App behavioral analysis using system calls

Prajit Kumar Das, Anupam Joshi and Tim Finin
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County
{prajitl, joshi, finin} @umbc.edu

Abstract—System calls provide an interface to the services
made available by an operating system. As a result, any func-
tionality provided by a software application eventually reduces
to a set of fixed system calls. Since system calls have been
used in literature, to analyze program behavior we made an
assumption that analyzing the patterns in calls made by a
mobile application would provide us insight into its behavior.
In this paper, we present our preliminary study conducted
with 534 mobile applications and the system calls made by
them. Due to a rising trend of mobile applications providing
multiple functionalities, our study concluded, mapping system
calls to functional behavior of a mobile application was not
straightforward. We use Weka tool with manually annotated
application behavior classes and system call features in our
experiments, to show that using such features achieves mediocre
F1-measure at best. Thus leading to the conclusion that system
calls were not sufficient features for mobile application behavior
classification.

I. INTRODUCTION

Mobile devices have become ubiquitous in today’s world
due to their power, convenience and low cost. They have
moved on from serving a singular goal of enabling voice
communication to becoming the primary form of interaction
with the information infrastructure. They act as an alternate
form of identity for a user and are used as means of financial
transactions (e.g. Google Wallet, Apple Pay, Banking apps).
They also provide a convenient storage system for users’
personal, private and confidential data and contain a collection
of precise sensors making them a treasure trove for anyone
who wishes to obtain users’ private information or monitor
activities, location and habits.

Although mobile devices are essentially personal, the rise
in Bring-Your-Own-Device (BYOD) policies in the corporate
domain, that permit user-owned devices to be used both
within and outside a corporate firewall makes it easy to ex-
filtrate sensitive information. A study [1] from November 2014
found that 74% of organizations they researched allow their
employees to bring their own devices in to company premises,
and that 60% of all organizations allowed employees to use
personal devices to access company networks and data. An
additional 14% planned to allow the same within a year. The
potential attack surface opened by such policies has been
well recognized. These challenges lead to a critical need for
behavioral monitoring of mobile applications (hereafter simply
called as apps) to detect deviation from expected behavior that
might indicate adverse intent.

Due to such threats and the traditional usage of system calls
to monitor programs in computing systems [2] we came up
with the following research question:

RQ1: Can system calls be used to distinguish between how
an app “behaves” and its perceived/stated purpose?

Consider the “Brightest Flashlight App”, which was sanc-
tioned [3] in 2013 for collecting user locations and surrep-
titiously uploading the same to an advertising network. In
this case, the behavior of a flashlight application on a mobile
device should be focused on camera API access to turn the
flash on or off. However, this app did more than such an
expected behavior and collected location information of users.
Determining whether an app’s behavior was indeed legitimate
requires in-depth analysis and understanding of app behavioral
patterns and matching them to expected behavioral patterns.
Therefore, we looked at system call analysis as a means of
behavioral pattern recognition and the study conducted by [2]
led to our assumption that system calls could help us extract
features to be used in machine learning classifiers for app
behavior classification. So, for instance, if we could classify an
app as a flashlight app, such an app should only make system
calls related to the camera API. The above app however, would
make additional system calls related to GPS and Networking.

In this paper, we present the results of a preliminary study
conducted with 534 Android apps from the Google Play
Store [4]. System calls made by the apps were recorded
and four different classifiers were used to classify apps into
their behavioral classes. App behavior classes were determined
using manual annotation carried out after using an app on
an emulator. A secondary classification problem we studied,
used Google Play Store [4] assigned categories for the apps.
Through our study, we show that given the presence of com-
plex app functionality, system calls were not sufficient to be
used as the only features in classification of app behavior. We
also show that system calls do not lead to good classification
accuracy when using Google’s class labels either.

The main contributions of this paper include a detailed
analysis of system calls as features for behavioral classification
of mobile apps. We attempt to match such behavior to expected
or stated purpose of an app through manual annotations. We
also present and discuss various issues arising from running
such a study with real applications and real devices. We
explain an alternate method of using emulators for carrying
out such a study and constraints of an emulator based study.

Fine-grained access control on mobile devices in a BYOD
usage context was researched in the past [5], [6]. Although

access control solutions exists from research projects or
open source projects [7] or even enterprise solutions from
Google [8], access control policy generation remains an open
problem. Determining an access control policy for an app
could be driven by how it behaves in certain contextual
situations. For example: it might be permissible to send some
data over the corporate VPN, but not have the data uploaded
to Facebook. In a BYOD scenario, a priori knowledge of Face-
book’s behavior pattern of automatically uploading pictures to
its server could be critical to the process of policy generation.
Our research could potentially be used to augment the process
of access control policy generation.

Our literature survey on system calls revealed their tra-
ditional use in software behavior study [2]. In the mobile
software (apps) domain, we found three categories of research
work. First was malware classification [9], [10], second was
use of NLP techniques for app behavior study [11], [12] and
third was tracking of sensitive data on mobile device [13],
[14]. To the best of our knowledge, none of the research work
has focused on matching system calls to expected behavior of
apps.

In Section II we discuss, the related works in further
detail. We describe our system overview in Section III. We
present technical details of our system and experimental setup
in Section IV. Experimental results are presented in Section V.
Finally we conclude our paper with a summary and examina-
tion of future directions.

II. RELATED WORK

An important issue with privacy preservation on mobile
devices stems from the fact that users tend to be privacy
pragmatists [15]. Although any user would prefer that their
data remain secure and private, the moment they realize the
potential advantage of using an application, they choose to
ignore such preferences. One way to ensure user data privacy
and security would be to educate them about apps and the
potential harm they may cause. However educating users
would at first necessitate that we understand the potential harm
an app may cause. Our study is an attempt to gather such
knowledge.

The study by Kosoresow et. al. [2] led to our notion that
system calls can potentially help detect app behavior patterns.
Consequently, we have attempted to achieve the complicated
goal, of app behavior classification, in our work. We consider
this task to be a complicated when compared to malware
classification due to the fact that, it is sometimes difficult to
determine if an app’s behavior was a legitimate functionality
or an illegitimate behavior. We attempted to capture this
distinction in our annotation process.

Research in mobile app analysis domain has shown em-
phasis on three different aspects till date. The first area of
research focused on mobile app malware classification [9],
[10]. However, there were other categories of potentially
harmful apps described in the taxonomy in [16] which include
rooting apps, privilege escalation apps, etc. Determination of
app behavioral patterns could possibly lead to better detection

of such potentially harmful apps. Therefore, through this work
we have taken a first step towards using system calls made by
an app to determine its behavior class.

The second area of research focuses on using NLP tech-
niques. Pandita et. al. [11] were able to achieve an 83% preci-
sion and 82% recall in determining why an application uses a
permission through NLP techniques. Although a good first step
in behavioral analysis, it leaves a lot of room for improvement
because their analysis included only 3 popular permissions
used by apps. In [12], researchers have attempted to map an
app’s description from the Google Play Store [4] to its actual
behavior. Gorla et.al. [12] provided the following insights.
Application vendors hide what their apps do. While Google
maintains no standards to avoid deception on a developer’s
part. This results in developers deceiving users. One such
incident occurred in case of the “Brightest Flashlight App”,
when it collected user location and surreptitiously uploaded
the same to an advertising network [3]. The other insight
was Android’s permission model is flawed and requires lay
users to read incomprehensible permission descriptions like
“allow access to the device identifier”. We want to simplify
user decision during permission acquisition.

The final area of research was where taint tracking of
sensitive data was used to determine when such information
left the mobile device [14]. A system call study can potentially
determine such behavior by studying when resources were ac-
cessed or manipulated or if network connections were opened
and used to send data over such a connection.

III. SYSTEM OVERVIEW

We present our system/process design that we have built for
this study in Figure 1. We have five main components in our
system: Download module, Annotation module, System call
module, Feature generation module and Classification module.
The input to our system were search terms for testing app
categories. The expected output of the system was behavioral
class for an app.

A system call (or syscall) may be defined as the fundamental
interface between an application and the Linux kernel [17].
The system calls that are part of Android’s kernel distributions
have been defined in the class android.system.Os [18]. At the
lowest level of the operating system, an app’s functionality
boils down to the tasks and services it requests the kernel
to perform, through system calls. As a result, an app could
be monitored by observing the patterns in the system calls it
executes.

What does a behavioral class represent? A simple represen-
tation of behavioral classes maybe considered as the app cat-
egory information from Google Play Store. More appropriate
category information would be the ones we determined during
our behavioral pattern annotation. For example, we found a
number of apps that were PDF readers. In order to carry out
the annotation, we downloaded all the apps that we could find
for this particular behavior category, i.e. PDF readers, on a
mobile device. We used the apps and read the app’s description
on Google Play Store [4] and manually determined the app’s

Download Module System call module
>> Google play Mobile
device
emulator
Database bt
L | AP 7

Class Feature generation module

labels

00~-0000~ ~ 00|«

Classification

module Y

Annotations Module

Classifier output

Fig. 1. Design of system built for studying app behavior

primary usage category. Google categorized most of these
apps into either Productivity, Books & Reference or Education
categories. Such a discrepancy indicates that determination of
an app’s category was a complicated task in reality.

The strace utility enables diagnostics, debugging and
instructional user-space monitoring and modifying interactions
between processes and the Linux kernel, which include system
calls, signal deliveries, and changes of process state. We have
used this utility for studying and capturing system calls in
form of interactions between user space apps and kernel space
programs.

Practical limitations necessitated usage of an emulator for
experiments running simulation of user’s actions on a mo-
bile device. For that purpose, we used the “Ul/Application
Exerciser Monkey” [19] (hereafter called Monkey tool). The
Monkey tool is a command-line utility that can run on a
emulator or mobile device and sends a pseudo-random stream
of user events into the system. This utility allowed us to write
programs that controlled the Android device or emulator to
install a list of apps that were to be tested and exercise all
possible UI behavior that a user could trigger.

Once the system calls were captured, we used standard text
processing techniques and information retrieval measures like
simple term-frequency and tf-idf to generate feature vectors
for our classifiers. These feature vectors were then used to
run a slew of classifiers using the weka tool [20]. We have
presented the classification results in Section V.

IV. SYSTEM IMPLEMENTATION AND DATA SETUP

Our system was comprised of five system components men-
tioned in Section III. This section describes the functionality
of each of these modules. The emulated Android device we

used for our experiments and for the manual annotations
step was a Nexus 6, running Android 6.0.1 (Lollipop build
December 2015) with Hardware emulation and 1.5GB RAM
and 16GB internal storage. Experiments were run on a desktop
computer running Ubuntu 14.04 and had a Intel Core-i7
3.4GHz processor, 32GB RAM and 2TB storage space for
downloaded apps.

A. Download module

There are several mechanisms for downloading Android
apps from the Google Play Store [4]. We used open source
code ' with our system specific modifications for this task.
Although our system could be used to study any kind of app
and its functional behavioral pattern, for the sake of simplifi-
cation of experimental evaluation, we started our system with
10 specific search criterion on the Google Play Store [4].
A search on the Play Store [4] could be performed using
a simple html GET request with the search term as a url
parameter 2. The task of the download module was used to
retrieve both metadata about apps (i.e. app name, developer
name, descriptions, Google Play category etc.) and Android
executable APK files, to run experiments for apps found
through the search results.

B. Annotation module

The annotation module included an interface to read the
app description and other meta information and an emulator
to install the app and observe its behavior. Based on their
observations annotators would ascertain a specific “behavior
class” and assign it to the app. We ran our study on 534 Apps
from 10 specific keyword patterns. The key word patterns
we used include: “alarm clock”, “file explorer”, “to do list”,
“scientific calculator”, “battery saver”, “pdf reader”, “video
playback”, “lunar calendar”, “drink recipes”, “wifi analyzer”.
We downloaded 1560 apps found in our search. However,
a significant number of these apps, were unusable due to
emulator issues (app crashes and incompatibility issues) or
because they required some sort of user interaction that could
not be automated (for example, profile creation). As a result,
we annotated 534 apps.

Table I shows the distribution of apps annotated according
to their behavior classes. It is interesting to note that for these
534 apps, Google puts them mostly into Tools and Produc-
tivity category as shown in Table II. We can conclude from
this observation that not only does Google NOT maintain a
standardized approach to ensure that a developer explain what
their app does, they categorize apps in a very generic fashion.
Granular behavior categorization thus remains a motivating
challenge for further research.

C. System call module

In the system call module we installed downloaded apps on
an Android emulator. We then used the Monkey tool [19] to

ICMUChimps Lab: https://github.com/CMUChimpsLab/googleplay-api
2URL Prefix: https://play.google.com/store/search?q=;
Search terms: pdf readers; URL Suffix: sc=apps&hl=en

TABLE I: Annotated app categories
| Annotated behavior class | # apps | %age ||

Alarm clock 128 | 23.97
Battery saver 93 | 1742
Drink recipes 15 2.81
File explorer 72 | 13.48
Lunar calendar 12 2.25
Pdf reader 22 4.12
Scientific calculator 61 | 1142
To do list 102 | 19.10
Video playback 5 0.94
Wifi analyzer 24 4.49

TABLE II: Google Play Category
Google Play category | # apps | %age ||

Tools 265 | 49.63
Productivity 133 | 2491
Lifestyle 48 8.99
Education 14 2.62
Personalization 13 2.43
Books & reference 12 2.25
Music & audio 8 1.50
Entertainment 7 1.31
Communication 6 1.12
Health & fitness 6 1.12
Business 5 0.94
Media & video 4 0.75
Medical 3 0.56
Adventure 2 0.37
Social 2 0.37
Travel & local 2 0.37
Arcade 1 0.19
Libraries & demo 1 0.19
News & magazines 1 0.19
Shopping 1 0.19

simulate a real human using an app and all its functionality. We
used the monkey tool to adjust the percentage of “system” key
events (like Home, Back, Start Call, End Call, or Volume con-
trols) and maximize coverage of all activities within the app’s
package. We varied the number of clicks through Monkey
between 1000 and 10000 to maximize coverage of “visible”
functionality of an app. Throttling was the final option that we
used to ensure stability of execution. The final option made
sure that we had fewer app crashes. strace was used to
capture system calls generated by the process of an app. We
used the Android Debug Bridge to control the emulator and
extract the results of our experiments.

D. Feature generation module

The output of the previous module was a series of system
calls made by the app. An excerpt of strace output for an app
from the “File Explorer” category is shown below:

2966 read(37, ‘‘Android Emulator OpenGL ES
Trans’’ ..., 65) = 65

2966 read (37, “‘A\0O\O\O’’, 4) =4

2966 write (37,
**\237\0\0\24\0\0\0\0\37\0\0O\O\NO\O\ONO" ",
20) = 20

2966 read (37, **\34\0\0\0"’", 4) = 4

2966 read (37, “*\344\377\377\377'", 4) = 4

2966 write (37,
*Y\237\0\0000\0\0\N0O\37\0\0\34\0\O" " ...,
48) = 48

2966 read(37, ‘‘Google (NVIDIA Corporation)
\0’", 28) = 28

2966 read (37, “*\347\377\377\377"'", 4) = 4

2966 read (37, **\31\0\0\0’"’, 4) = 4

2966 write (37,
*M\237\0\0-\0\214\213\0\0\31\0O\O"" ...,
45) = 45

2966 read(37, ‘‘OpenGL ES GLSL ES
1.0.17\0"", 25) = 25

2966 write (37,
*Y\237\0\0\24\0\0\0\214\213\0\0\0O\O\O" ",
20) = 20

The first part of each line in strace output was the
app’s process id. After that we have the system call followed
by parameters for that particular system call. In our study
we collected frequency of system calls made by an app in
order to generate features. “Term frequency—inverse document
frequency” (tf—idf) [21] is one of the most commonly used
term weighting schemes in information retrieval. We compute
tf—idf weight vectors using system calls as terms and apps as
documents:

tfidf(t,d, D) = tf(t,d) x idf (¢, D)

where, Term Frequency (TF) was computed as:

tf(t,d) =1+logfta

and Inverse Document Frequency (IDF) was computed as:

N

N
idf (t, D) = log— = idf(t,D) = log—————~
if(t, D) = log - = idf (1, D) = log o

Here, ‘N’ represents the total number of documents in the
document set ‘D’. ‘t’ represents a term in a specific document
‘d’. ‘f” represents the frequency of a term ‘t’ in a document ‘d’.
Finally ‘n’ represents number of documents ‘d’ with term ‘t’
in document set ‘D’. We generated two sets of feature vectors—
one hot vectors and tf—idf weight vectors. We ran the classifiers
to train and test on two sets of ground truth labels—annotated
class labels and Google Play categories as class labels.

E. Classification module

The classification module consisted of scripts to use the
Weka tool [20] and run Support Vector Machine(SVM), Naive

Bayes(NB), Decision tree(J48) and Multilayer Perceptron
(MLP) classifiers on our generated feature vectors. For each of
these classifiers we used 10 fold cross validation technique and
recorded the achieved average Fl-measure [22]. Fl-measure
is the harmonic mean of precision and recall and has a range
of [0,1]. For SVM we experimented with RBF and Polynomial
kernels.

V. EXPERIMENTAL EVALUATION AND DISCUSSION

As stated at the beginning of this paper, system calls turned
out not to be the best features for behavioral classification. We
now take a look at our experimental results. We used four dif-
ferent classifiers through the Weka tool [20]. We used 10 fold
cross validation technique for all the classifiers. We present
the average Fl-measure achieved by each of the classifiers
for annotated class labels when using tf—idf weighted feature
vectors in Table III. Fl-measure for annotated class labels
when using 1-hot feature vectors are presented in Table IV.
Unfortunately, none of the classifiers recorded a good enough
Fl-measure for annotated class labels.

TABLE III: Annotated class labels, TF-IDF features

Classifier | F1 score
MLP 0.44
SVM-RBF 0.32
SVM-Poly 0.31
J48 0.27
NB 0.27

TABLE IV: Annotated class labels, one hot features

Classifier | F1 score
J48 0.31
NB 0.27
MLP 0.26
SVM-Poly 0.23
SVM-RBF 0.21

For Google’s app category based class labels, average F1—
measure achieved by the classifiers were low as well, as shown
in Table V, when using tf-idf weighted feature vectors or as
shown in Table VI when using one hot feature vectors.

TABLE V: Google class labels, TF-IDF features

Classifier | F1 score
SVM-Poly 0.39
SVM-RBF 0.38
MLP 0.37
J48 0.35
NB 0.14

We observed that when using tf—idf weighted feature vectors
we were able to achieve comparatively better classification
accuracy as opposed to when using one hot vectors. Intuitively
this observation makes sense since tf—idf weights better rep-
resent the significance of terms in documents as opposed to
simply stating that the document has a certain term. However,
a comparison of the classifiers paints a disappointing picture.

TABLE VI: Google class labels, one hot features

Classifier | F1 score
J48 0.39
MLP 0.38
SVM-Poly 0.33
SVM-RBF 0.33
NB 0.09

While MLP performed marginally better than other algorithms,
for annotated class labels using tf—idf weighted features, NB
did slightly worse than other classifiers for Google class labels.
In short, none of the algorithms had an outstanding perfor-
mance and thus leads to the conclusion that system calls cannot
be considered as good features for app behavior classification.
We note that this observation was somewhat unexpected, given
our understanding of system calls and application functionality
correlations, from knowledge of similar methods being used
successfully, in the literature [2]. As a result, we came up with
two possible explanations for these observed results.

The first was that apps have functionality that belong to
multiple behavior classes, for example—an app could have the
functionality of social media sharing combined with financial
transactions. Take for example WeChat, which has taken over
workplaces in China [23]. WeChat combines instant messaging
functionality with social media sharing while incorporating
functions like ride hailing, buying movie tickets, sending
payments, settling utility bills as well as online shopping. Such
multi-functional apps, sometimes called “super apps” where
apps are trying to become the “only” app on your phone by
providing a multitude of functionality. This trend can best be
explained by a need to retain a high active-user base, which
leads to higher ad-revenue. Ad-revenues understandably are
critical for an app’s survival today because of the free app
economy. As a result, our basic assumption that an app would
serve a singular purpose no longer holds true and we need to
create coarser functional clusters (i.e. “social media-financial”
apps) for behavior analysis.

rt_sigreturn
modify_1dt rt sigaction
fstatat]1seck
fdatasync getsockname
fstat getgid
nanos.ieep '
socket ClOCk_gettime
sched_getscheduler sigaction

connect geteuid msync
newfstatat tgkill getegid
setsockopt

sched_getparam pPwr ite
sendmsg

ftruncate

Fig. 2. To do list class

The second related explanation was easier to demonstrate.
We observed that since apps are trying to provide a slew of

modify_ 1dt
sigaction nanosleep
socketpair 1seek gsocket
setsockopt pwrite connect
getgid rt_sigreturn
geteuid gettimeofday

ftruncate

renameat
getsockname msync

_llseek getegid
getrlimit inotify_add_watch

clock_gettime
fstatat

Fig. 3. Scientific calculator class

sendmsg

fdatasync

different functionality, they end up making very similar system
calls. In order to investigate this further, we generated the tf-
idf word clouds for each of the 10 annotated class of apps.
Consider the word clouds for “To Do list” and “Scientific
Calculator” shown in Figure 2 and Figure 3. We can clearly see
that the “ftruncate”, “fstatat” and “clock_gettime” have similar
tf-idf weights for both these classes. As a results, these classes
were not easily “separable” and despite the expectation that
they would different behavioral patterns, were in-fact making
similar system calls.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we wanted to answer the research question:
Can system calls be used to distinguish between how an
app “behaves” and its perceived/stated purpose? We have
presented a preliminary study performed with 534 Android
apps and showed that using system calls as features was not
sufficient when trying to carry out app behavioral classifica-
tion. Consequently, additional features are required to make
such a distinction.

The manual annotation phase of our study required using
an app on an emulator. The Android SDK emulator was used
since system calls cannot be captured without the strace
utility, which is unavailable on a real device. However the
emulator causes a lot of apps to crash thus complicating our
annotation process. There are emulators available for Android,
from third party vendors like Genymotion [24], which claim
to be stable when compared to the SDK emulator. We are
working with such emulators to improve our system call
capture stage. In our current study, we used system calls as the
only features, which does not result in a good classification
accuracy. We acknowledge that the above limitations caused
us to work with a restricted data set. We are working to include
additional features like app call sequences to improve our
system’s classification accuracy. We are also exploring the pos-
sibilities of using coarser behavior classes, like “social media-
financial.” Finally, augmenting access control policy decision

could be an important goal for app behavior classifiers. We
hope to carry out such a study in the future.

VII. ACKNOWLEDGMENT

Support for this work was provided by NSF grants 0910838
and 1228198. We would like to thank Renee Frank and Abhay
Kashyap for proofreading the paper.

REFERENCES

[1] T. Maddox, “Research: 74 percent using or adopting byod,” January
2015.

[2] A. P. Kosoresow and S. A. Hofmeyr, “Intrusion detection via system
call traces,” IEEE software, vol. 14, no. 5, p. 35, 1997.

[3] J. M. Kerry O’Brien, Sarah Schroeder, “Ftc approves final order settling
charges against flashlight app creator,” December 2013.

[4] Google, “Android apps on google play,” January 2017.

[5] P. K. Das, D. Ghosh, P. Jagtap, A. Joshi, and T. Finin, “Preserving
user privacy and security in context-aware mobile platforms,” in Mobile
Application Development, Usability, and Security. 1GI Global, 2016,
pp. 166-193.

[6] L. Kagal, T. Finin, and A. Joshi, “A policy language for a pervasive com-
puting environment,” in Policies for Distributed Systems and Networks,
2003. Proceedings. POLICY 2003. IEEE 4th International Workshop on.
IEEE, 2003, pp. 63-74.

[71 M. Bokhorst(M66B), “Xprivacy,” June 2013.

[8] Google, “Device administration api,” January 2017.

[91 Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Security and Privacy (SP), 2012 IEEE Symposium
on, May 2012, pp. 95-109.

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
based malware detection system for android,” in Proceedings of the 1st
ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, ser. SPSM ’11. New York, NY, USA: ACM, 2011, pp.
15-26.

[11] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards
automating risk assessment of mobile applications,” in Proceedings of
the 22Nd USENIX Conference on Security, ser. SEC’13. Berkeley,
CA, USA: USENIX Association, 2013, pp. 527-542.

[12] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York, NY,
USA: ACM, 2014, pp. 1025-1035.

[13] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Highly precise taint analysis
for android applications,” EC SPRIDE, TU Darmstadt, Tech. Rep, 2013.

[14] W. Enck, P. Gilbert, B.-G. Chun, L. P., Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
2010, pp. 1-6.

[15] P. Kumaraguru and L. F. Cranor, “Privacy indexes: a survey of westin’s
studies,” School of Computer Science, Carnegie Mellon University,
Pittsburgh, 2005.

[16] G. A. Security, “The google android security teams classifications for
potentially harmful applications,” April 2016.

[17] M. Kerrisk, “syscalls - linux system calls,” December 2016.

[18] Google, “Os: Access to low-level system functionality,” January 2017.

[19] , “Ui/application exerciser monkey,” January 2017.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10-18, 2009.

[21] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613-620,
Nov. 1975.

[22] C. Van Rijsbergen, “Information retrieval. dept. of computer sci-
ence, university of glasgow,” URL: citeseer. ist. psu. edu/vanrijsber-
gen79information. html, 1979.

[23] Y. Wang, “Tencent’s ’super app’ wechat is quietly taking over
workplaces in china,” August 2016.

[24] Genymobile, “Genymotion - fast & easy android emulator,” June 2013.

