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Abstract 

AN ANALYSIS OF THE INFLUENCE OF PRECEDING PRECIPITATION ON THE 

SIGNATURE OF SURFACE URBAN HEAT ISLANDS  

Ryan Charles Lingo 

 

Surface Urban Heat Islands (SUHI) are urban areas where temperatures exceed 

that of their rural counterparts. SUHIs are caused by alterations of the land surface by 

humans, generally from natural vegetated surfaces to urban surfaces (Zhou et al., 2014). 

SUHIs have been studied using multiple methods (Voogt & Oke, 2003). One method 

involves collecting satellite images using specific criteria. This includes percent cloud 

cover (CC), time of day, season, wind speed, and synoptic setup. These studies overlook 

preceding precipitation and its impact on the overall SUHI analysis. This study collected 

eight satellite images of Baltimore County, Maryland from 1994 to 2016. Four satellite 

scenes had preceding precipitation occur within three days of satellite acquisition. Four 

satellite scenes had no preceding precipitation. Land surface temperature (LST), 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-Up Index 

(NDBI), and Normalized Difference Water Index (NDWI) were calculated for each 

scene. LST was regressed on NDVI, NDBI, and NDWI. Both NDBI and NDWI were 

positively correlated with LST. NDVI had a negative correlation. On average the 

explanatory power of NDVI, NDBI, and NDWI decreased for scenes with preceding 

precipitation. The Getis-Ord Gi* statistic showed no difference in spatial clustering of hot 

and cold LST for all images. 
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Chapter One: Introduction 

1.1 Introduction 

Urban heat islands (UHI) are urban areas where temperatures exceed that of their 

rural counterparts (Figure 1.1). There are two atmospheric UHIs (Miao et al., 2009; 

Steeneveld et al., 2011), which include the urban canopy layer UHI and the urban 

boundary layer UHI (Voogt & Oke, 2003), and a surface urban heat island (SUHI) 

(Matson, 1978; Hafner, 1999; Imhoff et al., 2010; Peng et al., 2011; Pearsall, 2017).  

UHIs are caused by alterations of the land surface by humans, generally from 

natural vegetated surfaces to urban surfaces (Rizwan et al., 2007; Zhou et al., 2014). 

These changes alter the surface energy balance (Rizwan et al., 2007), ultimately changing 

the land surface temperature (LST). It is important to study UHIs because, with 

increasing anthropogenic warming (IPCC, 2013), urban areas will likely experience 

disproportionately high rates of heat stress (CDC, 2006; Anderson & Bell, 2011; Fischer 

et al., 2012; Romero-Lankao, et al., 2012).  

 SUHI studies have quantified their magnitude (i.e., the difference in LST 

between the urban area and surrounding rural areas) (e.g., Matson et al., 1978; Balling & 

Brazel, 1987; Han-qui & Ben-qing, 2004; Imhoff et al., 2010; Liu & Zhang, 2011; Peng 

et al., 2011; Arnfield, 2013; Zhang et al, 2013; Effat & Hassan, 2014; Mills, 2014; 

Alghamdi & Moore, 2015), documented their spatial and temporal changes (e.g., Hu & 

Brunsell, 2013; Effat & Hassan, 2014; Wang et al., 2015), and evaluated associations 

between LST and a suite of land use/land cover (LULC) indices, such as the Normalized 

Difference Vegetation Index (NDVI), the Normalized Difference Built-up Index (NDBI), 

and the Normalized Difference Water Index (NDWI) (e.g., Becker & Li, 1995; Amiri et 

al., 2009; Deng & Wu, 2013; Zhou et al., 2013; Heusinkveld et al., 2014; Zhou et al., 
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2014; Ali et al., 2017). To ensure accurate and consistent measurement of the SUHIs, 

these studies and others select satellite images that meet certain criteria. Many studies, for 

example, select images with similar percent cloud cover (CC), time of day, season, wind 

speed, and synoptic setup over the proposed area of study (Table 1.1).  

However, the criteria that these studies use for scene selection fail to account for 

the potential influence of preceding precipitation on the magnitude of SUHIs, the 

temporal and spatial characteristics of SUHIs, and the relationships between LST and 

LULC indices. Studies have shown that water on pavement may possibly reduce the 

magnitude of heating that would occur on dry land surfaces (Yamagata et al., 2008; 

Nakayama & Fujita, 2010) and that wet surfaces may cause unsuitable and unreliable 

classification of satellite images (Rajasekar & Weng, 2009). The potential influence of 

preceding precipitation on SUHIs, and the lack of studies that consider preceding 

precipitation in their image selection process, present a need to evaluate the influence of 

preceding precipitation on the SUHI. 

The purpose of this study is to evaluate the influence of preceding precipitation on 

the SUHI signature in Baltimore, Maryland. The research questions guiding this study 

are: 

1) Does preceding precipitation influence the magnitude of Baltimore’s SUHI? 

2) Does preceding precipitation influence the clustering of micro SUHIs with 

Baltimore? 

3) Does preceding precipitation influence the relationships between LST, NDVI, 

NDBI, NDWI in Baltimore?  
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1.2 Chapter 1 Tables 

Table 1.1 shows different characteristics used to select satellite imagery. These include % 

cloud cover (CC), time of [day], season, wind, and weather type (synoptic).  

 

1.3 Chapter 1 Figures 

 

Figure 1.1 Météo France/Cécile de Munck urban heat island of Paris (Voiland, 2010).  
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Chapter Two: Literature Review 

2.1 Definitions and Causes 

 SUHIs are formed when the urban thermal radiance (Voogt & Oke, 2003), 

otherwise known as radiometric temperature (Tsr) or skin temperature (Becker & Li, 

1995), exceeds those of the surrounding rural areas.  LULC changes lead to the 

development of SUHIs by altering components of the surface energy balance (Taha, 

1997; Grimmond, 2007; Miao et al., 2007; Rizwan et al., 2007; Zhou et al., 2010; 

Husinkveld et al., 2014; Zhou et al., 2014), which can be represented by (Oke, 1988, 

Rizwan et al., 2007):  

 𝑄∗ + 𝑄𝐹 = 𝑄𝐻 + 𝑄𝐸 + ∆𝑄𝑆 + ∆𝑄𝐴     (1) 

Where, Q* is the net all wave radiation, QF is heat release by combustion, QH is 

the turbulent sensible heat flux density, QE is the turbulent latent heat flux, ∆QS is the net 

heat storage, and ∆QA is the net moisture advection. For examples of each variable, see 

Table 2.1 as described by Rizwan (2007). LULC changes may lead to increased sensible 

heating (QH) and decreased latent heating (QE), which increase the urban areas sensible 

temperature (Oke, 1988; Rizwan, 2007). 

2.2 History of UHI 

Urbanization and its impact on the climate have been extensively studied 

throughout the 20th and 21st centuries (Howard, 1883; Matson, 1978; Oke, 1988; Hafner, 

1999; Arnfield, 2003; Stone, 2007; Bounoua et al., 2009; Imhoff et al., 2010; Peng et al., 

2011; Mahmood et al. 2014; Bounoua, 2017; Pearsall, 2017). These studies, and others, 

noted the significant spatial and temporal differences in temperatures between rural and 

urban locations, known as the UHI.  Manley (1958) was the first to call the temperature 



5 
 

 
 

difference between urban and rural areas the UHI. Urban climatology (Mills, 2014), 

though, has been studied since the late 1800’s, particularly the UHI, most notably by 

Luke Howard (Howard, 1883). Howard wrote about the difference between urban and 

rural temperatures in London, United Kingdom. By the 1900’s measurements were being 

collected on different observed meteorological variables (Bornstein, 1968; Mills, 2014) 

and then, after the mid-19th century, studies began to use statistics to quantify different 

processes like latent and sensible heat fluxes (Mills, 2014) and to create different 

numerical models (Myrup, 1969).   

Methods for the spatial analysis of the SUHI have changed over time (Voogt & 

Oke, 2003; Tomlinson et al., 2011; Becker & Zhao-Liang, 2015). Beginning in the 

1970’s, with the advent of computers, satellites, and Geographic Information Systems 

(GIS), (Tomlinson et al., 2011; Mills, 2014) the UHI began to be seen from a spatial 

perspective. Matson (1978) was able to capture St. Louis, Baltimore, and Washington’s 

SUHI. Meanwhile, with a more robust understanding of UHI (Mills, 2014), Urban 

climatology vocabulary were expanded upon (e.g. urban surface, land cover, street 

dimensions). Scholars then studied urban climatology, including the UHI, with statistics 

and numerical computer models, for instance Myrup (1969), which utilized mesoscale 

and microscale meteorological variables. Effects on different types of land cover 

classifications (Voogt & Oke, 2003; Mills, 2014) and spatial and temporal patterns of the 

UHI (Rao, 1972; Matson, 1978; Imhoff et al., 2010; Sobrino et al., 2013; Zhou et al., 

2014) were further studied. These methods are still utilized today but being applied to 

look at mitigation techniques (Battaglia et al., 2014) and socioeconomic impacts 
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(Pearsall, 2017). See Arnfield (2003), Voogt and Oke (2003), Souch and Grimmond 

(2006), and Mills (2014) for additional thorough reviews of the history of UHI research.  

2.3 Types of UHI and methods of documenting 

Methods for studying UHI vary. For the atmospheric UHIs, stationary or fixed 

mast weather stations (Sobrino, 2013; Noro et al., 2015), weather balloon launches 

(Sobrino, 2013), and mobile (bicycle) transects (Hart & Sailor, 2009; Busato et al., 2014; 

Heusinkveld et al., 2014) have been used. While these methods provide continuous or 

near-continuous temporal coverage, they lack in spatial coverage. For instance, Busato et 

al. (2014) studied the UHI of Padua, Italy by running an 18-kilometer transect.  Variation 

in temperature was noted along this transect, but the study was unable to document 

temperature variation for any other areas of the UHI. Collecting transects and discrete 

points leaves scientists interpolating temperature data instead of having an accurate 

spatial depiction of different areas. Representation of the atmospheric UHI is often 

limited in spatial extent because of this.  

 For SUHI, thermal remote sensing is used to capture an area in space and time 

using different wavelengths of the electromagnetic (EM) spectrum. Table 2.2 gives 

examples of satellites and their different thermal wavelengths. These images capture the 

spatial variability of the SUHI (Rao, 1972; Matson, 1978; Hafner, 1999; Imhoff et al. 

2010; Peng et al. 2011; Pearsall, 2017), but they do not offer continuous temporal 

coverage like fixed weather stations. Multiple satellite images can be obtained to capture 

change over time (Mitraka et al., 2015). A study by Li et al. (2012) created a time series 

of images that illustrated temporal and spatial variability of LULC and the SUHI in 
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Shanghai, China. It was shown that LULC caused changes to the SUHI over space and 

time.  

Thermal remote sensing methods for studying the SUHI have limitations (Mirzaei 

& Haghighat, 2010). Differing directions of thermal radiance will change depending on 

the dimensionality within the city. For instance, buildings casting shadows over an area 

will affect the amount of radiation that reflects back to the remote sensing instrument. 

The thermal radiance coming off the city is also going to be affected by surface radiance 

and thermodynamic properties. Parham Mirzaei and Haghighat (2010) state, “The main 

technical concern in this approach is nonetheless that the surface temperature measured 

by sensors only relates to the spatial patterns of upward thermal radiance received by the 

remote sensors (2010, p. 2,193).”  Obtaining high resolution images for study also tends 

to be expensive.  

2.4 SUHI Studies 

 Despite its limitations, remote sensing is a widely used method to study SUHIs.  

The relevant body of literature on SUHIs can be organized into the following themes: 

magnitude of SUHIs, change over time of SUHIs, LST and LULC relationships, and LST 

and socio-economic relationships. 

2.4.1 Magnitudes of the SUHI 

 SUHI magnitude varies across space, within and between cities (Balling & 

Brazel, 1987; Gaffin et al., 2008). They change within different biomes and geographical 

locations (Chen et al., 2006; Imhoff et al., 2010; Zhou et al., 2014; Picón et al., 2017), 

city size (Oke, 1973), different types of materials within cities (Stewart & Oke, 2012; 

Zinzi & Carnielo, 2017), seasons (Chen et al., 2006; Cui & De Foy, 2012) and elevation 
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(Scott et al., 2017). For example, a temperate rainforest SUHI averages about 7℃ to 9℃ 

while a savannah averages about 4℃ to 6℃ (Imhoff, 2010).  

2.4.2 Temporal and spatial changes of the SUHI 

SUHIs change over time (Wilby, 2003; Alghamdi & Moore, 2015; Rivera et al., 

2017), depending on population growth in the particular city (Oke, 1973; Zhang, 2013), 

change in built-up environment (Imhoff, 2010, Han-qiu & Ben-qing, 2004) change in 

vegetation (Weng et al, 2004; Zhang, 2013), and changes in albedo (Weng et al., 2004). 

These changes occur at the daily (Scott et al., 2017), seasonal (Zhou et al., 2014) and 

decadal time scales (Streutker, 2003). 

Changes over time affect the spatial signature of the SUHI. As population 

increases, so too does the built-up environment (Grimmond, 2007). The spatial signature 

changes because of the different land cover types (Zhou & Cadenasso, 2011) and 

locations. For instance, Balling and Brazel (1987) noted a temperature difference in the 

SUHI in Phoenix, Arizona. The southwestern portion of the city had the highest recorded 

temperatures while to the north, where there was a greater elevation, temperatures were 

lower. Grimmond (2007) noted that the microclimates of an urban area can change 

quickly (e.g. a park on one side of the street and buildings on the other), ultimately 

changing the spatial signature. 

2.4.3 LST and LULC Relationships 

LULC change affects LST (Chen et al., 2006; Lu & Weng, 2006; Yuan & Bauer, 

2007; Zhou et al., 2014). Depending on the type of land cover, LST will either increase or 

decrease. With a lack of vegetation, LST will no longer have a supply of latent heat and 

sensible heat will increase, whereas in a desert, there is a lack of vegetation, and LST will 
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tend to be lower in the urban areas than the surrounding rural areas (Lazzarini et al., 

2013). There have been positive correlations found between vegetation (measured by 

NDVI) and LST (Carlson & Arthur, 2000; Zhou et al., 2014; Ali et al., 2017) which 

change due to the seasonal variation in temperature and vegetation in North America 

(Sun & Kafatos, 2007). Positive correlations are found in winter when vegetation cover is 

at its lowest and negative in summer when vegetation is at its greatest within UHIs. There 

have been positive correlations between NDBI, or built-up area, and LST (Bahi et al., 

2016; Macarof & Statescu, 2017) and negative correlations between NDWI and LST (Ali 

et al., 2017). NDBI, NDWI, and LST correlations are affected by the amount of 

vegetation within cities, which means they will change during different seasons (Mathew 

et al., 2017). On average, LST tends to increase with urban characteristics like 

commercial and industrial buildings (Rinner & Hussain, 2011). 

2.5 Problems with Today’s Methods of Inquiry and a Need for Accurate 

Documentation of the SUHI 

 When studying the SUHI, researchers often-select satellite images that meet 

certain criteria (Table 1.1), but none to my knowledge have used preceding precipitation 

as a criterion. Preceding precipitation can cause decreases in temperatures on the surface 

of low albedo and impervious pavement (e.g. blacktop) (Hendel et al., 2014). With the 

addition of water, increases in latent heat flux and decreases in sensible heat flux can 

occur and cause surfaces to cool. Experimental studies have verified that water on 

pavement will reduce the magnitude of sensible heat (Yamagata et al., 2008; Nakayama 

& Fujita, 2010). This effect could possibly alter the magnitude of the SUHI, the spatial 

clustering of the SUHI, and the relationships between LST and land cover indices. 
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It is practical to explore the possible influence that preceding precipitation has on 

the signature of the SUHI, especially in cities that are commonly the focus of study.  

Baltimore’s SUHI has been made apparent by numerous studies (e.g., Brazel et al., 2000; 

Zhou et al., 2011; Scott et al., 2017). In certain downtown areas, the LST can vary by as 

much as 5 °C to 10 °C over relatively short distances depending on the change in LULC  

(Scott et al., 2017). The lack of vegetation, which has been linked to areas of lower 

income (Harlan et al., 2007), causes LST to increase within Baltimore. In summer 

months, Baltimore sees a less variable minimum temperature and a mean temperature for 

the season around 21.7 ℃. During winter the SUHI has its greatest magnitude. 

 Links between LST and LULC indices in Baltimore have been frequently studied 

(Imhoff et al., 2010; Li & Bou-Zeid, 2013, Hardin et al., 2017; Tang et al., 2017). Huang 

et al. (2011) found that 70% of the variance in LST temperature could be explained by 

buildings and vegetation. Zhou et al. (2014) found that impervious surfaces increase LST 

and vegetation decreases LST. Baltimore’s SUHI has been studied, but no one has sought 

to analyze the impact of preceding precipitation on its magnitude and spatial clustering, 

or on the links between LST and LC indices.   

Understanding the impact of preceding precipitation in Baltimore and in other 

urban areas will improve our ability to accurately and consistently document the 

magnitude of the SUHI, the spatial signature of the SUHI, and the relationships between 

LST and land cover indices.  This is important because people living in urban areas are 

vulnerable to the warming climate (Stone et al., 2010).  The percent of people living in 

urban areas was approximately 49 percent of the World’s population in 2005, but is 

expected to increase to approximately 66 percent by 2050 (United Nations, 2014). As 
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carbon dioxide levels increase, (IPCC, 2013) from anthropogenic emission, contrasting 

heat stress in urban and rural areas increases (Fischer et al., 2012, Grundstein & Dowd, 

2011).  Along with increases in heat stress, there have been notable increases in EHEs 

(Stone et al., 2010; Grundstein & Dowd, 2011; Sheridan & Dixon, 2016). Coupled, EHEs 

and heat stress within the SUHI are of importance due to morbidity and mortality that has 

been associated with these events (CDC, 2006; Rey et al., 2007; Luber & McGeehin, 

2008; Robine et al., 2008; Romero-Lankao et al, 2012). Furthermore, scholars note that 

these events also disproportionately affect minorities, older and younger people, people 

with low education, and low-income people (Harlan et al. 2008; Huang et al., 2011; 

Uejio, 2011; Romero-Lankao & Dickinson, 2012; Heusinkveld et al., 2014; Pearsall, 

2017).  In addition to these groups being sensitive to the SUHI, they lack the ability to 

cope with EHEs, increasing rates of mortality (Buechley et al., 1972; Anderson & Bell, 

2011).  
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2.6 Chapter 2 Tables 

Table 2.1: Examples of the variables expressed in equation 1 of the surface energy 

balance (Rizwan et al., 2007). 

 
 

 

Table 2.2 Sample of satellites and their thermal bands used in quantifying the SUHI. 

Satellite Thermal Wavelengths  

Landsat Series 10.40 - 12.50  

AVHRR 10.5 - 12.5 

ASTER 8.13 - 11.65 

MODIS 4.4 - 4.5 
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Chapter Three: Data and Methods 

3.1 Study Area 

Baltimore City, Maryland, United States is a city located north of Washington, 

D.C. It is surrounded by Baltimore County, which spans from 39°43N to 39°11’ N and 

76° 53’ W to 76°21’ W. This county and city make up the study area (Figure 3.1). It 

covers approximately 1,787.19 square kilometers, and it has multiple land covers ranging 

from rural landscapes to urban cityscapes. These areas are located aside the Chesapeake 

Bay Estuary, the largest estuary in North America.  

3.2 Data Sources 

3.2.1 Study Area Shapefile 

 The American Community Survey (ACS) block groups for Maryland were 

imported into ArcMap. The Block Group GEOID for Baltimore County and Baltimore 

City were selected using the attribute selection tool. The selected data were exported as a 

shapefile. This shapefile was dissolved to create an outline polygon of the study area. 

Baltimore City and Baltimore County block group data were then selected individually 

and exported as separate shapefiles. These were dissolved and used throughout analyses. 

3.2.2 Precipitation Data 

Similar to other studies (Table 2.1), all satellite images for this study need to be 

similar and adhere to the following criteria: same time of day; same season; ≤ 10 percent 

cloud cover. Unlike previous studies, preceding precipitation, specifically rain, must be a 

selection criterion in this study. Four images of the study area without any precipitation 

within the previous three days, along with four images of the study area with 

precipitation within the previous three days, were selected for analysis. Only the three 
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days before the images were examined for precipitation because most surface water will 

likely have evaporated over that period; using only one or two days before the images 

reduced the available images.  

Precipitation data from the Global Historical Climatological Network (GHCN) 

were compared with the dates of acquisition of the satellite images. Two weather stations 

were used from the GHCN; these were chosen because of the relocation of the weather 

station from the Baltimore Science Center to the Baltimore Washington International 

Airport. GHCN data are from the Baltimore-Washington International Airport from May 

1, 1970 to May 31, 1999 and from the Baltimore Science Center from May 1, 1998 to 

April 28, 2017.  

3.2.3 Satellite Imagery 

The Landsat series of Earth observing satellites were selected for this analysis 

because of their moderate resolution, spectral characteristics, long period of record, and 

spatial extent, which has been shown to be sufficient in studies of the SUHI (Deng & Wu, 

2013; Roy et al., 2014; Rivera et al., 2017).  Eight Landsat satellite images of Baltimore, 

Maryland were amassed from Earth Explorer at the URL www.earthexplorer.usgs.gov/ 

with the Worldwide Reference System (WRS) notation path 15, row 32 and path 15, row 

33. The acquisition years of the images span the 1990-2016 period and were captured by 

Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS). Landsat 5’s bands one to five are thirty-meter 

resolution. The thermal band is 120-meter resolution at capture but is resampled to thirty-

meter resolution. Landsat 8’s bands one to five are thirty-meter resolution. The thermal 

http://www.earthexplorer.usgs.gov/
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band, band ten, is one hundred-meter resolution at capture but resampled to thirty-meter 

resolution.  

Landsat 5 images were found searching both path 15, row 33 and path 15, row 32. 

Landsat 5 scenes were than mosaiced and clipped to the study area shapefile. Landsat 8 

scenes were found searching path 15, row 33. Landsat 8 scenes cover a larger area than 

Landsat 5 and they did not require mosaicing. These eight scenes are Collection 1 Level-

1 scenes (Table 3.1). Collection 1 Level-1 scenes are a Tier 1 product from the USGS. 

Tier 1 images have the highest data quality and should be utilized for time-series 

analysis. These satellite scenes are inter-calibrated across different Landsat instruments, 

corrected radiometrically, and georegistered within recommended tolerances (USGS, 

2016).  

In order to be consistent across each scene, images were obtained during a 

summer month (JJA) between 1990 and 2016. Four scenes have preceding precipitation 

and four scenes have no preceding precipitation. Table 3.1 provides information about  

all of the selected images. All other variables on Earth Explorer were unchanged (e.g. 

collection category, sensor identifier, etc.).  

3.3 Preprocessing Satellite Scenes 

 All scenes were converted to a raster within Terrset. This was done by using the 

Import module, which reads the MTL file of a scene. Multispectral bands were then 

converted to reflectance and corrected using Dark-object subtraction. The thermal bands 

were imported and keep their raw digital numbers. 
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3.3.1 Landsat 5 Scenes 

All Landsat 5 scenes were mosaiced together before being clipped to the study 

area boundary. Using TerrSet’s Mosaic module, each band from path 15, row 33 and path 

15, row 32, were mosaiced together. This allowed for the capture of the entire study area. 

The study area shapefile was then imported from ArcMap into TerrSet. Using the 

Reformat module, the shapefile from ArcMap was converted to a raster, and all the pixels 

within the polygon of the study area were assigned a value of a 1, everything outside of 

the polygon was assigned a value of 0. This raster was then multiplied over every band, 

using the Overlay module, First * Second. This allowed for all bands to be clipped to the 

combined Baltimore County and City shapefile. 

3.3.2 Landsat 8 Scenes 

Each Landsat 8 scene’s bands, from path 15, row 33, were imported into TerrSet. 

The study area shapefile was then imported from ArcMap into TerrSet. This had to be 

reformatted from a vector to a raster file in order to clip the study area. This was 

completed using the Reformat module in terrset. Using the Reformat module, the 

shapefile was converted to a raster and all the pixels within the polygon of the study area 

were assigned a value of a 1, everything outside of the polygon was assigned a value of 0. 

This raster was then multiplied over every band, using the Overlay module, First * 

Second. This allowed for all bands to be clipped to the combined Baltimore County and 

City shapefile. LST was then calculated as discussed in section 3.4. 
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3.4 Land Surface Temperature Retrieval 

LST retrieval was completed with TerrSet Geospatial Monitoring and Modeling 

System. The following steps show the workflow for deriving the LST from Landsat 5 and 

Landsat 8 scenes. Steps are listed in Figure 3.2. 

3.2.1 NDVI 

NDVI was calculated using the Overlay module in Terrset. NDVI is computed as 

follows: 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
       (2) 

 

Landsat 5 band designation for NIR is band 4 and for Red is band 3; Landsat 8 band 

designation for NIR is band 5 and for Red is band 4. These bands were used in equation 2 

and NDVI was calculated for all eight images.  

3.2.2 Emissivity 

The thermal function in TerrSet calculates blackbody temperatures. Land surfaces 

are not black bodies but gray bodies (Becker & Li, 1990); Emissivity, therefore, must be 

considered. NDVI has been used in the reclassification of emissivity (Liu & Zhang, 2011; 

Ngie et. al., 2014; Alghamdi & Moore, 2015) therefore, NDVI was calculated. An Idrisi 

Macro Language (IML) script was used to calculate emissivity. Figure 3.3 shows the 

IML file for the calculation.  

3.2.3 Thermal Function 

The thermal module in TerrSet was used to calculate LST. For Landsat 8 scenes, 

the offset, gain, K1, and K2 values (found in the MTL file) of each satellite image were 

input where it was labeled offset, gain, K1, and K2. The default input background value 



18 
 

 
 

and output background value are kept at 0. The wavelength for the thermal band was 

changed from 11.5 to 10.895. The dialog box, Figure 3.4, shows prompts for the values 

as well as adding the emissivity file and thermal band 10.  For Landsat 5 scenes the 

wavelength will stay at 11.5 μm and all defaults are kept the same. LST will then be 

calculated and corrected for emissivity, as noted in 3.2.2, by using the Thermal Function 

module. 

Two equations are used in this module to calculate LST. The first converts digital 

numbers (DN) to LST. This was created by Bartolucci and Chang (1988). The process 

takes the DNs from Landsat 5 scenes and converts them to black body temperature by 

converting DNs to a band specific, pre-specified spectral radiance, and then converting 

the radiance to a blackbody temperature.  

Following the calculation of the blackbody temperature, emissivity must be 

corrected so that LST represents the correct amount of radiance coming from the surface. 

This is completed using equation (Eastman, 2016): 

Where, 

 St =
𝑇𝐵

1+(𝜆𝑥𝑇𝐵∕𝜌)𝑥lnϵ
        (3) 

 

  St is the surface temperature, TB is the black body temperature (calculated above), 

λ is the wavelength of emitted radiance in micrometers, ρ is equal to h × (c / σ) = 1.438 

× 10-2 (mK), σ is the Boltzmann constant (1.38×10-23 J / K), h is Planck’s constant 

(6.626×10-34Js), c is the velocity of light (2.998× 108m/s), and ϵ is the emissivity in the 

range (0.0, 1.0).  
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3.5 SUHI Analysis  

Multiple analyses were performed on the eight images to address the three 

research questions: 

1) Does preceding precipitation influence the magnitude of Baltimore’s SUHI? 

2) Does preceding precipitation influence the clustering of micro SUHIs in 

Baltimore? 

3) Does preceding precipitation influence the relationships between LST, NDVI, 

NDBI, NDWI in Baltimore? 

3.5.1 Does preceding precipitation influence the magnitude of Baltimore’s SUHI? 

Research question 1 was addressed two different ways. The first involved 

comparing LST inside of the Baltimore City boundary with LST outside of the city 

boundary.  The second involved comparing the LST of urban pixels to the LST of non-

urban pixels. 

Raw LSTs were aggregated to the Baltimore City and Baltimore County (minus 

Baltimore City) boundaries. These two regions represent urban and rural, respectively.  

Mean LST was calculated for these two regions and used to estimate the magnitude of 

Baltimore’s SUHI with: 

 𝑆𝑈𝐻𝐼 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  Urban mean temperature (raw) −

rural mean temperature (raw)       (4)  

For the second method, the land cover of the images was classified using an 

unsupervised approach and the Anderson Classification.  These were implemented in the 

TerrSet module CLUSTER. Land cover was classified by pixel into six categories: 1) 

Urban or built-up land, 2) agricultural land, 3) forest land, 4) water, 5) wetland, and 6) 

barren land. The RECLASS module was used to reclassify pixels in the urban and built-
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up land to a 1 to represent urban pixels. All other pixels we be classified with a 2 to 

represent non-urban pixels. Figure 3.5 shows one of the completed unsupervised 

classifications. Equation 5 was used to quantify the SUHI magnitude as the difference 

between the mean LST of the urban and non-urban pixels.  

3.5.2 Does preceding precipitation influence the clustering of micro SUHIs in 

Baltimore? 

Research question 2 was addressed using the Getis-Ord Gi* cluster analysis on 

raw LST. This statistic was used to identify clusters of high and low LST within the 

SUHI, and to determine if LST clusters differently with and without preceding 

precipitation. The Getis-Ord Gi* statistic cannot be run on raster data, therefore the LST 

rasters for each image were converted to points using the Create Fishnet (Data 

Management) tool. Before this could be done, the LST rasters that were converted in 

TerrSet had to be masked to the study area to ensure there were no outside-of-study-area 

pixels being converted. Cell width and cell height were set to 30 m to match the 

resolution of the Landsat scenes. Geometry type was set to polygon and all other options 

were kept default. 

The fishnet produced two shapefiles. These include a labels shapefile and a points 

shapefile. The labels shapefile was combined with the masked LST raster using the 

Extract Values to Points tool. The fishnet had to be clipped to the LST mask again to 

remove points outside of the study area boundary.  The clipped and updated values to 

points shapefile was used as the input into the Hot Spot Analysis (Getis-Ord Gi*) tool.  

For visualization, the results of the Hot Spot Analysis were interpolated to a raster with 

the inverse distance weight (IDW) approach, which created a continuous surface of 

clustered hot and cool surfaces.  
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3.5.3 Does preceding precipitation influence the relationships between LST, 

NDVI, NDBI, NDWI in Baltimore? 

 Research question 3 was addressed by visually comparing and using linear 

regression to analyze the relationships between LST and NDVI, NDBI, and NDWI.. The 

derivation of NDVI is provided in section 3.2.1.   

NDWI and NDBI have been used in SUHI studies (McFeeters, 1996; Zhang et al., 

2009) NDWI has been used to demarcate and enhance open-water features. It is possible 

that NDWI changes when preceding precipitation occurs. NDWI is different depending 

on land cover. NDBI has been used to show built-up areas and is often used to study the 

association between SUHIs and LC (Sun et al., 2012). These were calculated using the 

OVERLAY module in TerrSet. NDWI and NDBI are calculated as: 

𝑁𝐷𝑊𝐼 =  
Green−NIR

Green+NIR
        (5) 

 𝑁𝐷𝐵𝐼 =  
SWIR−NIR

SWIR+NIR
       (6) 

The linear regressions were performed with the Regress module within TerrSet, 

with LST set as the dependent variable and the LC indices set as the independent 

variables. Figure 3.6 shows the Regress Module. When calculating the regression you 

must use a boolean mask to ensure that pixels within the study area are analyzed. If the 

mask is not used it will account for pixels outside of the study area that are 0. This would 

affect the regression analysis.  These were analyzed in ArcMap and extracted by mask to 

the study area rasters. 

Finally, a transect was created. This transect can be seen in Figure 3.7. It extends 

from Gwynns Falls to Druid Park and southeast past Patterson Park toward the Bay. This 

transect was created using the 3D Analyst in ArcMap. Transects were also created for 

NDBI, NDVI, and NDWI.
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3.6 Chapter 3 Tables

Table 3.1 Selected satellite scenes were from the Landsat Satellite Series. Landsat 8 scenes covered the entirety of the study area. Two Landsat 

5 scenes had to be mosaicked together to ensure the whole study area was included.  
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3.7 Chapter 3 Figures 

 

Figure 3.1. Study area color composite with Baltimore County and City combined 

polygons for the study area. 
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Figure 3.2 represents the process for calculating LST for a specific area. 

 

Figure 3.3 is the Idrisi Macro Language (IML) code used to calculate NDVI and 

emissivity. 
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Figure 3.4 shows the prompts used to run the thermal conversion module. Areas to 

correct for emissivity and add in the thermal band are shown above. 
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Figure 3.5 Reclassification of urban and non-urban pixels for 2 July 2016 using the 

CLUSTER module. Green are the non-urban pixels. Light brown are the urban pixels. 
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Figure 3.6 shows the Regress module for calculating the linear regression for NDVI, 

NDBI, NDWI, and LST.  

 

Figure 3.7. LST transect location, 2 July 2016. The transect extends from Gwynns Falls 

to Patterson Park and southeast toward the Chesapeake Bay. 
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Chapter Four: Results 

 

Results of the analysis of the influence of preceding precipitation on Baltimore’s SUHI 

are presented herein. It is important to note when reviewing these results that the intent is not to 

compare individual images but rather to compare statistics for satellite images with preceding 

precipitation and with no preceding precipitation (Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and Figures 

4.1, 4.2, 4.3, 4.4, 4.5, 4.6). For example, when viewing NDVI in Table 4.4, the intent is to 

compare the average NDVI of 0.59 with preceding precipitation to the average NDVI of 0.60 

without preceding precipitation rather than comparing the average NDVI on 17 August 2015 to 2 

July 2016. 

4.1 Overview of Baltimore’s SUHI 

Figure 4.1 shows the LST throughout the city and county of Baltimore for all 

Landsat images. LST increased toward the center of Baltimore City and decreased in 

Baltimore County. Arterial roadways extend outward from the center of Baltimore City 

and appear as extensions of higher LST. For instance, smaller built-up areas around 

Towson, Maryland are orange colored or warmer LST. As you move East and West from 

this roadway, LST cool and colors range from blue to green.  

 Table 4.1 has the statistics for all calculated LST. Days with no precipitation saw 

an average LST that was greater than scenes with preceding precipitation.  The same 

pattern was true for minimum LSTs. The maximum LSTs, though, did not follow this 

pattern and were greater for scenes with preceding precipitation. Days with preceding 

precipitation had greater variability than days with no precipitation.  

 As you move toward the northern area of Baltimore County, LSTs decrease as 

agricultural land increases and urban land decreases. Agricultural land can be seen as the 
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cooler, blue-colored LST. The blue LST includes the water bodies as well. One in 

particular, the Loch Raven Reservoir, can be seen clearly from the scene dated 9 July 

2001 (Figure 4.1 (f) and Figure 4.6 (f)). This reservoir is located just north of Baltimore 

City and is denoted by a black letter A in each figure.  

  Transects seen in Figure 4.2 were created for each scene. From 0 to 2,000 m there 

are low LSTs associated with the Gwynns Falls area. As the transect moves toward Druid 

Park, LSTs increase as urban cover increases. Druid Park is found around 6,000 m in 

distance. This is followed by a marked increase in LSTs. At 10,000 m the transect 

intersects Green Mount Cemetery with a decrease in LSTs followed by an increase. 

Around 14,000 m, Patterson Park can be seen by the decrease in LST. There is a small 

increase in LST. This is an area of black top. Following this increase there is once again a 

decrease in LST. 

 All transects show decreasing LST for Gwynns Falls, Druid Park, Green Mount 

Cemetery, and Patterson Park. In Figure 4.2 on 24 August 2006 there is a noticeable 

decrease in the variability of LST within the city center from 8,000 m to 14,000 m 

compared to the other images. This decrease in variability is also found in Figure 4.1c. 

Notice Patterson Park is no longer visible. This occurred on a day where there was no 

preceding precipitation. 

4.2 SUHI Magnitude 

 The SUHI magnitude statistics are shown in Table 4.2.  The County/City method 

resulted in lower magnitudes than the pixel calculated method. Overall, the greatest 

difference between the County/City and pixel method was a difference of  +- 1.6 °C. For 

instance, there was a 0.74 °C difference for the 26 August 2001 scene. This difference 
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may have been caused by the increased urban and barren surfaces that the pixel method 

was able to account for. The County/City boundary did not include barren surfaces 

outside of the city polygon.  

 For scenes without precipitation, the magnitudes ranged from an average of 4.33 

°C to 5.22 °C. Scenes with preceding precipitation had higher average magnitudes than 

the images without precipitation. Average magnitudes ranged from 4.86 °C to 5.78 °C. In 

the case of the scenes with preceding precipitation, the greatest difference between 

magnitudes was about 1.25 °C. This may also be explained by the increase in barren 

surface being included in the calculation for LST via the pixel method.  

4.3 Clustering of LST 

 The spatial clustering of LST in Baltimore was apparent in every scene.  Figure 

4.3 shows clustering by confidence interval (CI). Significant clustering of warmer LSTs 

was consistent in urban areas. Overall, there was little difference in the clustering of high 

LSTs within the Baltimore City center. LC within Baltimore County experienced areas of 

significant clustering of warmer LSTs on days with and without preceding precipitation. 

Three of the scenes had clustering within northern Baltimore County. Two of these 

occurred on days with no preceding precipitation (Figures 4.3 (b) and (c)) and one with 

preceding precipitation (Figure 4.3 (g)).   

 This clustering change in Baltimore County may be due to the LC type. Barren 

surfaces were found at the location of the small micro clusters of heat. These may be 

creating small micro heat islands. Looking at Figure 4.3, it should be noted that arterial 

roadways fell within the 99% statistically significant clustering of LST. This may be 

useful in deciding the spatial extent of SUHIs.  
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4.4 Landcover/LST Relationship 

 NDVI, NDBI, and NDWI can be seen in Figures 4.4, 4.5, and 4.6. Low values of 

NDVI (Figure 4.4) and NDBI (Figure 4.5) point out urban areas and highlight Baltimore 

City. NDWI (Figure 4.6) highlights water bodies within the study area. NDBI and NDWI 

both had on average greater maximums on days with preceding rainfall.   

Table 4.3 shows the results of the regression analyses. The average coefficient of 

determination and R values for NDVI, NDBI, and NDWI were lower for the images with 

preceding precipitation. The coefficient of determination for NDVI ranged from 49.16 

percent to 75.04 percent. The coefficient of determination for NDBI ranged from 52.05 

percent to 70.31 percent. The coefficient of determination for NDWI ranged from 41.45 

percent to 68.94 percent. NDVI was negatively correlated with LST. NDBI and NDWI 

were both positively correlated with LST. Images with preceding precipitation had 

decreased average R values. R values for NDVI and NDBI without precipitation 

averaged -0.77 and 0.78. R values for images with precipitation ranged from -0.73 to 

0.75. NDWI had positive R values in both cases with decreased R values for images with 

preceding precipitation.  

The slope coefficients varied. The average NDVI slope coefficient was -1.28 

without preceding precipitation and -1.23 with preceding precipitation. The average 

NDBI and NDWI slope coefficients were 1.74 without preceding precipitation, 1.85 with 

preceding precipitation, 1.38 without preceding precipitation and 1.30 with preceding 

precipitation respectively. 

  Out of the selected scenes, Landsat 8 images had the highest coefficient of 

determination and R values in both cases. With preceding precipitation, there was a 

decrease in the values of the Landsat 8 images. In all cases, NDVI had negative R values 
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while NDBI and NDWI had positive values. Tables 4.4, 4.5, and 4.6 show a full 

overview of completed statistics on NDVI, NDBI, and NDWI. There was strong 

correspondence between these values and LST. Appendix A contains all of the scatter 

plots from the completed regressions. For transects of NDVI, NDBI, and NDWI see 

Appendix B. 
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4.5 Chapter 4 Tables 

Table 4.1 LST descriptive statistics. Mean, maximum, minimum, and standard deviation 

calculated for all scenes. 
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Table 4.2. SUHI magnitude statistics. Average SUHI magnitudes were greater for images 

with preceding precipitation. 

SUHI Magnitude 

County/City Method (°C) Pixel Method (°C) 

No Preceding Precipitation 

Date City County Magnitude  Urban  Rural Magnitude 

17-Aug-15 33.79 29.30 4.49 33.34 28.44 4.90 

24-Aug-06 29.21 25.22 3.99 29.83 24.24 5.59 

26-Aug-01 27.45 23.45 4.00 27.05 22.31 4.74 

29-Jun-09 30.95 26.10 4.85 31.05 25.37 5.67 

Average 4.33   5.22 

Preceding Precipitation 

Date City County Magnitude  Urban  Rural Magnitude 

2-Jul-16 34.34 27.94 6.40 33.33 26.65 6.68 

9-Jul-01 30.29 26.62 3.67 30.82 25.84 4.98 

23-Aug-94 25.02 20.82 4.20 25.10 19.95 5.14 

6-Jul-00 28.83 23.67 5.16 28.48 22.18 6.30 

Average 4.86   5.78 
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Table 4.3 Coefficient of determination, R, and slope coefficient values for all selected scenes.  
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Table 4.4. NDVI descriptive statistics for all images. 

 

Table 4.5. NDBI descriptive statistics for all images. 
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Table 4.6. NDWI descriptive statistics for all images. 
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4.6 Chapter 4 Figures 

  

Figure 4.1. LST calculated for all Landsat scenes. Letter A denotes Loch Raven 

Reservoir. 

A 
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Figure 4.2. LST transects. Each transect runs from Gwynn Falls to Druid Park to 

Patterson Park and south towards the Bay. See Figure 3.7. 
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Figure 4.3 Getis-Ord Gi* spatial clustering statistic shows the confidence intervals (CI) 

of clustering of high and low LST.  
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Figure 4.4 Normalized Difference Vegetation Index (NDVI) calculated for all Landsat 

scenes.  
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Figure 4.5 Normalized Difference Built-up Index (NDBI) calculated for all Landsat 

scenes. 
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Figure 4.6. Normalized Difference Water Index (NDWI) calculated for all Landsat 

scenes. The letter A in panel f denotes Loch Raven Reservoir. 

A 
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Chapter Five: Discussion 

5.1 Discussion of Research Questions  

SUHIs have been studied since the 1970’s using remotely sensed images from 

different Earth observing satellites. These images are important for temporal and spatial 

analyses as EHEs are expected to increase in urban areas. These analyses must be done 

accurately to ensure the correct magnitude of the SUHI is being taken into account. 

Knowing the impact of preceding precipitation will enhance the accuracy of temporal and 

spatial SUHI studies and aid in the mitigation of future SUHI.  

This thesis aimed to evaluate the effects of preceding precipitation on the 

remotely sensed SUHI signature. This was completed by addressing the following three 

questions: 

1) Does preceding precipitation influence the magnitude of Baltimore’s SUHI? 

2) Does preceding precipitation influence the clustering of micro SUHIs in 

Baltimore? 

3) Does preceding precipitation influence the relationships between LST, NDVI, 

NDBI, NDWI in Baltimore? 

 

For the first question, Baltimore’s SUHI magnitude varies between methods. In 

the case of county/city polygon, the SUHI average was 4.33 °C with no preceding 

precipitation and 4.86 °C with precipitation. In the case of the pixel method, the average 

SUHI magnitude was 5.22 °C with no preceding precipitation and 5.78 °C with preceding 

precipitation.  

Overall, when calculating the magnitude of the SUHI within Baltimore, the pixel 

method used may be a superior method because it accounts for vegetated surfaces within 
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urban areas and urban surfaces within rural areas. The magnitudes calculated using the 

classified pixels were greater in most cases. For instance, the arterial roadway extending 

to the north and including Cockeysville is not included when using the administrative 

county/city polygon method. Unfortunately, the pixel method also tended to classify rural 

fields with bare soil as urban pixels, especially in images that were unusually warm or 

dry. It is likely that this mis-classification helped keep the average temperature of Rural 

pixels lower.  

The results presented herein suggest that the SUHI magnitude increases when 

there is preceding precipitation and decreases when there is no preceding precipitation. 

This might be a result of urban, impervious surfaces warming quicker than vegetated 

surfaces after the precipitation, causing the magnitude to increase. The magnitude may 

also be influenced by the time since precipitation, the duration of precipitation, and the 

amount of precipitation. These possible influences should be explored using a controlled 

experimental design. 

For the second question, the Getis-Ord Gi* statistic was inconclusive with regards 

to isolating the micro SUHIs. It was not able to capture any spatial changes in the 

variability of the SUHI. Therefore, the clustering within the SUHI was not observed.  

There was clustering of higher LST over barren LC. This is thought to be caused 

by soils and vegetation that lack the ability to absorb or hold water, which allows for 

quicker drying than the surrounding surfaces. This allows sensible heat to begin building 

relatively quickly once all surface water has evaporated. These clusters of warmer LST 

may be considered barren heat islands. These are not the same as barren LC within urban 
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locales. Instead of being a barren parking lot for instance, it is a location with little to no 

vegetation and an abundance of soil. 

While the Getis-Ord Gi* statistic did not capture much variability within the 

SUHI or capture it at a resolution that would allow for differences or similarities to be 

shown, it did do well showing the extent of the SUHI. There seems to be no consistent 

method for calculating the extent of the SUHI in the literature. The Getis-Ord Gi* 

statistic could be used to objectively outline the extent of the SUHI. For example, the 

contiguous region of high LST bound by one of the CIs can be used to define the spatial 

extent of SUHIs. 

With regard to question 3, the average coefficient of determination decreased for 

indices associated with preceding precipitation. Preceding precipitation may lower the 

explanatory value of these indices. For instance, if a SUHI study was completed using 

NDVI to aid in the calculation of LST, there may be a reduced reliability and decreased 

accuracy of the calculated LST.  

NDBI and NDWI both showed greater average maximum values on days with 

preceding rainfall. This might be due in part to the surface water changing the spectral 

reflectance of wavelengths that are used in the calculation of these indices. For NDWI, 

mean and minimum values were negative. This is caused by the index highlighting LC 

such as vegetation and barren surfaces. Vegetation and barren surfaces tend to be 

negative values and water bodies tend to be positive values. 

5.2 Further Research 

There was not a detectable difference in the magnitude of the SUHI in Baltimore 

across the preceding and no preceding satellite scenes. This may be related to days from 
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the rain event, or the rain event was too small to have a lasting impact. It may also be 

related to the small number of images collected. To address these limitations, more 

research should be completed in order to understand the extent of the differences in the 

changes of the magnitude of the SUHI. Future research might use a different method for 

classifying urban verse rural land cover and/or different data source such as tax parcel 

maps or by using a different algorithm. Once the region is classified, the same 

classification boundaries could be used in all subsequent images. Studies should also 

collect more satellite imagery to increase sample sizes. Increased sample sizes would 

allow further analysis to be completed to see if the tendency holds true for preceding 

precipitation to increase SUHI magnitude. Studies should also include days with greater 

amounts of precipitation in the antecedent days.  

More spatially resolute images should also be utilized in the analysis of the spatial 

clustering of the SUHI. The Getis-Ord Gi* statistic should be used on images with 

greater resolution, for example, the Sentinel satellite series from the ESA has RGB bands 

at 15 m resolution. The Getis-Ord Gi* statistic or Hot Spot Analysis should also be used 

as a method to track changes over time. The spatial extent of the 95th % CI or 99th % CI 

could be used to demarcate SUHIs. Efforts should focus on contiguous regions of the 95th 

CI because as shown earlier barren surfaces may have higher LST but are not urban LC. 

Greater resolution imagery will allow for changes at different spatial scales, for instance, 

block group to neighborhood scale changes in LST would be useful for the placement of 

cooling centers. 

Additional studies of NDVI and NDBI should be conducted to continue to see if 

their ability to explain LST decreases with preceding precipitation. NDWI was positively 
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correlated with LST through the negative portion of the NDWI spectrum, but it is unclear 

which LCs are represented by different NDWI values. Studies should also include 

different indices. These studies should look into barren surfaces and impervious surfaces, 

as well as soil moisture, to see how they affect the clustering of micro SUHIs when 

preceding rainfall occurs. The addition of these indices would shed light on how 

preceding rainfall is affecting different LC. Different LC could also be separated to see 

how every type of land is being affected.   

Understanding how preceding precipitation affects the SUHI will help with 

mitigation purposes such as pavement wetting. Pavement wetting has been completed in 

Europe and has decreased LST (Hendel et al., 2014). In Baltimore, rainwater can be 

collected and dispersed over different surfaces, ultimately reducing the LST. Knowing 

how precipitation affects the UHI phenomena is critical in preventing EHEs and keeping 

inhabitants of urban areas from reaching LSTs that are unsuitable for human health.  
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Chapter Six: Summary 

 

This study evaluated the affects that preceding precipitation might have on the 

remote sensing signature of Baltimore’s SUHI. It was guided by three questions: 

 

1) Does preceding precipitation influence the magnitude of Baltimore’s SUHI? 

2) Does preceding precipitation influence the clustering of micro SUHIs with 

Baltimore? 

3) Does preceding precipitation influence the relationships between LST, NDVI, 

NDBI, and NDWI in Baltimore? 

 

The first question was completed by calculating the magnitude of Baltimore’s SUHI 

with two methods. The first method, the county/city boundaries, on average found that 

preceding precipitation increased the magnitude of the SUHI in Baltimore. The second 

method, the unsupervised pixel classification, on average found that preceding 

precipitation increased the magnitude of the SUHI in Baltimore. The second method of 

analysis was more accurate in that it included urban pixels that were outside of the city 

polygon.  

The second question was completed by running the Getis-Ord Gi* statistic on the 

calculated LST. Barren fields within Baltimore County had clusters of warmer LSTs. 

These were noted as barren LC. Overall, the statistic was inconclusive at showing the 

variability of the clustering of the SUHI. It was useful in delineating an objective extent 

of the SUHI.  
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The third question was completed by comparing LST to NDVI, NDBI, and NDWI. 

This was done by computing a bivariate regression. The relationships between LST and 

NDVI, NDBI, and NDWI were negative, positive, and positive respectively. This means 

that as NDVI increases LST decreases, as NDBI increases LST increases, and as NDWI 

increases LST increases (up to NDWI of 0). NDBI and NDWI had increased maximum 

values on days with preceding precipitation. Overall, preceding precipitation may affect 

the explanatory power of the indices. 
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Appendix A 

 

A1. 2 July 2016 - LST regressed on NDVI. Landsat 8 image. 

 

A2. 2 July 2016 - LST regressed on NDBI. Landsat 8 image. 
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A3. 2 July 2016 - LST regressed on NDWI. Landsat 8 image. 

 

A4. 17 August 2015 - LST regressed on NDVI. Landsat 8 image. 
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A5. 17 Aug 2015 - LST regressed on NDBI. Landsat 8 image. 

 

A6. 17 Aug 2015 - LST regressed on NDWI. Landsat 8 image. 
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A7. 29 June 2009 - LST regressed on NDVI. Landsat 5 image. 

 

A7. 29 June 2009 - LST regressed on NDBI. Landsat 5 image. 
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A7. 29 June 2009 - LST regressed on NDWI. Landsat 5 image. 

 

A8. 24 August 2006 - LST regressed on NDVI. Landsat 5 image. 
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A9. 24 August 2006 - LST regressed on NDBI. Landsat 5 image. 

 

A10. 24 August 2006 - LST regressed on NDWI. Landsat 5 image. 
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A11. 09 July 2001 - LST regressed on NDVI. Landsat 5 image. 

 

A12. 09 July 2001 - LST regressed on NDBI. Landsat 5 image. 
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A13. 09 July 2001 - LST regressed on NDWI. Landsat 5 image. 

 

A14. 26 August 2001 - LST regressed on NDVI. Landsat 5 image. 
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A15. 26 August 2001 - LST regressed on NDBI. Landsat 5 image. 

 

A16. 26 August 2001 - LST regressed on NDWI. Landsat 5 image. 
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A17. 6 July 2000 - LST regressed on NDVI. Landsat 5 image. 

 

A18. 6 July 2000 - LST regressed on NDBI. Landsat 5 image. 



61 
 

 
 

 

A19. 6 July 2000 - LST regressed on NDWI. Landsat 5 image. 

 

A20. 6 July 2000 - LST regressed on NDVI. Landsat 5 image. 
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A21. 6 July 2000 - LST regressed on NDBI. Landsat 5 image. 

 

A22. 6 July 2000 - LST regressed on NDWI. Landsat 5 image. 
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Appendix B  

 

B1. NDVI transects for all selected scenes. 
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B2. NDBI transects for all selected scenes. 
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B3. NDWI transects for all selected scenes. 
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Todd Moore) 

 Examined trends and variability of precipitation in Pennsylvania using SPSS 

Baltimore City Urban Heat Island: A Problem Based Approach, 2016 (research 

adviser Dr. Todd W. Moore) 

 Comprehensive examination of Baltimore City’s urban heat island (UHI) 

 Examined differences between land cover indices, land surface temperatures, 

and several socioeconomic variables 
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Undergraduate Research 

Department of Earth Science, California University of Pennsylvania, 2015; Carnegie 

Museum of Natural History (research adviser: Dr. Thomas Mueller). 

• Investigating the Migration of Three Tree Species: Black Cherry, Red Maple, 

and Shagbark Hickory 

National Oceanic and Atmospheric Administration; World Data Center for 

Paleoclimatology, 2014 (research advisor: Dr. David M. Anderson)  

• Helped author and create a paleo resources catalog  

• International project, talked with over 300 scientists from over 70 countries 

• Gathered paleo resources, authored over 200 descriptions, and attended 

conferences  

Department of Earth Science, California University of Pennsylvania, 2012 (research 

adviser: Dr. Thomas Mueller). 

• Investigation of Southwest Pennsylvania using ArcGIS. 

• Analysis of emergency operations buildings and their location with reference 

to stocked trout streams. 

• Selected different locations with respect to their distance and driving times 

NASA Space Grant Research Program, 2012 (research adviser: Dr. Thomas Mueller). 

• In depth training on Unysis Integrated Data Viewer (IDV). 

• Authoring of a step-by-step manual for the use of IDV by emergency 

managers. 

Publications 

Tomlin, J., El-Behaedi, R., Lingo, R., McCartney, S., Thieme, “Stress and Duress  

in the Sahel: Building Resiliency in Niger” Earthzine August (2017) 

 

Anderson, David M., K. Horlick, and R. Lingo. “Share Your Geoscience  

Resources in the EarthCube Paleogeoscience Catalog.” Past Global 

Changes, PAGES June (2014): 1, Web. 

 

Anderson, D., Horlick, K., Lingo, R., “NSF EarthCube Paleogeoscience RCN  

Catalog of Software Resources”, “NSF EarthCube Paleogeoscience RCN 

Catalog of Repository Resources”, and “NSF 

EarthCube Paleogeoscience RCN Catalog of Database 

Resources”, National Oceanic and Atmospheric Administration, 8/20/2014 
 



 

 
 

 

 


