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A B S T R A C T   

Extreme rainfall events within landslide-prone areas can be catastrophic, resulting in loss of property, infra-
structure, and life. A global Landslide Hazard Assessment for Situational Awareness (LHASA) model provides 
routine near-real time estimates of landslide hazard using Integrated Multi-Satellite Precipitation Retrievals for 
the Global Precipitation Mission (IMERG). However, it does not provide information on potential landslide 
hazard in the future. Forecasting potential landslide events at a global scale presents an area of open research. 
This study compares a global precipitation forecast provided by NASA’s Goddard Earth Observing System 
(GEOS) with near-real time satellite precipitation estimates. The Multi-Radar Multi-Sensor gauge corrected 
(MRMS-GC) reference is used to assess the performance of both satellite and model-based precipitation products 
over the contiguous United States (CONUS). The forecast lead time of 24hrs is considered, with a focus on 
extreme precipitation events. The performance of IMERG and GEOS-Forecast products is assessed in terms of the 
probability of detection, success ratio, critical success index and hit bias as well as continuous statistics. The 
results show that seasonality influences the performance of both satellite and model-based precipitation prod-
ucts. Comparison of IMERG and GEOS-Forecast globally as well as in several event case studies (Colombia, 
southeast Asia, and Tajikistan) reveals that GEOS-Forecast detects extreme rainfall more frequently relative to 
IMERG for these specific analyses. For recent landslide points across the globe, the 24hr accumulated precipi-
tation forecast >100 mm corresponds well with near-real time daily accumulated IMERG precipitation estimates. 
GEOS-Forecast and IMERG precipitation match more closely for tropical cyclones than for other types of storms. 
The main intention of this study is to assess the viability of using a global forecast for landslide predictions and 
understand the extent of the variability between these products to inform where we would expect the landslide 
modeling results to most prominently diverge. Results of this study will be used to inform how forecasted pre-
cipitation estimates can be incorporated into the LHASA model to provide the first global predictive view of 
landslide hazards.   

1. Introduction 

Extreme precipitation is the primary trigger of landslides around the 
world, resulting in significant and pervasive adverse effects on human 
life and infrastructure (Chester 1995; Petley 2011). The key factors 
driving landslide initiation can be broadly classified into two categories: 
geomorphologic conditions such as slope, lithology or land cover that 
can dictate the location of slope failures, and dynamic factors that 
control when slope failures occur, such as extreme rainfall and increased 
local soil moisture conditions (Dai et al. 2002). Landslide susceptibility 
can be characterized by combining information on topography, soil 

type, lithology, vegetation, etc., which can be derived from in situ or 
remote sensing sources (Glade 2003; Guzzetti et al., 2006; Keefer 1994; 
Larsen and Parks 1997; Larsen and Santiago-Román 2001). Research on 
the rainfall characteristics known to trigger landslides has been con-
ducted at many spatiotemporal scales and often relies on local infor-
mation on landslides and rainfall; however, studies have also established 
triggering relationships between landslide inventories and 
satellite-based precipitation estimates (Guzzetti et al., 2008; Hong, 
Adler, and Huffman 2007a; Kirschbaum and Stanley 2018). Studies have 
dynamically evaluated landsliding conditions through deterministic 
slope-stability modeling (Terlien et al. 1995) and empirical and 
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statistical analyses (Glade et al. 2000; Nowicki Jessee et al., 2018). 
However, connecting landslide systems that use near-real time precipi-
tation information to forecasted rainfall for landslide early warning re-
mains an area of active research and requires further study. 

Geographical landslide early warning systems (LEWS) can take many 
forms and have been deployed at regional and national scales (Guzzetti 
et al., 2020). Real-time systems based on hourly and daily rainfall such 
as Rio de Janeiro Brazil’s AlertaRio system fuse information from sus-
ceptibility maps with rain gauge measurements to provide estimates of 
moderate to high hazard across the city, as well as alerts based on 
rainfall thresholds for specific gauges in highly vulnerable areas (Cal-
vello et al., 2015). A soil water index developed by the Japan Meteo-
rological Agency shows the risk of landslides. The soil water index is 
calculated from a tank model (Singh 1995; Sugawara et al., 1983), 
radar/rain-gauge analyzed precipitation, and very short-range precipi-
tation forecasts (Osanai et al., 2010). Hong Kong Observatory (HKO) 
and Geotechnical Engineering Office jointly operates a ‘Landslip 
Warning System’. This system uses rainfall measurement from auto-
matic rain gauges (past 24h cumulated), radar nowcasts (1–3hrs), 
weather forecasts, and information on the slope failures (>15 slope 
failures forecasted) to issue warnings (Chan et al. 2012; Yu 2004). The 
Norwegian Water Resources and Energy Directorate operates a national 
landslide early warning system. Hydrologic models and web tools are 
used to monitor and forecast hydrometeorological conditions that could 
potentially trigger landslides (Graziella et al., 2015). Another example is 
the U.S. Geological Survey Landslide Hazard Program, which manages 
landslide precursor monitoring stations in several locations (https://la 
ndslides.usgs.gov/monitoring/). 

Dynamic characterization of landslide hazards and early warning 
systems has been reported at regional scales using remote sensing re-
sources (e.g., Kirschbaum et al., 2015; Liao et al., 2012; Rossi et al., 
2012). However, these locally parametrized models are usually not 
generalizable to other regions or to a global scale. The efficacy of these 
systems suffers from the lack of adequate hydrometeorological net-
works, coupled with the difficulty of data handling and sharing amongst 
various international agencies. Moreover, the coverage area is generally 
limited, and the gauges may not always be in the vicinity of the 
potentially hazardous landslide areas, especially in mountainous re-
gions. Satellite-based global precipitation products offer an opportunity 
to develop global-scale hazard monitoring systems. The Tropical Rain-
fall Measuring Mission (TRMM) precipitation estimates have been 
widely used within the community for scientific investigations (Adler 
et al., 2009; Curtis et al., 2007; Houze et al., 2015) and decision-making 
activities (Kirschbaum and Patel 2016). Hong et al., 2007 was the first to 
utilize TRMM rainfall estimates at a quasi-global scale to exhibit their 
potential in advancing the development of global landslide monitoring 
systems. The more recent Global Precipitation Measurement (GPM) 
mission has an extended spatial coverage and provides more accurate 
estimation of precipitation from light rain to heavy rain and snow 
(Kojima et al., 2012; Prakash et al., 2016). 

Kirschbaum and Stanley (2018) utilized Integrated Multi-satellitE 
Retrievals for GPM (IMERG) precipitation data coupled with a global 
landslide susceptibility map to create the Landslide Hazard Assessment 
for Situational Awareness (LHASA) model. LHASA combines 
satellite-based precipitation estimates with a landslide susceptibility 
map derived from information on slope, geology, road networks, fault 
zones, and forest loss, primarily from satellite-derived or publicly 
available data (Stanley and Kirschbaum 2017). Daily IMERG Early 
(~4hrs latency) and Late (~12–14hrs latency) data are combined from 
the past seven days to identify potential triggering conditions for land-
slides. When rainfall is considered to be extreme based on antecedent 
rainfall exceeding the historical 95th percentile at the given pixel and 
susceptibility values are moderate to very high, a “nowcast” is issued to 
indicate the areas where landslides are more probable. The LHASA 
system is updated eight times a day, providing dynamic nowcasts for 
rainfall-triggered landslides in near-real time. The LHASA model was 

primarily designed to resolve shallow debris flows and landslides, which 
are the most prevalent mass movement type in the tropical to 
mid-latitude regions where the LHASA model currently runs (Kirsch-
baum and Stanley, 2018). 

A newer version of the framework, LHASA version 2, builds on the 
original model but incorporates additional input data sources such as 
soil moisture, snow depth and geological information within a machine 
learning model, which results in a probabilistic landslide hazard esti-
mate (Kirschbaum et al., 2020; Stanley et al., 2021). Daily IMERG Early 
and Late rainfall is incorporated within this system to characterize the 
extreme rainfall conditions. The current version of LHASA version 2 is a 
prototype, but the model will be made open source when the system is 
finalized. A forecasting component will be added to LHASA version 2. 
Forecasted precipitation data is fundamental to this new modeling 
effort. The work here evaluates the feasibility of including data from the 
Goddard Earth Observing System Forward Processing (GEOS-FP) fore-
cast product (herein GEOS-Forecast) within a new forecast component 
of LHASA version 2. The goal of this work is to assess the viability of 
using a global forecast for landslide predictions and to quantify the 
extent of the variability between GEOS-Forecast and IMERG products at 
a variety of spatio-temporal scales with the goal of informing where 
probabilistic landslide forecast are more likely to diverge from the 
nowcast results due to differences in rainfall estimates. 

While many studies have evaluated GPM precipitation products 
against ground references including radar and gauges (e.g. Khan et al., 
2018; Sungmin and Kirstetter, 2018; Tan et al., 2017), there have been 
fewer efforts to compare the forecasted precipitation estimates from 
GEOS-Forecast with satellite-based estimates like IMERG. To the best of 
our knowledge, this study is the first to analyze the precipitation fore-
casts from the GEOS model for use in landslide modeling. GEOS is an 
atmospheric model for short-term and long-term weather and climate 
investigations. 

This study presents an inter-comparison of satellite (IMERG) and 
ground-based precipitation estimates with forecasted precipitation in-
formation to better understand the potential application within global 
and regional landslide modeling. This study has three fundamental ob-
jectives: to evaluate the similarities and the differences of IMERG Early 
and GEOS-Forecast products relative to a ground-based reference, to 
investigate the influence of seasonality on the performance of the fore-
cast, and to assess how GEOS precipitation forecasts can resolve extreme 
rainfall associated with known landslides relative to satellite data. Sec-
tion 2 describes the datasets, study area, and the methodology adopted 
to test the viability of using a GEOS-Forecast for landslide modeling and 
prediction. Results are presented in Section 3. Discussion and conclu-
sions are summarized in Section 4 and Section 5. 

2. Materials and methods 

2.1. Datasets 

In order to characterize the model forecast, three precipitation 
datasets are used in this study: GPM satellite product (IMERG Early), the 
model forecast (GEOS-Forecast) and the ground-based Multi Radar 
Multi Sensor (MRMS) product. Each of these products is briefly 
described in this section. 

2.1.1. IMERG early: satellite-based product 
The Integrated Multi-Satellite Retrievals for Global Precipitation 

Measurement (IMERG) product merges the data from satellite passive 
microwave (PMW) and infrared (IR) precipitation estimates, with gauge 
information (Huffman et al. 2015). PMW retrievals offer the advantage 
of more accurate precipitation estimates (directly retrieve PMW infor-
mation on low-Earth-orbit platforms that sit in polar or 
non-sun-synchronous orbits) than IR but have lower sampling rates. This 
necessitates morphing of the microwave data using interpolation and 
cloud motion tracking with the help of global infrared imagery (Joyce 
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and Xie 2011). These gridded and combined microwave estimates are 
recalibrated by passing them through the Climate Prediction Center 
(CPC) Morphing-Kalman Filter (CMORPH-KF) Lagrangian time inter-
polation and the Precipitation Estimation from Remotely Sensed Infor-
mation using Artificial Neural Networks – Cloud Classification System 
(PERSIANN-CCS) (Hong et al., 2004) schemes. Likewise, the IR fields are 
intercalibrated by CPC en route to PERSIANN-CCS through the Precip-
itation Measurement Mission (PMM) Precipitation Processing System 
(PPS). The estimates from the PERSIANN-CCS are directed to the 
CMORPH-KF scheme, which uses the PMW and IR estimates to create 
half-hourly estimates. This results in three IMERG products with la-
tencies of approximately 4 h (Early), 12–14 h (Late) and 3.5 months 
(Final). For this analysis we focus on IMERG Early since primary use for 
this product is in near-real time applications such as flood and landslide 
nowcasts (Zhang et al, 2011, 2016). IMERG Early version V06 is utilized 
as the primary precipitation product in the current LHASA framework. 
The precipitationCal data field in the PPS files provide global Level 3 
gridded precipitation estimates (mm/h) at 0.1◦, 30 min spatiotemporal 
resolution (Huffman, Bolvin, and Nelkin 2015). 

2.1.2. MRMS: ground-based product 
The Multi-Radar/Multi-Sensor (MRMS) algorithm fuses data from 

automated rain gauges and polarimetric WSR-88D radars to generate 
multiple hydrometeorological products, including fine resolution (0.01◦

and 2-min) quantitative precipitation estimates (Zhang et al., 2011, 
2016). The use of dual-polarized WSR-88D radars ensures superior hy-
drometeor identification compared to non-polarimetric methods 
(Chandrasekar et al., 2008; Melnikov et al., 2011), thereby making 
MRMS an independent reference for space-based and model-based 
precipitation products. The final MRMS ground-based precipitation 
reference is a gauge-corrected gridded product with a spatiotemporal 
resolution of 0.01◦ every 30 min. MRMS provides consistent 
spatio-temporal precipitation measurements over the contiguous United 
States (CONUS) and radar quality index values for each grid cell 
(Kirstetter et al, 2012, 2014). CONUS represents various geographical 
(plains, mountains, etc.) and meteorological (subtropical to 
mid-latitudes) conditions. This inherent diversity provides an opportu-
nity to employ MRMS as a ground truth for evaluation of satellite- and 
model-based precipitation products. High quality MRMS precipitation 
products are obtained by further filtering the gauge-corrected product 
using a radar quality index (RQI) ≥65 (Zhang et al., 2011). This ensures 
that moderate to high radar quality index values (RQI) are selected for 
comparison with satellite and model-based precipitation products. 

2.1.3. GEOS-forecast: model-based forecast product 
NASA’s Global Modeling and Assimilation Office (GMAO), in 

collaboration with National Centers for Environmental Prediction 
(NCEP) at NOAA, developed the Goddard Earth Observing System 
(GEOS) Forward Processing (FP) model. The GEOS Atmospheric General 
Circulation Model integrates finite-volume dynamics (Lin 2004) with 
physical models like Catchment Land Surface Model (CLSM) (Bacmeis-
ter et al. 2006; Koster et al., 2000) under the Earth System Modeling 
Framework (ESMF). The model uses three-dimensional variational 
analysis-based Gridpoint Statistical Interpolation (GSI) in grid-point 
space to incorporate anisotropic, inhomogeneous covariances (e.g., 
Derber et al., 2003; Wu et al. 2002). More details about the GEOS at-
mospheric model can be found in Rienecker et al., 2008 and Molod et al., 
2012. 

GEOS-FP is a 4-dimensional Ensemble-based variational (4D EnVar) 
system. The system uses ensembles to inform the analysis, which in-
volves running perturbation ensemble members for a short period into 
the future. The GEOS-FP system provides assimilation products and ten- 
day forecasts for precipitation, among other environmental variables, 
for operational forward-processing. Assimilation of new observations 
within the GEOS model occurs every 6 h, at 00, 06, 12, and 18 UTC. 
After atmospheric data assimilation has completed for a given synoptic 

time, typically at 00z and 12z, a model forecast is used to generate a 
time-series of hourly forecast products out to 10 days. The near-real time 
data assimilation forecast is available at 25 km × 31 km spatial reso-
lution. Specifically, the data archived in the PRECTOT data field in the 
hourly, time-averaged, two-dimensional (2d) flx (flux) collection are 
employed in this study (Lucchesi, R., 2018). For the current study, the 
GEOS-Forecast model initialized at 00 UTC for 1-day forecast is used, 
which assumes the 24 h accumulation forecasted from 00Z. The units for 
the precipitation are converted into mm from kilogram per square meter 
per second (kg/m2-s1). 

2.2. Study period and study area 

Based on the availability of historical GEOS-Forecast data, the 
analysis focuses on the study period between July 2018 and Feb 2020. 
The analysis is carried out at a 0.1 ◦ × 0.1 ◦ spatial resolution with daily 
precipitation accumulation for all precipitation products. The spatio- 
temporal alignment of the products is described in section 2.3.1. 

First, IMERG Early and GEOS-Forecast products are evaluated over 
CONUS against the ground-based reference, MRMS. The choice of 
CONUS as the study area is primarily governed by the availability of 
high-quality, ground-based precipitation data (MRMS) over this region. 
Additionally, CONUS offers diversity in terms of terrain complexity, 
climatology, and precipitation morphology, with known areas of high 
potential for triggering landslides. In particular, the performance of 
these products in high-susceptibility landslide areas inside CONUS is 
carried out in high-hazard regions like the Appalachian Mountains, 
Pacific Northwest, and California. 

Second, the global inter-comparison between IMERG Early and 
GEOS-Forecast is carried out to evaluate the forecast precipitation 
(GEOS-Forecast) against the satellite precipitation (IMERG Early), 
which is currently used within the LHASA framework. In the context of 
landslide monitoring, this global evaluation is further enhanced by 
focusing on three landslide hotspots: the Mekong region (Thailand, 
Vietnam, Laos, Cambodia, and Myanmar), Colombia (South America), 
and Gorno-Badakhshan Autonomous Oblast (GBAO) province in 
Tajikistan (Domej 2015; https://thinkhazard.org/en/report/239-tajiki 
stan/LS). More details on the precipitation and climatology of the re-
gions are presented in Section 3. 

2.3. Methodology 

2.3.1. Spatio-temporal data alignment 
The IMERG Early, GEOS-Forecast and MRMS data are at different 

native spatial and temporal resolutions, which necessitates aligning 
these data to a common spatio-temporal scale. The differences in spatial 
resolution between IMERG Early and GEOS-Forecast are accounted for 
by downscaling GEOS-Forecast to a 0.1◦ scale with the nearest-neighbor 
method. The IMERG Early half-hourly and GEOS-Forecast hourly esti-
mates are accumulated over the duration of a day. Likewise, the ground- 
based precipitation reference MRMS is resampled to match the IMERG 
spatial resolution by averaging and retaining the grid cells for which 90 
% pixels exceed the radar quality index of 65. 

2.3.2. Landslide susceptibility mapping 
A landslide susceptibility map based on the Stanley and Kirschbaum, 

2017 classification is adapted over CONUS and the map is re-gridded to 
the spatial resolution of 0.1◦ × 0.1◦ to investigate the performance of 
IMERG Early and GEOS-Forecast in high landslide susceptibility zones 
with reference to MRMS. Following the threshold used for the LHASA 
version 1.1 moderate-hazard nowcast, the five susceptibility zones 
(0–5), are divided into susceptible (3–5) and non-susceptible (0–2) 
landslide zones between the low and moderate susceptibility ratings 
(Fig. 1). This division of susceptibility sorts over 90 % of landslides 
mapped in CONUS into the susceptible zone (Mirus et al., 2020) but 
most of the land surface into the insusceptible zone. For this study, we 
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consider three high-susceptibility zones within CONUS: the Appala-
chians, Pacific Northwest and California, but recognize that there are 
other high susceptibility areas of the U.S. such as the Rocky Mountains 
that are frequently impacted by landslide hazards. 

2.3.3. Distributions, performance metrics and seasonality analysis 
Categorical and continuous statistics are used to assess the relative 

performance of IMERG early and GEOS-Forecast precipitation products 
against each other and the reference. Both categorical and continuous 
statistics are vital for the characterization of systematic and random 
errors. Categorical statistics such as probability of detection (POD), 
success ratio (SR), critical success index (CSI) and the hit bias are 
defined as: 

POD :
H

H + M
(1a)  

SR :
H

H + F
(1b)  

CSI :
H

H + M + F
(1c)  

Hit bias :
H + F
H + M

(1d)  

where H represents ‘hit’ cases, i.e., both the satellite (P) and the refer-
ence (PRef) are greater than or equal to the rain/no-rain threshold (th); F 
represents ‘false alarms’, i.e., P is greater than or equal to th, but PRef is 
less than th; M represents ‘misses’, i.e., PRef is greater than or equal to th 
but P is less than th; Z represents ‘true negative’, i.e., P and PRef are both 
less than th. The contingency table parameters H, M, F, and Z are defined 
in Table 1. The ideal value for all the performance metrics (POD, SR, CSI 
and hit bias) is 1. Four different values for the threshold are used for this 
assessment for a 24-h period: th ≥ 1 mm, th ≥ 25 mm, th ≥ 50 mm, and 
th ≥ 100 mm). 

Spatially averaged precipitation maps, spatial maps of temporal 
correlation coefficient (CC) and probability density functions (PDFs) are 

reported to investigate the continuous statistics. 
Landslides can be triggered by a variety of extreme precipitation 

conditions including heavy precipitation from thunderstorms, tropical 
cyclones, and short convective events. The occurrence and frequency of 
these events can vary seasonally. To consider the influence of season-
ality on precipitation product performance, the datasets are segmented 
into four seasons: Summer (June July August-JJA), Fall (September 
October November-SON), Winter (December January February-DJF), 
and Spring (March April May-MAM) and the statistics are evaluated as 
a function of seasonality for the entire CONUS region as well as the high- 
susceptibility landslide regions (Appalachian, Pacific Northwest and 
California). 

Finally, for the three regions selected for this study outside of the U.S. 
(Mekong, Colombia and GBAO), the analysis over the entire study 
period (July 2018–Feb 2020) is complemented by event-based analyses 
for two selected extreme events for each region. 

3. Results 

3.1. How close are IMERG early and GEOS forecast to the reference? 

Once IMERG Early and GEOS-Forecast precipitation products are 
spatio-temporally aligned, they are evaluated against the MRMS-based 
reference. Fig. 2 shows the mean daily accumulated precipitation over 
CONUS during the study period for all products. The Midwest, Southeast 
and parts of West Coast (Pacific Northwest) show high average precip-
itation accumulations, characterized by moist continental mid-latitude 
and tropical climates that are wet throughout the year. Overall, both 
IMERG Early and GEOS-Forecast underestimate the average daily values 
compared to MRMS-based reference. In these average precipitation 
maps, IMERG Early is better matched to MRMS for the Midwest and 
Southeast regions, whereas GEOS-Forecast performs marginally better 
in the West, though high quality MRMS data in this region is sparser. 
Better performance of IMERG Early relative to GEOS-Forecast in the 
Midwest and Southeast regions could be the result of overall capability 
of satellite-based retrievals, which are influenced by the regional het-
erogeneities, precipitation intensities, seasonality and climatology (Tian 
and Peters-Lidard 2010). The 99th percentile maps for IMERG Early and 
GEOS-Forecast over CONUS are shown in the supplementary material 
(SM1). 

Next, in order to further enhance our understanding of an individual 
storm in the high-susceptibility zones, two case studies assess the per-
formance of IMERG Early and GEOS-Forecast; one in the Pacific 
Northwest on Dec 21st, 2019 and another in the Appalachian region 

Fig. 1. Landslide susceptibility map adapted from Stanley and Kirschbaum (2017) over CONUS. The regions with moderate to high landslide susceptibility are shown 
in gray and non-susceptible landslide zones are shown in black. 

Table 1 
Contingency table.   

IMERG Early/GEOS-Forecast 

Reference  P ≥ th P < th 
PRef ≥ th H M 
PRef < th F Z  
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from Feb 5th – 7th, 2020. These events brought heavy downpours and 
landslides to these regions. The spatial variability of precipitation for the 
extreme events is shown in Fig. 3 (a, b, c and e, f, g). An underestimation 
of the GEOS-Forecast with respect to MRMS-based reference is apparent 
in the southern and central Pacific Northwest, whereas IMERG Early also 
underestimates but to a lesser extent than GEOS-Forecast overall. 
However, the amount of relative underestimation is variable across the 

Pacific Northwest region for this event. The distributions over the Pacific 
Northwest (Fig. 3d) show IMERG Early (blue) is left skewed (<20 mm). 
There is a higher density of medium range precipitation accumulations 
(10–40 mm) for the GEOS-Forecast (green), and an almost uniform 
spread (0–100 mm) for MRMS-based reference (red). 

The steep slopes of the Appalachian mountains exacerbate the 
occurrence of debris flows in the central and southern Appalachian 
Mountains (Wieczorek and Morgan 2008). Heavy precipitation accu-
mulation can be observed in central and southern parts of the Appala-
chian region (Fig. 3e, f, and 3g). Overall, IMERG Early (Fig. 3e) is closely 
matched to MRMS, especially in the lower section of Appalachians. 
Comparatively, the GEOS-Forecast (Fig. 3f) captures slightly higher rain 
estimates in the northeast Appalachian relative to IMERG, but both 
products still underestimate in this region. Fig. 3h shows that 
GEOS-Forecast has a higher density of light and medium precipitation 
(≤70 mm) and misses the highest precipitation values (>150 mm) 
(green). The IMERG Early and MRMS-based distributions are similar at 
higher accumulations >120 mm, but MRMS is more sensitive to rainfall 
rates in the 50–100 mm range. 

3.2. How do the performance of the precipitation products differ by 
season? 

The influence of seasonality on the performance of IMERG Early and 
GEOS-Forecast precipitation estimates over CONUS is shown in Fig. 4, 
represented by seasonal and regional correlation coefficients against 
MRMS. The performance of GEOS-Forecast relative to MRMS has the 
worst correlation in summer (Fig. 4b), moderate performance in spring 
(Fig. 4h) and somewhat comparable performance to IMERG in fall and 
winter. The performance of IMERG Early is more consistent across the 
seasons, except for winter in northern regions (Fig. 4e) and summer in 
the West coast (Fig. 4a). The low correlation in northern regions during 
winter could be attributed to the detection capability of IMERG in snowy 
conditions. Overall, the best performance in terms of correlation coef-
ficient for IMERG Early is during the fall season (Fig. 4c), and for GEOS- 
Forecast during the winter season (Fig. 4f). 

For an in-depth performance analysis in the 3 high-susceptibility 
landslide zones, we examine the seasonal dependence of categorical 
statistics at four different thresholds across the three regions. All the 
statistics presented in Fig. 5 clearly show dependence of the perfor-
mance on seasonality and rainfall thresholds. For th ≥ 1 mm, the POD 
over Appalachian region for both IMERG Early and GEOS-Forecast is 

Fig. 2. Average daily accumulated precipitation maps (mm) for a) IMERG 
Early, b) GEOS-Forecast and c) MRMS-derived reference for study period (July 
2018–Feb 2020). The white spaces indicate places where MRMS RQI ≤65. 

Fig. 3. Accumulated precipitation maps (in mm) over the event durations and PDFs (d and h) for Pacific Northwest (top panel) and Appalachian (bottom panel) 
region respectively: a, e) IMERG Early, b, f) GEOS-Forecast and c, g) MRMS-derived reference (Ref.). 
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consistently high (>0.65) compared to the Pacific Northwest and Cali-
fornia region. The POD degrades significantly with increasing rainfall 
thresholds, whereas the SR depicts a more gradual change. This is 
attributable to rainfall underestimation by both GEOS-Forecast and 
IMERG Early. The poorest performance of GEOS-Forecast in terms of CSI 
is observed in the Appalachian region and is consistent across all sea-
sons. The hit bias shows the largest variability in spring (Pacific 
Northwest) and winter (Appalachian) for IMERG Early and in spring and 
summer for GEOS-Forecast (Appalachian). The seasonal PDFs of all 
three products for Appalachian, Pacific Northwest and California re-
gions are shown in the supplementary material (SM2). 

3.3. How do IMERG early and GEOS-Forecast compare globally? 

A global comparison between GEOS-Forecast and IMERG Early is 
presented in terms of 95th percentile difference (mm/day) between 
IMERG Early and GEOS-Forecast during the study period (Fig. 6). The 
50th, 75th and 99th percentile difference maps are shown in supple-
mentary materials (SM3-SM5). The positive difference (red color) in-
dicates higher IMERG Early estimates, and negative difference (blue), 
higher GEOS-Forecast estimates, respectively. The mid-latitude regions 

characterized by drier climates show minimal difference (±10 mm). On 
average, GEOS-Forecast has lower rainfall (red) in mid-latitudes such as 
Australia, eastern CONUS; and higher rainfall (blue) in tropics (Central 
Africa and South America), some parts of the mid-latitudes such as high 
mountain Asia region (Central Asia and Asia-pacific), and West Coast of 
CONUS. These regions have temperate climates, characterized by mid- 
latitude cyclones, and marine climates, and often receive stratiform 
precipitation (Khan and Maggioni 2020). Moreover, in complex terrains 
such as western US, Andes, Central Asia, the relative performance ap-
pears to be dependent on elevation, where IMERG Early is showing 
lower precipitation values consistently. Satellites often underestimate 
precipitation in complex terrain, because infrared and microwave 
remote sensing of precipitation is less accurate within areas of 
orographic uplift where warm rain processes can dominate. 

In order to evaluate GEOS-Forecast and IMERG Early at a global 
scale, we further expand the analysis to global landslide hotspots. Two 
case studies are considered in each location to compare how these 
products perform at an event scale. First, Colombia is strongly influ-
enced by the El Nino and La Nina climatic phenomena as well as strong 
convective systems originating from the tropical Pacific. Fig. 7 shows the 
spatial distribution of precipitation for IMERG Early (Fig. 7a) and GEOS- 

Fig. 4. Seasonal correlation maps for IMERG Early (a, c, e and g) and, GEOS-Forecast (b, d, f and h) against MRMS-derived reference for summer (JA-2018 and JJA- 
2019), fall (SON-2018 and 2019), winter (DJF-2018&2019) and, spring (MAM-2019). 
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Fig. 5. Seasonal (summer, fall, winter and spring) and overall study period categorical statistics for high landslide hazard regions: Appalachian (Aplch.), Pacific 
Northwest (PNW) and California (Calif.). Four performance metrics, POD (I), SR (II), CSI (III) and Hit bias (IV) are presented. For each metric, the performance 
against MRMS-derived reference (Ref.), for GEOS-Forecast (left panels) and IMERG early (right panels), at four precipitation thresholds, ≥1 mm (a and b), ≥25 mm (c 
and d), ≥50 mm (e and f) and ≥100 mm (g and h), are shown. 

S. Khan et al.                                                                                                                                                                                                                                    



Weather and Climate Extremes 33 (2021) 100364

8

Forecast (7b) across Colombia. The best CC (0.6) is observed in the 
southwestern part of the country where precipitation totals are greatest. 
Two events with significant rainfall (5–6 November 2018 and 27 May to 

3 June 2019) show that GEOS-Forecast captures higher rainfall accu-
mulations (Fig. 7e and h) compared to IMERG Early (Fig. 7d and g) over 
the same region. This region is characterized by tropical as well as 

Fig. 6. 95th Percentile difference between IMERG Early and GEOS-Forecast precipitation map (mm/day) for the study period. Red colors indicate that IMERG Early 
has higher values than GEOS-Forecast and blue color correspond to greater GEOS-Forecast 95th percentile precipitation accumulation. 

Fig. 7. Colombia region: a) and b) average daily accumulated precipitation maps; d), e) Nov 5th-6th, 2018 and g), h) May 27th -June 3rd, 2019 event-based 
precipitation maps and f) and i) event-based PDFs. 
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temperate oceanic climates. The distributions (Fig. 7f) almost overlap in 
the Nov 2018 event. However, for the late May to June 2019 event the 
distribution for the GEOS-Forecast is slightly skewed towards the left 
compared to IMERG Early, with a peak around 100 mm. For both cases, 
the GEOS-Forecast estimates higher rainfall accumulations than IMERG 
Early. The underestimation of rainfall by IMERG Early in the western 
part of the country could be attributed to the warm-precipitation process 
associated with orographic uplift caused by onshore flow toward the 
Andes, also reported in the study by Dinku et al., 2010, where different 
satellite-based products underestimated rainfall relative to gauges in 
western Colombia. 

We also compare GEOS-Forecast and IMERG Early in Gorno- 
Badakhshan Autonomous Oblast (GBAO) province of Tajikistan. This 
region is located in the Pamir Mountain range, also known as the roof of 
the world. Overall, the CC is high (~0.60) for the western part of the 
province (Fig. 8c). Examination of two high-intensity rainfall events 
suggest that the GEOS-Forecast exhibits higher rainfall for both Jan 
2019 (tail~27 mm) and June 2019 (tail~30 mm) events relative to 
IMERG Early (Fig. 8f and i). 

Region- and event-based precipitation maps for Mekong region are 
presented in Fig. 9. The CC between IMERG Early and GEOS-Forecast 
ranges from 0.1 to 0.8, where the best CC can be seen in northern and 
southern parts of Laos. Moreover, CC > 0.40 is observed in northern 
Thailand and Myanmar, and along the western shoreline of Myanmar. 
The distributions (Fig. 9f) demonstrate a peak of around 50 mm for both 

IMERG Early and GEOS-Forecast. IMERG Early distribution approaches 
its tail around 220 mm, whereas GEOS-Forecast is around 350 mm. 

Lastly, we compute the mean bias (Bias = μGE0S-Forecast - μIMERG Early) 
at event-scale and for the entire study period for the three regions. 
Fig. 10 demonstrates that the bias is more pronounced at the event-scale 
than for the entire study period for all three regions, where GEOS 
Forecast tends to overestimate relative to IMERG Early. The bias 
apparently is dependent on regions and specific events. 

3.4. Will GEOS-Forecast rainfall data help to predict landslide events? 

Even if the GEOS-Forecast generally succeeds at forecasting rainfall a 
day in advance, it could still be possible that the forecasts are less ac-
curate in landslide-prone terrain. To further explore the feasibility of 
using a global precipitation forecast to characterize landslide hazard, we 
extract the rainfall forecast and IMERG Early precipitation values at the 
time and place of recent landslides. Because NASA’s Global Landslide 
Catalog (Kirschbaum, Stanley, and Zhou 2015) is not complete for the 
year 2018, we used a new collection of landslide reports derived from 
Twitter with machine learning (Data Curator: Dr. Dimitrios Zekkos, 
University of California at Berkeley, USA). The process merges multiple 
tweets into a single report that represents a unique landslide event. 
These reports were categorized into 6 quality levels. Only the top 2 
categories were used in this analysis. The database also contains tags 
that identify various causes of landsliding. Using these, only 

Fig. 8. Gorno-Badakhshan Autonomous Oblast (GBAO-Tajikistan) region: a) and b) average daily accumulated precipitation maps; d), e) Jan 6th-8th, 2018 and g), h) 
June 4th-7th, 2019 event-based precipitation maps and f) and i) event-based PDFs. 
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rainfall-triggered landslides were selected. After filtering, 497 landslide 
events were available to compare with the GEOS-Forecast and IMERG 
Early data. These are spread globally, but are most heavily concentrated 
in the United States, United Kingdom, and South Asia due to the fact that 
the reports were only gathered for English language tweets. 

The estimates of daily rainfall from GEOS-Forecast and IMERG Early 
were extracted at each point in R (Analytics and Weston, 2015; Grole-
mund and Wickham 2011; Hijmans 2020; Pebesma 2018; Team 2013), 
based on the first time at which a tweet was posted. There is no guar-
antee that every landslide was promptly reported on Twitter. Thus, some 
events might be associated with precipitation that occurred after the 
landslide. 

Fig. 9. Mekong region: a) and b) average daily accumulated precipitation maps; d), e) Sep 4th-13th, 2018 and g), h) Sep 6th, 2019 event-based precipitation maps 
and f) and i) event-based PDFs. 

Fig. 10. Mean bias for entire study period (blue) and for Event-A (turquoise): 
GBAO (Jan 6th-8th, 2018), Colombia (Nov 5th-6th, 2018) and Mekong (Sep 
4th-13th, 2018) and Event-B (yellow): GBAO (June 4th-7th, 2019), Colombia 
(May 27th -June 3rd, 2019) and Mekong (Sep 6th, 2019). (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 2 
Summary statistics for estimates of daily rainfall from GEOS-Forecast (mm) and 
IMERG (mm) at recent historical landslides. Box-whiskers plot of IMERG Early 
and GEOS-Forecast for twitter-based analysis are included in supplementary 
material (SM4).  

Inventory Twitter reports Major events 

Product IMERG Early GEOS-Forecast IMERG Early GEOS-Forecast 

Minimum 0.0 0.0 8.5 1.3 
1st Quartile 1.0 1.9 180.8 166.5 
Median 10.3 12.3 224.6 166.5 
Mean 31.0 33.0 220.5 186.8 
3rd Quartile 35.2 37.7 272.1 217.1 
Maximum 511.5 416.6 357.9 279.0  
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In addition to the analysis of Twitter data, we examined six landslide 
inventories, each of which describes a single major event (Table 3). 
Because these inventories were derived from satellite imagery, the 
spatial precision is likely to be much better than for the Twitter-based 
inventory, however, there is a certain degree of temporal uncertainty. 
In the cases of the Rio de Janeiro and Burundi events, the timing of the 
landslide event is well known, but the landslides that occurred near 
Thrissur, India happened multiple times over a period of weeks. It was 
not possible to determine the exact date of each landslide individually, 
so the dates of the most intense landslide activity (as revealed by media 
reports) was chosen. The dates of landslides associated with tropical 
cyclones Idai, Manghkut, and Prapiroon are not known with certainty, 
but are constrained to a very narrow window of time. 

In general, the rainfall derived from IMERG Early and GEOS-Forecast 
is of similar magnitude (Table 2). The 1st quartile and median of the 
GEOS-Forecast for major events are identical because over 1/4th of 
landslides in the major events inventory are in one inventory, located 
within a single GEOS-Forecast pixel. However, sizable differences in 
estimated precipitation can be seen in many individual events (Fig. 11). 
Moreover, Fig. 12 shows that a consistent global bias does not appear to 
exist. The relative overestimation and underestimation of the two 
products varies with respect to region, and more specifically, with the 
individual events. Very low or even null rainfall occurred on the same 
date as numerous reports from this dataset. This is attributed to both to 
uncertainties associated with the precise timing of landslides within the 
database as well as potential underestimation of rainfall for a particular 
event. However, many landslides coincided with much higher values 
(>100 mm). 

Similar to the landslides from social media, rainfall estimates vary 
widely across remotely sensed landslides (Table 3). The overall range of 
values is quite similar to those derived from the report-based inventory, 
but the estimated rainfall is typically much higher. While this could be 
the result of better spatial accuracy, the bias towards collecting landslide 
inventories for the most extreme meteorological events probably has a 
much stronger effect. It is important to remember that although the 
event-based inventories contain thousands of individual landslides, 
these represent a handful of meteorological events; this fact may explain 
the smaller range of rainfall values seen in Table 2. Although IMERG 
typically shows higher rainfall estimates for extreme events, Typhoon 
Mangkhut was an exception (Table 3). The most striking failures are for 
the storms in Burundi and Brazil, where GEOS-Forecast predicted <10 
mm of rainfall. However, IMERG Early also estimates relatively low 
daily rainfall for events that have been described as “downpour” or 
“heavy rainfall” triggers. In contrast, both products show extreme pre-
cipitation for the three tropical cyclones. This suggests that some storms 
are more reliably identified, and that a global landslide forecast would 
be more effective for major tropical cyclones, which is in line with the 
previous study where GEOS model demonstrated ability to predict 
tropical cyclones in terms of frequency and track locations (Putman and 
Suarez 2011). 

4. Discussion 

This study assesses the performance of model-based precipitation 
forecast and satellite-based precipitation estimates to determine the 
feasibility of applying a global precipitation forecast within the LHASA 
global landslide modeling framework to better anticipate future land-
slide hazard around the world. Comparing GEOS-Forecast to IMERG 
provides a first step in characterizing the regional differences in extreme 
precipitation that triggers landslides and exploring the possibility of 
using the GEOS-Forecast in place of IMERG in the LHASA model. A 
ground-based reference is used as an independent reference to evaluate 
the performance of both products at CONUS scale. The results over 
CONUS highlight that for the GEOS-Forecast, warm summer precipita-
tion presents a bigger challenge than the cold winter phase. GEOS- 
Forecast is better correlated to MRMS in winter, which could be 
attributed to the fact that data assimilation techniques employed in 
observation-based model outputs make these superior to other indirect 
measurements such as snow derived from satellites (Girotto et al. 2020; 
Houser et al., 1998). Therefore, for snow-dominant landslide hazard 
zones, the forecast could be generalized to be more reliable than the 
regions with warm precipitation. The methodology developed here for 
assessment of the precipitation products could be transferred to other 
regions where regional forecast and in-situ measurements are available. 

This analysis reveals that the difference between the two precipita-
tion products is greater in tropical regions. In the absence of a global 
ground truth, these differences cannot be completely reconciled. These 
differences could indicate either that GEOS-Forecast is better than 
IMERG at resolving rainfall totals for strong tropical convective events 
or that the GEOS-Forecast overestimates these events. The 95th 
percentile difference (Fig. 6) from the short record over which we have 
GEOS-Forecast data highlights these differences. The variability in 
tropical regions with high landslide susceptibility, such as the Andes, the 
Philippines and Indonesia, and Central America, needs to be further 
investigated using regional ground-based reference data. While the 
analysis over CONUS could be generalized to regions with analogous 
topography and landslide climatology, assessment of the model biases 
requires a long historical record and ground truth to draw significant 
conclusions. Ground-based data is very important for validation of both 
satellite-derived and model-based precipitation products. Considering 
global gauge-based products e.g. Global Precipitation Climatology 
Project (GPCP) may help to better characterize the regional differences 

Table 3 
Comparison of IMERG Early and GEOS-Forecast rainfall estimates (mean in mm) 
by major event inventory shows typically higher values in the former dataset. 
However, both show surprisingly low rainfall for the events in Burundi and Rio.  

Inventory IMERG Early GEOS-Forecast 

Burundia 27.9 6.7 
Cyclone Idai2 178.19 144.7 
Typhoon Mangkhut 110.8 214.8 
Typhoon Prapiroona 251.7 207.7 
Rio de Janeiroa 15.3 1.8 
Thrissur Monsoon 79.98 38.8  

a (Amatya et al. 2019) 2 (Amatya et al., 2021). 

Fig. 11. Scatter plot between IMERG Early and GEOS-Forecast. Red (*) marks 
correspond to rainfall accumulations for event-based landslide reports whereas 
black (+) marks correspond to tweets-based report. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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over longer time scales and provide insight into systematic biases that 
may impact both IMERG and GEOS-Forecast (Adler et al., 2020; Huff-
man et al., 2021). Alternatively, local ground data can be used for local 
bias correction of the products (Enayati et al., 2021; Laverde-Barajas 
et al., 2020). Although the comparison between the products considered 
the uncertainties associated with the different spatiotemporal resolu-
tions, resampling the products to a common 0.1◦ spatial resolution could 
have introduced some discrepancies. 

A comparison of rainfall estimates from IMERG Early and GEOS- 
Forecast at the location of recent historical landslides reveals a moder-
ate level of correlation (0.27 ≤ CC ≥ 0.58) between the two precipitation 
products. Most of the landslides reported in Twitter are associated with 
low daily accumulated precipitation, but many landslides were caused 
by extreme rainfall events. The overall distribution of the two datasets is 
similar, although IMERG Early reached a maximum much greater than 
GEOS-Forecast. The validation over landslide points reveals that some 
storms are more reliably identified by GEOS-Forecast, and both IMERG 
Early and GEOS-Forecast correspond well for rainfall accumulations 
>100 mm and tropical cyclones in general. The absence of regional 
diverse and available landslide inventories limits more extensive anal-
ysis in different morphologies; however, as the inventories become more 
available through global initiative (e.g. LandAware; Calvello et al., 
2020), will help to advance the validation reliability. 

IMERG Early and GEOS-Forecast have the potential to substitute for 
in situ rainfall measurements in data-sparse, ungauged, or large-scale 
catchments. However, the capability of both satellite and model-based 
estimates vary largely due to differences in topography, season, 
climate, basin size, and product type (Jiang and Wang, 2019). Therefore, 
should be cross validated with the rain gauge networks or ground-based 
radar and local weather forecast models (WRF) for estimation of 
geo-hydrological hazards. 

For this study, the most consistent and longest historical versions of 
GEOS-Forecast (GEOS-FP 5.21 and GEOS-FP 5.22) have been utilized. 
While this provides a 2-year product from which to evaluate differences, 
a longer record would better characterize patterns in extreme precipi-
tation events. However, retrospective runs of the current or earlier 
versions of GEOS-FP are not available. The updates in the GEOS-forecast 
product present a challenge for its integration into LHASA framework. 
Though any modification to the GEOS-Forecast product does not 
necessarily represent a drastic change in the precipitation field, forecast 
product versioning should still be considered an important factor in 
contributing uncertainty within the predictive capability of LHASA 
model. As we intend to use the latest version of the GEOS-Forecast 
product in LHASA framework, the evaluation of the past versions 

(prior to GEOS-FP 5.21) of the model is out of scope of this study. 
Furthermore, given the difference in the spatial and temporal resolution 
of the satellite-derived and model-based products, the incorporation of 
the datasets at their native resolutions is not straightforward. Hydro-
logical applications such as landslide modeling and flood forecasting 
require estimates of precipitation at a fine scale. The coarse spatial 
resolution of models such as the GEOS-Forecast product (0.25◦ × 0.31◦) 
makes landslide characterization difficult. One of the known limitations 
of GEOS-Forecast is the accuracy of the spatial location of extreme 
convective precipitation events (Gary S. Partyka-GMAO/NASA, Per-
sonal Communication). While the model may accurately predict a strong 
convective core, it may not place it in the same location as that observed 
by satellite data, which can cause large discrepancies in the precipitation 
totals in areas where strong convective events predominate such as in 
the tropics. However, upgrades in the GEOS-FP system (GEOS-FP 5.25 
onward) with changes in model physics and land model parameteriza-
tion (https://gmao.gsfc.nasa.gov/researchbriefs/land_changes_GEO 
S-FP/land_changes_GEOS-FP.pdf) has allowed improvements in the 
known issues. 

GEOS-Forecast dataset offers global coverage at an hourly resolution, 
which distinguishes it from other global precipitation forecast products 
such as the NCEP Global Ensemble Forecast System (GEFS-1◦/6hrs) and 
Climate Hazards Infrared Precipitation with Stations (CHIRPS)-GEFS 
(0.05◦/day, 5-day, 10-day and 15-day forecast). This makes GEOS- 
Forecast a better candidate for global landslide hazard early warning 
systems. Comparison of GEOS-Forecast beyond 24 h would be valuable 
to better understand the feasibility of potential lead times for extreme 
events. Contingent upon the short-term and long-term precipitation 
forecast accuracy of the GEOS-Forecast model at a local scale, it could be 
integrated into a landslide early warning system. While it is not straight 
forward, there are several approaches to make GEOS-Forecast more 
relevant to LEWS (e.g. scaling, bias correction if possible). Further 
analysis with other ground based datasets would provide more confi-
dence in the applicability of GEOS-Forecast for landslide prediction, 
particularly at local scales. 

This work highlights the potential utility of the GEOS-Forecast for 
global landslide early warning system. However, our preliminary anal-
ysis suggests that its integration in the current LHASA framework re-
quires some adaptation (rescaling, transformation) to achieve 
comparable accuracy as the near-real time probabilistic landslide hazard 
estimates. Past studies have applied gamma and log-normal distribu-
tions over satellite rainfall to account for the disparity in the empirical 
data (Cho et al., 2004). A recent study by Tan et al. (2020) uses the 
nominal satellite retrieval to restore the PDF of the precipitation field by 

Fig. 12. Additive Bias between IMERG Early and GEOS-Forecast rainfall (mm). Red color indicates high IMERG Early rainfall accumulations, whereas blue color 
indicates high GEOS-Forecast rainfall accumulation at landslide points across the globe during the study period (July 2018-Feburary 2020). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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introducing a new algorithm called Scheme for Histogram Adjustment 
with Ranked Precipitation Estimates in the Neighborhood (SHARPEN). 
The proposed scheme could be applied to model-based algorithms 
particularly as these models increase in their spatial resolution. Bias 
correction of GEOS-Forecast with respect to IMERG Early does not 
appear to be a viable option given the uncertainties associated with 
IMERG Early. 

In our prospective work, we are working to identify the optimal 
approach to rescale forecast precipitation and determine what treatment 
of the GEOS-Forecast could be most useful to forecast landslide hazard. 
As an example, LHASA nowcast and forecast outputs for Hurricane Eta in 
Central America on Nov 4, 2020 are shown in supplementary material 
(SM7) for a brief overview of the ongoing feasibility study (Khan et al., 
2021). We will also explore ways to incorporate GEOS-Forecast pre-
cipitation into LHASA framework, such as assigning categorically alert 
levels based on precipitation extremes. Moreover, it should be empha-
sized that different factors, such as amount of rainfall, its ground 
accumulation and the local terrain, influence translational slides, debris 
flows, rockfalls and other type of mass movements in different ways. 
While the global landslide model LHASA indirectly incorporates theses 
regional factors along with precipitation, it could be enhanced by 
including customized regional attributes. 

5. Conclusions 

Forecasted precipitation data can provide a valuable estimate of 
future extreme rainfall that may trigger landslides, offering emergency 
responders, decision makers, aid agencies and other international 
groups insight into potential impacts from extreme events in advance. 
Before assuming the forecast product to be spatially and temporally 
accurate, this study evaluates global forecast data and satellite rainfall at 
different spatiotemporal scales and outlines the potential for its use in 
landslide hazard forecasting. The conclusions are summarized below:  

1) Overall, the lowest agreement indices are found for extreme events, 
attributed to both poor performance of the products at high thresh-
olds as well as the sensitivity of the categorical statistics towards the 
sample size, where extremes events are rare above a certain 
threshold.  

2) For two extreme events in Pacific Northwest and Appalachian region 
in USA, the PDF of daily amount of rainfall in case of IMERG Early 
and GEOS-Forecast have different peak location, peak height, abso-
lute values and different tail as compared to the reference (Fig. 3). 

3) Seasonality influences the performance of both near-real time sat-
ellite precipitation estimates and modeled forecasts, which can be 
attributed to factors such as topography (mountainous regions) and 
morphology of precipitation (snow, drizzle etc.) among others. The 
correlation between GEOS-Forecast and MRMS is high in US west 
coast and northeast, also GEOS-Forecast is better correlated with 
MRMS in winters.  

4) The performance of the satellite/model-based products, the amount 
and intensity of rainfall needed to trigger landslides differs based on 
geography, climatology, etc., which prevents extrapolation on the 
globe and highlights the importance of a regional reference such as 
MRMS over CONUS.  

5) For regions that are evaluated, including the United States, 
Colombia, Mekong, and GBAO province in Tajikistan, the GEOS- 
Forecast appears to resolve extreme rainfall (~>70 mm) at event- 
scale relative to a near-real time satellite product. 

6) The GEOS-Forecast shows comparable performance to satellite esti-
mates in many parts of United States, however, validation over 
landslide points reveals that GEOS-Forecast precipitation for tropical 
cyclones correspond well with near-real time satellite estimates 
(IMERG Early) compared to other types of storms. 

In conclusion, GEOS Forecasted precipitation for extreme events that 

can trigger landslides shows temporal coherence with the ground truth, 
albeit with seasonal and regional variation. At recent landslide points, 
and specifically for tropical cyclones, 24hr accumulated global precip-
itation forecast >100 mm appears to correspond well with near-real 
time daily accumulated IMERG Early precipitation estimates. Overall, 
the performance of the GEOS-Forecast at the global scale varies with 
respect to location, rainfall intensities, and type of precipitation events. 
In light of these findings, future studies and different applications could 
apply the same methodology and assessment metrics to inter- 
comparison of a global forecast product with local WRF data at multi- 
spatiotemporal scale. 

Our follow-up research will involve assessing the effect of precipi-
tation differences between the near-real time and forecast products in 
the context of landslide nowcast and forecast. Nevertheless, consultation 
and engagement with user communities is essential to develop products 
of highest utility for their applications. The development of these pre-
dictive models is critical for the emergency preparedness and civil de-
fense agencies to take preventive steps in advance of severe triggering 
events to mitigate the disaster outcomes. 
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