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Abstract
Deep learning models have achieved the start-of-the-art per-
formance in survival analysis as they can handle censor-
ing while learning complex nonlinear hidden representa-
tions directly from the raw data. However, the covariate ef-
fects on survival probabilities are difficult to explain using
deep learning models. To address this challenge, we propose
PseudoNAM - an interpretable model which uses pseudo val-
ues to efficiently handle censoring and uses neural additive
networks to capture the nonlinearity in the covariates of the
survival data. In particular, PseudoNAM uses neural addi-
tive models to jointly learn a linear combination of neural
networks corresponding to each covariate and identifies the
effect of the individual covariate on the output, and thus, is
inherently interpretable. We show that our PseudoNAM out-
puts can be used in other survival models such as random
survival forests to obtain improved survival prediction per-
formance. Our experiments on three real-world survival anal-
ysis datasets demonstrate that our proposed models achieve
similar or better performance (in terms of C-index and Brier
scores) than the state-of-the-art survival methods. We show-
case that PseudoNAM provides overall feature importance
scores and feature-level interpretations (covariate effect on
survival risk) for survival predictions at different time points.

Introduction
Survival analysis (Kleinbaum and Klein 2010), a well-
studied problem, aims to estimate the risk of a subject’s fail-
ure from an event, such as death due to breast cancer at a
particular time point. One key challenge in survival analy-
sis is the presence of censored subjects for whom the actual
survival times remain unknown. A good survival analysis
model should handle censoring, accurately discriminate the
predicted risks, and should be interpretable. Traditional sta-
tistical survival analysis models such as Cox Proportional
Hazard models (Cox 1972), regression models based on
pseudo-observations (Andersen, Klein, and Rosthøj 2003;
Andersen and Pohar Perme 2010) are interpretable but are
less accurate and limited by strong assumptions on the un-
derlying stochastic process, such as linearity, parametric,
and proportional hazards assumptions. Recent survival ap-
proaches based on machine learning and deep learning mod-
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els (Rahman et al. 2021; Zhao and Feng 2020; Ishwaran
et al. 2008; Katzman et al. 2018) achieve more accurate
predictions but may require specialized objective functions
to handle censoring (Lee et al. 2018). Moreover, many of
these approaches are not interpretable or explainable, which
makes them opaque and unsuitable for medical applications.

To address the limitations of the existing methods, we
propose a pseudo value based neural additive model, called
PseudoNAM, which directly models the complex non-
linear time-varying effect of the covariate on the survival
function. Our PseudoNAM uses neural additive models
(NAM) (Agarwal et al. 2020) to jointly learn a linear com-
bination of neural networks corresponding to each covariate
and determines the magnitude of covariates’ effect on the
survival outcome, and thus, is inherently interpretable. The
neural networks for each feature in the PseudoNAM are in-
dependent, and thus, can provide the individual feature con-
tribution towards output survival prediction. Like in NAM,
we sum up the individual feature contributions (neural net-
work outputs), followed by a logit transformation using
sigmoid activation function to predict the survival proba-
bility at different time points. We show different types of in-
terpretations from PseudoNAM, including 1) the mean fea-
ture contributions to the survival probability predictions at
different time points (overall feature importance scores) and
2) feature-level interpretations which show the time-varying
covariate effect on the survival predictions.

Our experiments on three real-world datasets demonstrate
that PseudoNAM performs similar or better than the state-
of-the-art survival analysis models while providing inter-
pretable results. We further improve the performance of
PseudoNAM by proposing PseudoNRSF, a random sur-
vival forest approach that takes as input the learned outputs
of individual neural networks from PseudoNAM and pre-
dicts the survival probabilities. We show that PseudoNRSF
achieves state-of-the-art results in terms of c-index and Brier
scores.

Related Works
Cox-based statistical and deep learning survival models
(Cox 1972; Faraggi and Simon 1995; Katzman et al. 2018;
Kvamme and Borgan 2019) are widely studied for analyzing
time-to-event data. However, these models make strong pro-
portional hazard and linearity assumptions that may not hold



for real data, thus leading to less accurate survival results.
Machine learning models such as Random survival

forests (Ishwaran et al. 2008) and multi-task logistic regres-
sion (MTLR) (Yu et al. 2011; Fotso 2018) relax some of
these assumptions and outperform statistical-based methods.
Recently proposed deep learning models (Lee et al. 2018;
Nagpal, Li, and Dubrawski 2021) and conditional gener-
ative adversarial networks (Chapfuwa et al. 2018) achieve
state-of-the-art results for time-to-event analysis. However,
these methods require either making assumptions on the un-
derlying stochastic process or design a specialized objective
function to handle censoring. Moreover, these methods lack
interpretability which is required in the medical domain. To
address the censoring challenge, (Zhao and Feng 2020; Rah-
man et al. 2021) have respectively proposed pseudo value
based deep learning models for survival and competing risk
analysis. However, even these methods are not directly in-
terpretable and rely on off-the-shelf explainable AI methods
such as LRP (Montavon et al. 2019) for providing explana-
tions.

Our Proposed Models
To address the censoring and interpretability challenges
of existing survival analysis approaches, in this work, we
propose two interpretable pseudo value based deep learning
models, PseudoNAM and PseudoNRSF. Before describing
our models in detail, we will briefly introduce pseudo values.

What are Pseudo values? Pseudo values for the survival
probability are derived from the non-parametric population-
based Kaplan-Meier (KM) estimator, an approximately un-
biased estimator of the survival probability under indepen-
dent censoring (Andersen et al. 2012). For the ith subject,
a Jackknife pseudo value, based on the KM estimate of the
survival probability (Klein et al. 2008), is computed at time
horizon t∗ as

Ŝi(t
∗) = nŜ(t∗)− (n− 1)Ŝ−i(t∗)

where, Ŝ(t∗) is the Kaplan-Meier estimate of the survival
probability at time t∗ based on a sample with n subjects
and Ŝ−i(t∗) is the Kaplan-Meier estimate of the survival
probability at time t∗ based on a leave-one-out sample
with (n − 1) subjects, obtained by omitting the ith subject.
Pseudo values are calculated for both uncensored subjects
and censored subjects (incompletely observed) at a specified
time point.

PseudoNAM: Inspired by the success of pseudo value
based deep models, DNNSurv (Zhao and Feng 2020) and
DeepPseudo (Rahman et al. 2021) to handle censoring, we
propose PseudoNAM - a multi-output neural additive model
which predicts pseudo values for survival risk analysis.
PseudoNAM, shown in Figure 1, learns non-linear repre-
sentations in the data and uses pseudo values to handle cen-
soring efficiently. PseudoNAM has the following form:

g(E[y(t|X)]) = β + f1(X1) + f2(X2) + + fp(Xp) (1)

Here, Xi = (Xi1, Xi2, ..., Xip) is a p-dimensional covari-
ate vector for ith individual; i = 1, 2, .., n. g(.) is the link

function (e.g., logit link function), β is the bias and each
fi(.) is parametrized by a neural network. y(t|X) is the
pseudo values for survival probability at time t in the pres-
ence of covariates. Each of the networks learn the complex
shape function of a specific covariate, and all the networks
are trained jointly. A n × p matrix of p baseline covariates
with n individuals are used as input in the input layer. Out-
put layer returns the survival probabilities at M evaluation
time points. PseudoNAM model provides interpretability
because it jointly trains a set of neural networks correspond-
ing to each individual covariate and returns the covariates’
contribution scores to the output (i.e., the output of the neu-
ral networks) for all each covariate and for the M evalua-
tion time points. Then we sum up the contribution scores of
all covariates followed by applying a sigmoid activation
function to get the final output, i.e., the survival probabilities
at the M time points. The non-overlapping neural networks
for individual covariates allow to identify the individual co-
variate effect on the survival probabilities.

X1

...

FC Layer

FC Layer

Output Layer 1

FC Layer

𝐟𝟏(𝐗𝟏)

X2

Xp

𝜎 𝐲

β

{y11, y12, … , y1M}

Add

𝜎 Sigmoid

...

FC Layer

FC Layer

Output Layer 2

FC Layer

𝐟𝟐(𝐗𝟐)

{y21, y22, … , y2M}

...

FC Layer

FC Layer

Output Layer p

FC Layer

𝐟𝐩(𝐗𝐩)

{yp1, yp2, … , ypM}

β Bias

...

Figure 1: Architecture of PseudoNAM. X =
{X1, X2, .., Xp} is a p dimensional vector of covariates.
fi(Xi) is the neural network corresponding to covariate Xi

and β is the bias. Sigmoid (σ) is worked as inverse logit link
function. y is the output, i.e., survival probability at M time
points. FC Layer means Fully Connected Layer.

PseudoNRSF: While PseudoNAM provides inter-
pretable predictions; its performance is limited by the
NAM model architecture. To improve the performance of
PseudoNAM model and to obtain global and local inter-
pretations like Random survival forests (RSF) (Ishwaran
et al. 2008), we propose PseudoNRSF - a two-stage deep
learning model. In the first stage, PseudoNAM model is
used to learn the individual feature contribution scores
for predicting pseudo values. In the second stage, these
learned feature contribution scores are input to an RSF with
the goal of directly predicting survival probabilities. Thus,
PseudoNRSF returns the subject-specific survival proba-
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Feature Importance Plot for METABRIC Dataset

Figure 2: Mean individual feature contributions on survival probabilities at different time points on METABRIC dataset. Here,
10th Perc., 20th Perc. are representing 10th percentile and 20th percentile of the survival time distribution at which we get the
PseudoNAM model predictions.

Figure 3: Importance of feature (mean weight ± sd) on the
survival probability predictions measured by PseudoNRSF
on METABRIC dataset.

bilities at different time points as output, and the predictions
are interpretable due to the use of RSF. PseudoNRSF has
the interpretation property of the RSF. We can easily get the
effect of each covariate (importance score) on the overall
survival probability. However, using the PseudoNAM, we
can see the change of covariate effect on survival probabili-
ties at different time points.

Experiments
We conducted experiments on three real-world datasets to
answer the following questions: a) how well our proposed
models perform compared to the state-of-the-art survival
models? b) how well can our PseudoNAM explain their
predictions?

Datasets: Table 1 shows statistics of the following
datasets.

METABRIC: This data (Katzman et al. 2018)1 contains
patients’ gene expressions and clinical variables for breast
cancer survival prediction.

SUPPORT: This dataset (Knaus et al. 1995) is from the
Vanderbilt University study to estimate survival of 9,105
seriously ill hospitalized patients.

WHAS: This dataset was collected to examine the effects
of a patient’s factors on acute myocardial infraction (MI)
survival (Hosmer and Lemeshow 2002).

Implementation Details: The (ground-truth) pseudo
values for survival probabilities are obtained using the
jackknife function of R package prodlim at each
evaluation time point (separately for training and validation
sets). We performed stratified 5-fold cross-validation so
that the ratio of censored and uncensored subjects remained
the same in each fold. We jointly train our PseudoNAM’s
feature networks based on an early stopping criterion and
choose the best model based on the model’s performance on
validation data. Each feature network consists of 3 hidden
layers with a number of units [128, 64, 32]. We used relu
activation function in the hidden layer of each covariate’s
neural network and tanh activation function in the output
layer of the neural networks. In the final output layer, we
sum up the output of individual feature neural networks and
use the sigmoid activation function to get the survival
probability at 10th, 20th, 30th, 40th, 50th, 60th percentile
of the maximum survival time of the training data. We did
not perform hyperparameter tuning. We set the learning
rate 0.0001, output penalty coefficient 0.001, weight decay
coefficient 0.000001, dropout rate 0.0, and feature dropout

1https://github.com/jaredleekatzman/DeepSurv
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Figure 4: Feature-level contributions to survival probability at different time points (10th, 20th, 30th, 40th, 50th, 60th percentile
of survival time distribution) for individual features in METABRIC dataset. The darker the brown bars indicates higher density
of the data. Age at diagnosis, EGFR, ERBB2, MKI67, PGR are continuous valued features, while others are discrete valued.

Table 1: Descriptive Statistics of the three Real-World Survival Datasets

Dataset
No. of

Observation
No. of

uncensored (%)
No. of

censored (%)
No. of

features
Event Time Censoring Time

Min Max Mean Median Min Max Mean Median
METABRIC 1904 1103(57.9) 801(42.1) 9 0.1 355.2 100.0 85.9 0.1 337.0 159.6 158.0

SUPPORT 8873 6036 (68.0) 2837 (32.0) 14 3.0 1944.0 205.5 57.0 344.0 2029.0 1059.9 918.0

WHAS 1638 690 (42.1) 948 (57.9) 5 0.1 1965.9 696.7 515.5 371.0 1999.0 1298.9 1347.5

rate 0. We used Adam optimizer with batch size 128 during
training and used Penalized Mean Squared Error loss func-
tion to train our models. For performance metrics, we used
(a) time-dependent concordance index (Antolini, Boracchi,
and Biganzoli 2005) adjusted with an inverse propensity of
censoring estimate for evaluating the discriminative-ability,
and (b) Integrated IPCW Brier Score (denoted as Brier
Score) (Gerds and Schumacher 2006) metric for evaluating
the predictive-ability. To encourage reproducibility, the
source codes for our proposed models are available at this
link: https://github.com/umbc-sanjaylab/PseudoNAM SA

Model Comparisons: We compared the following
survival analysis models:

• Statistical models: Cox Proportional Hazard Model
[CoxPH] (Cox 1972)

• Machine learning models: Random Survival Forest
[RSF] (Ishwaran et al. 2008), Multi-task Logistic Regres-

sion [MTLR] (Yu et al. 2011)

• Deep Learning models: DNNSurv (Zhao and Feng
2020), DeepHit (Lee et al. 2018), DeepSurv (Katz-
man et al. 2018), CoxTime (Kvamme, Borgan, and
Scheel 2019), Deep Survival Machine [DSM] (Nagpal,
Li, and Dubrawski 2021), Piecewise Constant Hazard
[PCHazard] (Kvamme and Borgan 2019), and our pro-
posed models: PseudoNAM and PseudoNRSF.

Results and Discussion
Table 2 shows the performance comparison of the survival
models based on time dependent concordance index and
Brier scores. From this table, we see that our PseudoNAM
obtains similar or comparable performance to other survival
analysis models, while PseudoNRSF outperforms all the
survival models on the WHAS dataset, and obtains similar
performance as the state-of-the-art models on the other two
datasets. We notice that the independent neural networks for



Table 2: Model comparisons of the performance metrics (mean and 95% confidence interval) evaluated on survival datasets

Time-dependent Concordance Index
PseudoNRSF PseudoNAM DNNSurv CoxPH CoxTime DeepHit DeepSurv DSM MTLR PCHazard RSF

METABRIC 0.645±0.038 0.616±0.025 0.617±0.014 0.622±0.013 0.660±0.055 0.655±0.045 0.641±0.017 0.616±0.040 0.550±0.043 0.614±0.041 0.616±0.058

SUPPORT 0.619±0.019 0.613±0.017 0.581±0.009 0.568±0.016 0.616±0.012 0.593±0.012 0.589±0.009 0.595±0.005 0.550±0.024 0.589±0.022 0.638±0.010

WHAS 0.865±0.038 0.740±0.022 0.721±0.018 0.739±0.013 0.783±0.027 0.851±0.038 0.787±0.030 0.739±0.013 0.618±0.104 0.685±0.038 0.768±0.041

Brier Score
PseudoNRSF PseudoNAM DNNSurv CoxPH CoxTime DeepHit DeepSurv DSM MTLR PCHazard RSF

METABRIC 0.171±0.005 0.245±0.013 0.243±0.010 0.313±0.020 0.168±0.011 0.178±0.022 0.165±0.013 0.249±0.020 0.225±0.024 0.201±0.014 0.296±0.016

SUPPORT 0.196±0.01 0.207±0.007 0.221±0.002 0.206±0.005 0.192±0.008 0.211±0.008 0.198±0.006 0.212±0.003 0.263±0.019 0.225±0.018 0.190±0.007

WHAS 0.099±0.010 0.267±0.022 0.290±0.029 0.234±0.029 0.136±0.018 0.140±0.054 0.132±0.018 0.201±0.005 0.162±0.028 0.141±0.009 0.206±0.033

individual covariates limits PseudoNAM to learn the shared
effect on the survival probability at different times, thus re-
sulting in comparable but not the best results.

Model Intepretations
The main advantage of our PseudoNAM models is that they
can provide interpretations. Here, we discuss the two ways
of interpreting the PseudoNAM model predictions: overall
feature importance scores and feature-level interpretations.
PseudoNAM first learns the individual feature contri-

butions for pre-specified time points (here, we choose
10th, 20th, ..., 60th percentile of the event horizon). Then
we sum up these feature contributions followed by the
sigmoid transformation to get the final survival proba-
bilities at the pre-specified time points. Figure 2 shows the
overall feature importance scores measured as mean in-
dividual feature contributions on the survival probability at
the pre-specified time points for the METABRIC dataset.
We see that the features can have a positive or negative
impact (overall effect) on survival probability predictions
at different time points for breast cancer patients. For ex-
ample, the covariates such as MKI67, radiotherapy,
and chemotherapy have positive feature contribu-
tions at the initial time points (10th percentile), which means
that they influence better survival outcomes (higher survival
probabilities). However, at later time points (such as 60th

percentile), these features have negative feature contri-
butions - meaning they result in mortality. This is expected
because the survival probability remains higher at initial
time points, and it decreases over time. Therefore, the treat-
ment like chemotherapy fails to reduce the risk of death
at later time points, and the older people (age at diagnosis)
are at greater mortality risk.

Figure 3 shows the permutation feature importance,
which is measured by observing how random re-shuffling
of each covariate influences model performance. We
use eli52 library to compute the feature importance
for PseudoNRSF model. We observe that age at
diagnosis has the highest importance on the survival
probability predictions and ER-positive has the lowest
feature importance.

Figure 4 shows the individual feature contribution

2https://github.com/eli5-org/eli5

(i.e., the outputs of the individual neural networks of
PseudoNAM) on survival probability at different time
points (i.e., time-varying covariate effect on survival pre-
dictions) for the METABRIC dataset. Here x-axis shows
the feature values, and the y-axis shows their contribu-
tions. In other words, this plot provides feature-level in-
terpretations. For example, the survival probability for
the feature age at diagnosis at all the time points
starts decreasing after 65 years; and we see that the feature
chemotherapy is biased to the patients who did not re-
ceive chemotherapy since the density is much higher for this
group (darker brown bar). The plot also shows that the model
predicted a decrease in survival probability for a few patients
who received chemotherapy, especially at later time points.

Why PseudoNAM is suited for healthcare domain?
As shown in Table 2, our PseudoNAM models obtain good
predictive and discriminative performance on all the survival
datasets. Moreover, using our models, one can visualize each
covariates’ contribution to the survival probability. There-
fore, PseudoNAM helps to identify the potential risk factors
for an event, such as death due to breast cancer. The visual-
ization of the feature-level interpretations can be a step to-
wards transparency in the deep learning models, which can
inform clinical decision-making and perhaps lead to trust in
the model. Thus, PseudoNAM models with high predictive-
ability and inherent interpretability could be well-suited for
survival analysis in the healthcare domain.

Conclusion
In this paper, we proposed interpretable pseudo value-based
deep learning approaches PseudoNAM and PseudoNRSF
to model the nonlinear time-varying covariate effect on sur-
vival predictions. Our proposed models use 1) pseudo val-
ues to handle censoring and 2) neural additive networks to
capture the complex nonlinear relationships and to obtain in-
terpretable predictions. Empirical results show that our pro-
posed models achieve similar or better performance than the
state-of-the-art survival methods. Our PseudoNAM model
provides both overall feature importance scores and feature-
level interpretations of predicted survival probabilities at dif-
ferent time points. For future work, we study and compare
the interpretability of our proposed models with other para-
metric survival approaches.
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