling method for parameter estimation in hidden Markov models using stochastic
variational Bayes. Proc. Appl. Math. Mech. (PAMM), 21, e202100203.

Majumder, R., Mehta, A. and Neerchal, N. K. (2020) Copula-based correlation structure
for multivariate emission distributions in hidden Markov models. In JSM Proceedings,
Section on Statistics and the Environment. VA: American Statistical Association.

McGrory, C. A. and Titterington, D. M. (2009) Variational Bayesian analysis for hidden
Markov models. Aust. NZ J. Stat., 51, 227–244.

Mhanna, M. and Bauwens, W. (2012) A stochastic space-time model for the generation
of daily rainfall in the Gaza Strip. Int. J. Climatol., 32, 1098–1112.

Rabiner, L. R. (1989) A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE, 77, 257–286.

Robbins, H. and Monro, S. (1951) A stochastic approximation method. Ann. Math. Stat.,
22, 400–407.

Robertson, A. W., Kirshner, S. and Smyth, P. (2004) Downscaling of daily rainfall occur-
rence over Northeast Brazil using a hidden Markov model. J. Climate, 17, 4407–4424.

Robertson, A. W., Kirshner, S., Smyth, P., Charles, S. P. and Bates, B. C. (2006)
Subseasonal-to-interdecadal variability of the Australian monsoon over North Queens-
land. Q. J. Roy. Meteor. Soc., 132, 519–542.

Scott, S. L. (2002) Bayesian methods for hidden Markov models. J. Am. Stat. Assoc., 97,
337–351.

Viterbi, A. (1967) Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE T. Inform. Theory, 13, 260–269.

25



Wilks, D. S. (1998) Multisite generalization of a daily stochastic precipitation generation
model. J. Hydrol., 210, 178–191.

Appendix A Variational Forward-Backward Algorithm

The Forward Variable is defined as the joint probability of the partial observation se-
quence up to a time t, and the state st at that time point:

Ftj = p(y1, . . . , yt, st = j).

1. Initialization: For all j = 1, . . . , K, define

F1j = π1 · p(y1|s1 = j),

c1 =
1

∑K
j=1 F1j

and normalize

F̃1j = c1 · F1j.

2. Recursion: for t = 2, . . . , T and for each state k = 1, . . . , K, use the recursion

Ftk =

[ K

∑
j=1

F̃t−1,j · p(st = k|st−1 = j)
]

p(yt|st = k) and normalize

F̃tj = ct · Ftk where

ct =
1

∑K
j=1 Ftj

.

Note that F̃tj = (∏t
τ=1 cτ)Ftj. Using the definitions provided, this gives us

q(y|Θ) =
K

∑
j=1

FTj =
1

∏T
t=1 ct

, (13)

where q(y|Θ) is the normalizing constant for the variational posterior of the latent vari-
ables. Recall that the Forward Algorithm is used as part of the E-step of the optimization
process, with the values of the parameters in Θ set to their means, i.e., Θ ≡ Θ̃. Thus
q(y|Θ) can equivalently also be expressed as p(y|Θ̃).

The Backward Variable is defined as the probability of generating the last T − t ob-
servations given that the system is in state j at time t:

Btj = p(yt+1, . . . , yT|st = j).
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The Backward Algorithm has similar steps but works its way back from the final time
point.

1. Initialization: For each state j, set

BTj = 1 , and

B̃Tj = cT · BTj.

2. Recursion: for t = T − 1, . . . , 1 and each state j, calculate

Btj =
K

∑
k=1

p(st+1 = k|st = j) · B̃t+1,k · p(yt+1|st+1 = k),

B̃tj = ct · Btj.

The two algorithms can be run in parallel. Once both variables are calculated, we get

qs(st = j|y1, . . . , yT) ∝ F̃tj · B̃tj, and

qs(st = j, st+1 = k) ∝ F̃tj · p(st+1 = k|st = j) · p(yt+1|st+1 = k) · B̃t+1,k.
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