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Abstract
The complete physical understanding of the optimization of the thermodynamicwork still is an
important open problem in stochastic thermodynamics.We address this issue using theHamiltonian
approach of linear response theory infinite time andweak processes.We derive the Euler–Lagrange
equation associated and discuss itsmain features, illustrating themusing the paradigmatic example of
driven Brownianmotion in overdamped regime.We show that the optimal protocols obtained either
coincide, in the appropriate limit, with the exact solutions by stochastic thermodynamics or can be
even identical to them, presenting thewell-known jumps.However, our approach reveals that jumps
at the extremities of the process are a good optimization strategy in the regime of fast but weak
processes for any driven system. Additionally, we show that fast-but-weak optimal protocols are time-
reversal symmetric, a property that has until now remained hidden in the exact solutions far from
equilibrium.

1. Introduction

The great development of experimental techniques in the last decades has increased our control of systems
formed of few atoms ormolecules [1–5]. Fromoptical lattices to superconducting devices, the quest of efficient
control, in the sense of reducing general costs, has become an actual problemwith several applications.
However, realistic processes occur infinite time, and hence drive the systemof interest out of equilibrium,
implying an unavoidably higher cost than their quasistatic counterparts. The problemoffinding the finite-time
control with theminimumpossible energetic cost, is posed then as a current challenge [6].

Tofind the optimal finite-time processes is in general a very hard task and only few examples have exact
solutions for arbitrary regimes. One of these is the paradigmatic case of driven Brownianmotion [7, 8]. The
existing experimental implementations of this system certify its relevance for non-equilibriumphenomena.
Using colloidal particles trapped by optical tweezers, driven Brownianmotion has been used to address
fluctuation theorems [9–11], heat engines [12–14], feedback processes [15],Maxwellʼs demons [16], and bit
erasure [17–19].

Despite the existence of exact optimal finite-time processes in driven Brownianmotion [7, 8], the physics of
these processes is not verywell understood. The optimal protocols present unexpected features such as jumps
and sharp peaks that have been barely understood physically and represent a real challenge for experimental
implementation. Such counter-intuitive characteristics have been reproduced by numerical approaches based
on optimal control [20–22] but this approach has not clarified the role of such features in the optimization of the
energetic cost. In otherwords, it is not clear how these features help to decrease the energy spent andwhether
they should alsowork as a good strategy in other driven systems.

On the other hand, perturbative approaches have been developed to provide approximate optimal finite-
time protocols. Such approaches contrast withmost of the numericalmethods directly applied to optimize the
very first definition of the energetic cost. Instead, they try to express such a cost as a functional of the
corresponding finite-time protocol in terms of quantities thatmight describe the causes of dissipation. Although
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restricted to limited non-equilibrium regimes, these formulationsmight provide a better physical intuition
about the optimal processes. Among these perturbative formulations, the so-called geometric one has attracted
considerable attention in the last decade [23–38]. It has been applied to different non-equilibrium situations in
biophysics [31, 33, 36], magnetic systems [29, 30, 35], heat engines [34], and solid-state physics [39], in addition
to having been extended to quantum systems [27, 32]. In this approach, the energetic cost is written as the time
integral of a Lagrangian, which can be understood as a thermodynamicmetric [40–42]. The optimal finite-time
processes are then the corresponding geodesics.

In this work, we explore the results of another perturbative approach based on linear response theory
[43, 44]. It describes arbitrarily fast but necessarily weak processes. Byweakwemean that the difference between
thefinal and initial values of the control parametermust be small when compared to the initial value.Whatwe
showhere contrasts howeverwith part of the literature in stochastic thermodynamics where linear response is
understood as the use ofOnsager-Casimir relations [45, 46]. For fast and strong processes in driven Brownian
motion, it has been shown that the optimal protocols obtained from the approach considered here perform
better than those obtained from the geometric one [47]. One of themain results we provide is the fact that
optimal protocolsmust be time-reversal symmetric in the regime ofweak driving. In other words, these
protocolsmust be identical to their time-reversed counterparts. This property has been scarcelymentioned in
the the literature although it can be noticed also far from equilibriumby inspecting the exact results derived
in [7, 8].

2. Finite-time optimal protocols

2.1. Linear response theory
Consider a classical system, described by aHamiltonian ( ( ))l z t,0 and formed by a systemof interest and its
heat bath. The symbols z0 andλ(t) denote respectively a point in the phase spaceΓ of thewhole system and a
time-dependent external parameter. Initially, the system is at temperature ( )b º -k TB

1, where kB is
Boltzmannʼs constant. During a switching time τ, the external parameter is changed fromλ0 toλ0+ δλ. The
averagework performed by the systemduring this process is [48]

( ) ( ) ( )ò lº ¶
t

lW t t dt, 1
0

where∂λ is the partial derivative in respect toλ and the superscript dot denotes the total time derivative. The
generalized force ¶l is calculated using the average over the non-equilibriumdistribution of thewhole system
ρ(z0, t),

( ) ( ) ( ) ( )ò r¶ = ¶l l
G

z z zH t H t d, . 20 0 0

This non-equilibriumdistribution ρ(z0, t) evolves according to Liouvilleʼs equation

 { } ( )r r= - , , 3

where { · , · } is the Poisson bracket. Asmentioned before, the initial distribution ρ(z0, 0) is assumed to be a
canonical ensemble. Consider also that the time variation of the external parameter can be expressed as

( ) ( ) ( )l l dl= +t g t , 40

where the protocol g(t)must satisfy the following boundary conditions

( ) ( ) ( )t= =g g0 0, 1. 5

sinceλ is switched fromλ0 toλ0+ δλ. Also, we consider that g(t)≡ g(t/τ), whichmeans that the intervals of
time aremeasured in units of the switching time τ.

Linear response theory aims to express non-equilibrium averages up to thefirst order in some perturbation
parameter considering how the perturbation affects the observable to be averaged and the non-equilibrium
ensemble [49]. In our case, we consider that the parameter does not change significantly during the process, i.e.,
|g(t)δλ/λ0|= 1, for all tä [0, τ]. Using the framework of linear response theory, the generalized force can be
approximated up tofirst order as [43]

( ) ( )

( ) ( ) ( )ò
dl

dl f

¶ = á¶ ñ + á¶ ñ

- - ¢ ¢ ¢

l l ll  t g t

t t g t dt , 6
t

0
2

0

0
0

where 〈 · 〉0 denotes the average over the initial canonical ensemble ( )( ) lb l- e 0
0 , where ( )l 0 is the partition

function. The quantityf0(t) is the so-called response function [49], which can be conveniently expressed as the
derivative of the relaxation functionΨ0(t) [49]
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( ) ( )f = -
Y

t
d

dt
. 70

0

In our particular case, the relaxation function reads [49]

( ) ( ) ( ) ( )bY = á¶ ¶ ñ -l l  t t0 , 80 0

where the constant  guarantees thatΨ0(t) vanishes in the limit t→∞ (we assume here that the coupling to the
heat bath ensures the decay of the auto-correlation function in equation (8)) [43, 49].We define the relaxation
time τR of the system as

( ) ( )
( )

( )òt l =
Y
Y

¥ t
dt

0
. 9R 0

0

0

0

The generalized force, written in terms of the relaxation function, reads



( ) ( )

( ) ( ) ( )ò
dl

dl

¶ = á¶ ñ - Y

+ Y - ¢ ¢ ¢

~
l l t g t

t t g t dt , 10
t

0 0

0
0

where ( ) ( )Y º Y - á¶ ñ
~

llt 00 0
2

0. Finally, combining equations (1) and (10), the averagework performed up to
linear order of the generalized force is

 ( ) ( ) ( ) ( )ò ò

dl
dl

dl

= á¶ ñ - Y

+ Y - ¢ ¢ ¢

~
l

t

W

t t g t g t dt dt

2

. 11
t

0

2

0

2

0 0
0

It can be shown that the double integral in equation (11) vanishes for τ→∞ [50]. Hence, thefirst two terms
on the right hand sidemust correspond to the free-energy difference (for small δλ/λ0) between thefinal and
initial equilibrium states, since this quantity is exactly the averagework performed for quasistatic processes (See
appendix A for a detailed discussion). Thus, equation (11) splits into two contributions, namely,

( )dl
dl

D = á¶ ñ - Y
~

lF
2

, 120

2

0

and

 ( ) ( ) ( ) ( )ò òdl= Y - ¢ ¢ ¢
t

W t t g t g t dt dt. 13
t

irr
2

0 0
0

In particular, the irreversible workWirr can be rewritten using the parity of the relaxation function,
Ψ0(− t)=Ψ0(t) [49],

 ( ) ( ) ( ) ( )ò ò
dl

= Y - ¢ ¢ ¢
t t

W t t g t g t dt dt
2

. 14irr

2

0 0
0

Weaim tofind the optimal protocolλ(t) that optimizes theWirr given by equation (14). Hence, fromnowon, we
focus on theminimization of this functional.

Before discussing the Euler–Lagrange equation that furnishes the optimal protocol, wewant to briefly
emphasize what is the out-of-equilibrium regimewe are describing. Near-equilibrium regimes are determined
by the relative strength of the driving in respect to the initial value of the protocol, δλ/λ0, and the rate bywhich
the process occurs in respect to the relaxation time τR of the system, i.e., τR/τ. See figure 1 for a diagram
depicting the regimes. In region 2, wherewe have the so-called slowly-varying processes, the ratio δλ/λ0 is
arbitrary, while τR/τ= 1. By contrast, in region 1, wherewe have finite-time andweak processes, δλ/λ0= 1
while τR/τ is arbitrary. In region 3, we have far-from-equilibrium processes and both ratios are arbitrary. In
particular, in region 1, drivings where the ratio τR/τ→∞ are called sudden processes. In the present work, we
will focus on processes lying in region 1. See [39, 51, 23–25] formore details on slowly-varying processes and
appendix B to see howboth approaches, from region 1 and 2, convergewhen the appropriate limits are taken.

2.2. Euler–Lagrange equation
The functional (14) is not written in themost convenient way since the specified boundary conditions, g(0)= 0
and g(τ)= 1, do not apply to  ( )g t . To circumvent this problem,we rewrite the irreversible work in terms of g(t).
Using integration by parts in equation (14), we have
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( ) ( ) ( )

̈ ( ) ( ) ( ) ( )

ò

ò ò

dl
dl t

dl

= Y + Y - ¢ ¢ ¢

- Y - ¢ ¢ ¢

t

t t

W t g t dt

t t g t g t dtdt

2
0

2
, 15

irr

2

0
2

0
0

2

0 0
0

wherewe have used the boundary conditions (5) and a direct consequence of the parity property of the relaxation
function,  ( )Y =0 0. Using calculus of variations [52–54], the Euler–Lagrange equation is

̈ ( ) ( ) ( ) ( )ò tY - ¢ ¢ ¢ = Y -
t

t t g t dt t , 16
0

0 0*

where the optimal protocol g*(t)must satisfy g*(0)= 0 and g*(τ)= 1. It is remarkable that the optimal protocol
depends only on characteristics of the system in the initial equilibrium state. For instance, the previous equation
does not depend on the driving strength δλ/λ0.

Some other aspects however are not completely clear: since solutions with jumps exist for thermodynamics
processes [7, 20], how exactly can such solutions be obtained from equation (16)?How exactly do they satisfy the
boundary conditions of equation (5)? Are these jumps included in the functional of equation (15)? In section 2.3,
we showhow equation (16) can admit optimal protocols having jumps at their extremities.

As a last remark of this section, we show that simple functions satisfy equation (16) in the limits of extremely
long and extremely short protocols. Consider, for instance, the linear protocol g(t)= t/τ. Substituting it in the
left hand side of equation (16) and performing integration by parts, we obtain

̈ ( ) ( ) ( ( ) ( )) ( )ò t
t

t
tY - ¢

¢
¢ = Y - + Y - + Y

t
t t

t
dt t t t

1
, 17

0
0 0 0 0

which satisfies the Euler–Lagrange equationwhen τ→∞ , since the last two terms in the right hand side go to
zero in this limit. For sudden processes, where τ→ 0, the Euler–Lagrange equation is satisfied for a constant
protocol g*(t)= 1/2

 ̈ ( ) ( ( ) ( )) ( )ò tY - ¢ ¢ = Y - + Y
t

t t dt t t
1

2

1

2
. 18

0
0 0 0

Mathematically, equation (16) is an inhomogeneous Fredholm equation of thefirst kind [55]. This kind of
equation describes what is called ill-posed problems, where the existence, uniqueness, and stability of solutions
are not completely guaranteed [56]. Nevertheless, from a practical point-of-view, solutions for particular kernels
can be found in handbooks of integral equations [57].

2.3. Contributions of jumps to the irreversible work
To evaluate how jumps affect the optimization ofWirr, wewill reformulate the previous analysis including
explicitly these features in the protocol. Consider a protocol g(t), with t ä [0, τ1+ τ2+ τ3], composed of three
parts denoted by gi, with i= 1, 2, 3, each onewith duration τi, and starting at different inital timesΔτi−1,

( ) (( ) ) [ ] ( )t t t tº - D Î D D- -h t g t t, , , 19i i i i i i1 1

Figure 1.Diagram of nonequilibrium regions. In region 1, we have finite-time butweak processes. In region 2, the slowly-varying
processes and region 3 contains arbitrary far-from-equilibirumprocesses. The driving is called suddenwhen τR/τ →∞ .
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where

( )åt tD = , 20i
k i

k


andwe takeΔτ0= 0. The following boundary and continuity conditionsmust be satisfied

( ) ( ) ( )= =g g0 0, 1 1, 211 3

( ) ( ) ( ) ( ) ( )= =g g g g1 0 , 1 0 , 221 2 2 3

where equations (22) guarantee that thewhole process is continuous although not necessarily smooth at all
points. In particular, we consider that τ1→ 0 and τ3→ 0, so that protocols g1 and g3 become sudden processes.
Figure 2 depicts what ismeant by this.

The irreversible work of a process consisting of three pieces can bewritten as follows

( )å å=
=

W W , 23
i j i

ij
irr

1

3

irr


where

 ( ) ( ) ( )òdl=
t

t

D

D

-

W h t f t dt, 24ij
i jirr

2

i

i

1

and

⎧

⎨
⎪

⎩
⎪




( )

( ) ( )

( ) ( )
( )

ò

ò
=

Y - ¢ ¢ ¢ <

Y - ¢ ¢ ¢ =

t

t

t

D

D

D

-

-

f t

t t h t dt j i

t t h t dt j i

, ,

, .

25j

j

t

j

0

0

j

j

j

1

1

In appendix C,we show in details how equations (23) to (25) are obtained. After the limits τ1,3→ 0 are taken,
the irreversible work reads

( ) ( ) ( )

̈ ( ) ( ) ( ) ( )

ò

ò ò

dl
dl t t

dl
t t

= Y + Y - ¢ ¢ ¢

- Y - ¢ ¢ ¢

t

t t

W t g t dt

t t g t g t dtdt

2
0

2
, 26

irr

2

0
2

0
0 2 2

2

0 0
0 2 2 2 2

2

2 2

which is identical to the functional of equation (15). Thismeans that the boundary conditions (5) do not have to
be imposed to the solutions of the Euler–Lagrange equation (16).

In other words, the solutions of equation (16), with free boundary conditions, furnish the optimal protocols
and their corresponding jumps. Thus, we are able to show that small jumps at the beginning and at the end of the
protocol are costless and become an unexpected strategy to reduceWirr. So far, this had been shown exactly only
for driven Brownianmotion in [7, 8]. Herewe have shown that this is true for any driven system in the regime of
fast but weak processes.

Figure 2. Schematic representation of the protocol g(t) in three parts. The red curves at the initial and final parts become sudden
processes when τ1 and τ2 are taken close to zero. In thismanner, the boundary conditions g(0) = 0 and g(τ) = 1 always hold.
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2.4. Time reversal symmetry
Reference [44] suggested that fast-but-weak optimal protocols are time-reversal symmetric. In this subsection,
wewill prove this statement.Wefirst commentwhat wemean by time-reversal symmetry. Consider a forward
process, denoted byλF(t), that takes the system fromλ0 toλ0+ δλ, according to the forward protocol gF(t). The
time-reversed process associated toλF(t), denoted byλR(t), is defined asλR(t)≡ λF(τ− t), which takes the
system fromλ0+ δλ toλ0. In appendixD,we show that the time-reversed protocol gR(t) is given by

( ) ( ) ( )t= - -g t g t1 . 27R F

Aprotocol that presents whatwe call time-reversal symmetry if it is identical to its time-reversed twin, that
is, gF(t)= gR(t).

Wewill shownow that the solutions g*(t) of equation (16) are time-reversal symmetric. To do that, we
explicitly show that the time reversal of g*(t) is also a solution of equation (16). Plugging 1− g*(τ− t) into
equation (16)we obtain

̈ ( )[ ( )] ( ) ( )ò t tY - ¢ - - ¢ ¢ = Y -
t

t t g t dt t1 . 28
0

0 0*

After some algebra, we arrive at

̈ ( ) ( ) ( ) ( )ò tY - + ¢ ¢ ¢ = Y
t

t t g t dt t . 29
0

0 0*

Using now the parity of the second derivative of the relaxation function (Ψ0(− t)=Ψ0(t) implies
̈ ( ) ̈ ( )Y - = Yt t0 0 ), we arrive at

̈ ( ) ( ) ( ) ( )ò tY - - ¢ ¢ ¢ = Y
t

t t g t dt t . 30
0

0 0*

Changing the variable t¢  - ¢t t , wefinally have

̈ ( ) ( ) ( ) ( )ò tY - ¢ ¢ ¢ = Y -
t

t t g t dt t , 31
0

0 0*

which is equation (16). Since g*(t)was assumed to be a solution of (16), this shows that 1− g*(τ− t) is also an
optimal protocol.

This symmetry of the optimal protocol, at first glance restricted to the regime ofweak processes, has been
mostly neglected and reveals an important element of the physics of optimalfinite-time processes. For instance,
it seems to be absent in the regime described by the geometric approach as the corresponding Euler–Lagrange
equation does not contain it [23, 25]. In section 3, wewill exemplify it using driven Brownianmotion and show
that it is also present in arbitrarily far-from-equilibriumprocesses. In the context of information erasure, the
role of time-reversal symmetry has been shown relevant [58].

We also remark that the solution g*(t), obtained using standard calculus of variations, is atmost a local
minimum. Thus, it is not ruled out the possibility that its time reversal would be associatedwith a different
minimum than the optimal protocol g*(t). Hence, if we assume that the solution of the Euler–Lagrange
equation (16) is unique, as has been suggested by numerical experiments [44], we conclude that the optimal
protocols present time-reversal symmetry.

2.5.Optimal irreversible work
Substituting equation (16) into equation (15), and using integration by parts to remove the derivative of the
relaxation function, the optimal irreversible work is

( ) ( ) ( ) ( )ò
dl dl

t= Y + Y - ¢ ¢ ¢
t

W t g t dt
2

0
2

. 32irr

2

0

2

0
0* *

The irreversible work
~
Wirr
* for the time reversal of g*(t), which is also an optimal protocol, is identical to the

one of the optimal protocol, since the solution is unique. Indeed, is not hard to see that, for
( ) ( )t= - -g t g t1

R
* * , the irreversible work reads

( ) ( ) ( ) ( )ò
dl

t
dl

= Y - Y~ t
W t g t dt

2 2
. 33irr

2

0

2

0
0

* *

Subtracting equations (33) from (32), and using the uniqueness of the optimal protocol, we have

( )=~
W W . 34irr irr
* *

As τ becomes large compared to the relaxation time τR, expression (33) for the optimal irreversible work
converges to the value predicted by the geometric approachwhen g*(t)= t/τ (see appendix B for the details).
Hence,
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
( ) ( )dl

t
t

= Y
t
t

Wlim 0 . 35R

1
irr

2
0

R
*

This result suggests that the solution of equation (16) tends to a linear function in the slowly-varying regime.
On the other hand, as τ/τR→ 0, g*(t) becomes a sudden process andWirr* is calculated using in equation (32)

in the limit τ→ 0 and g*(t)= 1/2.Hence


( ) ( )dl

= Y
t
t

Wlim
2

0 . 36
1

irr

2

0
R

*

Both limits just discussedwill be important to check the agreement of our approachwith exact results in the
examples that follow.

2.6. Excess power
In the geometric approach, it has been shown that the excess power along the optimal protocol is stationary
when the system is driven by a single control parameter [23]. In the present case, wewill show that the same
happens tofinite-time andweak process if the optimal protocol is a linear function.

The optimal excess power can be obtainedfinding the functionwhose integration from t= 0 to t= τ

furnishes equation (32). This yields

 ( ) ( ) ( ) ( ) ( )òt dl= Y - ¢ ¢ ¢ t f t t t f t dt, , 37
t

ex
2

0
0* * *

where

( ) ( ) ( )( ( ) ( )) ( )t= + Q - Q -+f t g t g t t2 0 , 38* * *

and g*(t) is the continuous part of the optimal protocol, i.e., the solution of equation (16). Here,H(t) is the
Heaviside step function,

⎧

⎨
⎪

⎩⎪
( ) ( )Q =

<

=

>

t

t

t

t

0, 0
1

2
, 0

1, 0

. 39

The purpose of introducing f *(t) is to explicitly include the initial and final jumps. According to
equation (38), one can easily check that f *(0)= 0 and f *(τ)= 1. Aswe shownext, this is necessary to give the
correct physicalmeaning to the excess power calculations. For instance, the optimal protocol in the sudden limit
reads (see section 2.2)


( ) ( ) ( ) ( )t= + Q - Q -

t
t

f t t tlim
1

2
. 40

1R

*

Thus, it becomes clear that without including the jumps explicitly, equation (37)would furnish null excess
power in this case.

In general, the optimal excess power (37) can be decomposed into two contributions, namely, one due to the
continuous part of the protocol and another due to the jumps. Denoting them respectively by C* and  J*, we
will have (see appendix E formore details)

⎛
⎝

⎞
⎠


( ) ( ) ( ) ( ) ( ( ) ( )) ( ) ( )òt dl t= Y ¢ ¢ ¢ + Y + Y

t
+ t

g t
t g t dt g,

2
0 0 , 41C

2

0
0 0 0*

*
* *

( ) ( ) ( )( ( ) ( )) ( )t dl d d t= Y + -+ t g t t, 0 0 . 42J
2 2

0* *

We remark that the irreversible work in the slowly-varying regime is recovered by equation (37). In this limit,
we have


( ) ( ) ( )t dl

t
t

=
Y

t
t

 tlim ,
0

, 43R

1
J

2
2R

*


( ) ( )t =

t
t

 tlim , 0. 44
1

JR
*

The derivative of C* reads

⎛
⎝

⎞
⎠

 
̈ ( ) ( ) ( ) ( ( ) ( )) ( ) ( )òdl t= Y ¢ ¢ ¢ + Y + Y

t
+

g t
t g t dt g

2
0 0 , 45C

2

0
0 0 0

* *

whichmeans that the continuous contribution of the optimal excess power is stationary only if g*(t) is a linear
function.

Finally, due to the time-reversal symmetry of the optimal protocol, the excess power used in the backward
process is the same as in the forward one. This can be seen by direct substitution of equations (27) in (37), leading
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to

( ) ( ) ( ) ( ) ( )t t t t t t= - = -   t t t t, , , , , . 46C C J J* * * *

This result implies that

 ( ) ( )ò t¢ ¢ =
t
 t dt, 0, 47

0
C
*

for an arbitrary optimal protocol g*(t). This property seems to be similar to the stationarity property predicted by
the geometric approach.

3. Comparisonwith stochastic thermodynamics: overdampedBrownianmotion

In this section, we present a comparison between the optimization of the irreversible work using stochastic
thermodynamics and linear response theory.We consider the paradigmatic example of a Brownian particle
confined by optical tweezers in two situations: amoving laser trap and a stiffening trap, both in the overdamped
regime.We show that our approach leads to the same optimal protocol calculated in [7]. Theoretically, we
consider a particle in contact with a heat bath of inverse temperature ( )b = -k TB

1, whosemotion is governed by
the following Langevin equation

 ( ) ( ( ) ( )) ( ) ( )
g

l h+ ¶ =x t V x t t t
1

, , 48x

where x(t) is the position of the particle at the instant t, γ is the damping coefficient,V is the time-dependent
harmonic potential,λ(t) is the control parameter and η(t) is aGaussianwhite noise characterized by

( ) ( ) ( ) ( ) ( )h h h
gb

d= ¢ = - ¢t t t t t0,
2

, 49

with ( )... being the stochastic average over several realizations.

3.1.Moving laser trap
For themoving laser trap, the time-dependent harmonic potential is given by

( ( ) ) ( ( ) ( )) ( )w
l= -V x t t x t t,

2
, 500

2
2

whereω0 the natural frequency of the oscillation, andλ the equilibriumposition. During the driving, the
equilibriumposition is changed fromλ0 toλ0+ δλ. For this particular example, wewill show that linear
response corresponds to the exact dynamics.

3.1.1. Connection with linear response theory
In contrast towhat was done in [7], wewill express the irreversible work in terms of the control parameterλ(t)
instead of the average position ( ) ( )=u t x t of the particle. To do that, wefirst solve the Langevin equation (48)
expressing u(t) in terms ofλ(t),

( ) ( ) ( ) ( )( )òl l= - ¢ ¢- - ¢
w
gu t t e t dt , 51

t
t t

0

0
2

Due to equation (50), thework is then given by

 ( ) ( )( ( ) ( )) ( )ò òl w l l= ¶ = -
t

l
t

W t Vdt t t u t dt. 52
0

0
2

0

Using equation (51), we have

 ( ) ( ) ( )( )ò òw l l= ¢ ¢
t

- - ¢
w
gW e t t dt dt. 53

t
t t

0
2

0 0

0
2

Since the change in theHelmholtz free energy is zero in this case, the irreversible work reads

 ( ) ( ) ( )( )ò òw l l= ¢ ¢
t

- - ¢
w
gW e t t dt dt. 54

t
t t

irr 0
2

0 0

0
2

Comparing equations (54) and (13), we identify the relaxation function as

( ) ( )∣ ∣wY = -
w
gt e , 55t

0 0
2 0

2
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fromwhich it can be shown that

( )dl
dl

D = á¶ ñ - Y =
~

lF V
2

0, 560

2

0

and hence the exact expression of the irreversible work has the formof our linear-response functional. Finally,
using equation (9), the relaxation time of this system is

( )t
g
w

= . 57R
0
2

3.1.2. Prediction of stochastic thermodynamics result
As the functional provided by linear-response theory coincides with that obtained from the exact non-
equilibriumdynamics, we can use the approach developed in section 2 to calculate the optimal protocol.

As [44] indicated numerically, we consider that the optimal protocol g*(t) is a time-reversal symmetric linear
function

⎛
⎝

⎞
⎠

( ) ( )t
= - +g t s t

2

1

2
, 58* *

with the optimal slope coefficient s* to be determined. Plugging equations (55) and (58) in the Euler–Lagrange
equation (16), the optimal slope coefficient becomes

( )
t t

=
+

s
1

2
. 59

R

*

Thus, the optimal protocol reads

( ) ( )t
t t

=
+
+

g t
t

2
, 60R

R

*

which is identical to the optimal protocol obtained in [7]. The corresponding optimal irreversible work is

( )w dl
t t

=
+

W
2

, 61
R

irr
0
2 2

*

We remark that equations (60) and (61) agreewith the limits of slowly-varying and sudden processes
analyzed in section 2.5when the asymptotic behaviors τ/τR? 1 and τ/τR= 1 are considered.

To calculate the excess power (37) along (60), we need to express the optimal protocol with the appropriate
boundary conditions. In this way, we have

( ) ( ( ) ( )) ( )t
t t

t
t t

t=
+
+

+
+

Q - Q -f t
t

t t
2

2

2
. 62R

R

R

R

*

Calculating now the excess power along f *(t), we have

( )
( ) ( )

( ( ) ( )) ( )t w dl
t t

t w dl
t t

d d t=
+

+
+

+ - t t t
2

2

2
. 63R

R

R

R
ex

0
2 2

2

2
0
2 2

2
*

equation (61) is easily recovered by equation (63). As it was shown before, the excess power is stationary
except at the extremities of the protocol. There, it has delta peaks that indicate the jumps performed by the
optimal protocol. Despite of that, the irreversible work isfinite.

3.2. Stiffening trap
For the stiffening trap, the time-dependent harmonic potential is given by

( ( ) ) ( ) ( ) ( )l
=V x t t

t
x t,

2
, 642

whereλ is the stiffening parameter. During the driving, the parameter is changed fromλ0 toλ0+ δλ. Inwhat
followswe show that the optimal protocol of linear response theory reproduces in zeroth-order approximation
the same optimal protocol predicted by [7].

3.2.1. Prediction of stochastic thermodynamics result
According to [7], the optimal protocol of a Brownian particle subjected to the stiffening trap in the overdamped
regime is
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⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

( )
dl

l g
l=

+
-

+
-g t

c t

c

c t

1

1 1
, 650

2 0*
*

*
*

where

( )
g gl t dll t l t g dlt l t

gt dlt l t
=

+ + + - - -

+ +
c

2

2
. 66

2
0 0

2
0
2 2

0

2
0

2
*

Applying expression (8) to the present case, we obtain

( ) ( ) ( ) ( )bY = á¶ ¶ ñ -l l t V t V 0 , 670 0

where the generalized force∂λV(x(t), t) is stochastically averaged along the path, and the constant  is calculated
such thatΨ0(t)→ 0when t→∞ . Since∂λV(t)= x2(t)/2, and x(t) is a solution of equation (48), the previous
average can be calculated using equations (49) and the fact that the initial distribution is an equilibriumone
given by ( )bl- xexp 20

2 , where  is the partition function. Equation (67) then becomes

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ∣ ∣ ( )bl
l
g

Y = --t t2 exp
2

, 680 0
2 1 0

which yields the relaxation time

( )t
g
l

=
2

. 69R
0

Therefore, the optimal protocol is identical to the one calculated in section 3.1 (see equation (60)),

( ) ( )t
t t

=
+
+

g t
t

2
. 70R

R

*

butwith the relaxation time given by (69).
The optimal value of the irreversible work reads

( ) ( )
b

dl l
t t

=
+

W
1

2 2
, 71

R
irr

0
2

*

whose asymptotic limits agree with the slowly-varying and sudden cases of section 2.5.One can show that
equation (70) is the zeroth-order approximation of equation (65) in δλ. Figure 3 illustrates this agreement for a
weak perturbation of δλ/λ0= 0.1. In this case, the expression for the excess power is similar to the one presented
in themoving laser trap example.

Additionally, we remark that the exact optimal protocol (65) also presents the time-reversal symmetry
discussed in section 2.4when it drives the Brownian particle far from equilibrium. Indeed, it can be verified,
using equation (65), that

( ) ( ) ( )t+ - »g t g t 1, 72* *

when δλ/λ0? 1 and τR/τ 1.

Figure 3.Comparison between the optimal protocols for the stiffening trap in the overdamped regime. The solid lines correspond to
the results predicted by stochastic thermodynamics, equation (65), while the dots correspond to the linear-response result,
equation (70). It was used the ratios τ/τR = 0.1, 1, 10with τR = 1/2, considering γ = λ0 = 1 and δλ = 0.1.
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4. Final remarks

In this work, we presented an analytical approach to the optimization of the thermodynamic irreversible work
forfinite-time andweak processes in driven Brownianmotions.We have derived the Euler–Lagrange equation
that leads to the extremumof the optimization problem and have shown that it already accounts for jumps at the
extremities of the protocol. As a consequence, the solutions of this equation do not requirefixed boundary
conditions. Thus, we have confirmed that such jumps are an unexpected strategy to reduce the irreversible work.
We have also shown that the optimal protocols in this linear-response regime are time-reversal symmetric due to
the properties of the relaxation function. This symmetry had been suggested before by semi-analytical results
butwewere able to show it in this work through the derivation of the Euler–Lagrange equation.We have also
emphasized that it is present in the exact optimal protocols far from equilibrium. This shows that perturbative
approaches can reveal important information about the physics of optimal processes in contrast to crude
numericalmethods.We have also analyzed the excess power along the optimal protocol and have found that its
qualitative behavior surprisingly agrees with that observed in the slowly-varying regime.Ourmain results were
illustrated using the paradigmatic example of driven Brownianmotion.We have shown that, whenever an
analytical solution from stochastic thermodynamics is available, our results coincidewith them in the linear-
response regime. The analysis of the underdamped regime is a natural sequel of this research.
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AppendixA.Difference ofHelmholtz free energy in linear response theory

In this appendix, wewill show that whatwe call the free-energy difference in linear response theory,

( )dl
dl

D = á¶ ñ - Y
~

lF
2

, A10

2

0

is indeed consistent with the definition

( )D = D - DF U T S A2

when δλ/λ0= 1.
The difference of the state functions in equation (A2) are calculated between the initial and final states

corresponding toλ0 andλ0+ δλ, respectively. The termΔU is then the difference of internal energy given by

( ) ( ) ( ) ( ) ( )ò òl dl r l dl l r lD = + + G - G
G G
 U d d A3c c0 0 0 0

where ( ) ( ( )) ( )r l b l l= -  expc denotes the canonical distribution. In its turn, the termΔS is the relative
entropy between thefinal and initial equilibrium state.More precisely

( )
( )

( )
( )ò r l

r l dl
r l

D = -
+

G
G

S k dlog , A4B c
c

c
0

0

0

where kB is the Boltzmannʼs constant.
Expanding equation (A3)up to second-order in δλ, the internal energy can be expressed as

( ( ) ( ))

( ( ) ( )) ( )

ò

ò

dl l r l

dl
l r l

D = ¶ G

+ ¶ G

l

ll

G

G





U d

d
2

. A5

c

c

0 0

2
2

0 0
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Thus,

( )dl
dl

D = á¶ ñ + á¶ ñl ll U
2

. A60

2
2

0

Performing the same expansion in equation (A4), we obtain

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

( ) ( )

( )( ( )) ( )

ò ò

ò

dl
b

r l r l

bdl
r l l

D =- ¢ G + ¢ G

+ ¶ Gl

¢

G


T S d d

d
2

, A7

c c

c

0 0

2

0 0
2

where r¢c and r¢
¢

c denote thefirst and second derivatives of the canonical distribution in respect toλ0. Using the
normalisation of ρc and the definition of the relaxation function, we have

( ) ( )dl
D = YT S

2
0 . A8

2

Summing equations (A6) and (A8)we arrive at equation (A1).

Appendix B. Compatibility between slowly-varying andfinite-time andweak processes

Wedenote the expressions of the for slowly-varying and finite-time andweak processes respectively asWirr
2 and

Wirr
1 . Thefirst one can be expressed as [23, 25]

 ( ) [ ( )] [ ( )] ( )òdl t l c l=
t

W g t t t dt, B1Rirr
2 2

0

2

where τR is the relaxation time, defined as

( )
( )

( )òt =
Y
Y

¥ t
dt

0
, B2R

0

0

0

andχ is the variance of the generalized force, given by

[ ] ( )c b= á¶ ñ - á¶ ñl l  , B32
0 0

2

or, equivalently,

( ) ( )c = Y 0 . B40

The parametric dependence onλ(t) in the quantities appearing in equation (B1) is obtained replacingλ0 byλ
(t) in equations (B2) and (B3). The physical idea behind this is that at each infinitesimal interval of time the
systemquickly relaxes back to equilibrium such that observables are evaluated instantaneously. Note also that, in
contrast toWirr

1 , the driving strength δλ/λ0 does not have to be smaller than one.
Wewant to show that the leading order ofWirr

2 in the driving strength δλ/λ0 is equal toWirr
1 (see

equation (B7)) for large switching times τ. The notation introduced below should be taken as the asymptotic
behavior of the corresponding expressions. Thus, the equality

 
( )=

dl
l

t
t

W Wlim lim B5
1

irr
2

1
irr
1

R
0

means that the expression ofWirr
2 for δλ/λ0= 1must be equal to the expression ofWirr

1 for τR/τ= 1.We
remark that, in the case of slowly-varying processes, the leading order in δλ/λ0must be the second one, since the
integrand, in zeroth order, givesWirr

2 proportional to δλ2. This can only happen if there is no dependence of the
relaxation time τR and varianceχ on the external parameter, that is, if they are calculated at the initial and fixed
valueλ0. Thus,





 


( ) [ ] [ ]

[ ] [ ] ( )

[ ] [ ] ( ) ( ) ( ) ( )

ò

ò
ò ò

dl t l c l

dl t l c l

dl t l c l d

=

=

= - ¢ ¢ ¢

t

t

t t

dl
l

W g t dt

g t dt

t t g t g t dt dt

lim

. B6

R

R

R

1
irr
2 2

0

2
0 0

2
0 0

0

2

2
0 0

0 0

0

On the other hand, for weak finite-time processes, the irreversible work reads

 ( ( )) ( ) ( ) ( )ò ò
dl

t= Y - ¢ ¢ ¢W u u g u g u du du
2

. B7irr
1

2

0

1

0

1

0
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Now, since the relaxation function vanishes (exponentially for all the cases we have considered here) for large
switching times, except when = ¢u u , we have

( ( )) ( ( )) ( )t xd tY - ¢ ~ - ¢u u u u B80

for τR/τ→ 0. To calculate the factor ξ, we use the normalisation of theDirac delta

( ) ( )ò d =
-¥

¥
t dt 1. B9

In thismanner, integrating equation (B8), we have

( ) [ ] [ ] ( )x t t l c l= Y =2 0 2 , B10R R0 0 0

which leads to

 


[ ] [ ] ( ) ( ) ( ) ( )ò òdl t l c l d= - ¢ ¢ ¢
t t

t t
W t t g t g t dt dtlim , B11R

1
irr
1 2

0 0
0 0R

proving therefore equation (B5).We conclude that the results we obtained for optimal finite-time andweak
processesmustmatch the ones obtained in [25] in the appropriate limit.

AppendixC. Calculations ofW ij
irr

Themain step to calculateW ij
irr is to perform a change of variables in t and ¢t such that, in the new variables, the

double integral can always be calculated in the domain [0, τi]× [0, τj]. For instance:

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

 

 

 

 

 

( ) ( ) ( )

( ) ( ) (( ) )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

ò ò

ò ò

ò ò

ò ò

ò ò

dl

dl t t

dl t t

dl t t

dl
t t

= Y - ¢ ¢ ¢

= Y - ¢ ¢ ¢ -

= Y + - ¢ ¢ ¢

= Y - ¢ ¢ ¢

= Y - ¢ ¢ ¢

t

t t

t

t

t t

t

t

t

t

t

t t

+

+

+

W t t h t h t dt dt

t t h t dt g t dt

u t h t dt g u du

u u g u g u du du

u u g u g u du du

.

2
. C1

t

t

u

u

irr
22 2

0 2 2

2
0 2 2 1 2

2

0
0 1 2 2 2

2

0 0
0 2 2 2 2

2

0 0
0 2 2 2 2

1

1 2

1

1

1 2

1

2

1

1

2

2 2

Hence, in a similarmanner, we have

 ( ) ( ) ( ) ( )ò ò
dl

t t= Y - ¢ ¢ ¢
t t

W u u g u g u du du
2

, C2irr
11

2

0 0
0 1 1 1 1

1 1

 ( ) ( ) ( ) ( )ò òdl t t t= Y - ¢ - ¢ ¢
t t

W u u g u g u du du, C3irr
21 2

0 0
0 1 1 1 2 2

2 1

 ( ) ( ) ( ) ( )ò òdl t t t t= Y - ¢ + + ¢ ¢
t t

W u u g u g u du du, C4irr
31 2

0 0
0 2 1 1 1 3 3

3 1

 ( ) ( ) ( ) ( )ò òdl t t t= Y - ¢ + ¢ ¢
t t

W u u g u g u du du, C5irr
32 2

0 0
0 2 2 2 3 3

3 2

 ( ) ( ) ( ) ( )ò ò
dl

t t= Y - ¢ ¢ ¢
t t

W u u g u g u du du
2

. C6irr
33

2

0 0
0 3 3 3 3

3 3

Taking the limits τ1→ 0 and τ3→ 0, we have

 ( ) ( ) ( ) ( )ò ò
dl

t t= Y - ¢ ¢ ¢
t t

W u u g u g u du du
2

, C7irr
11

2

0 0
0 1 1 1 1

1 1

( ) ( ) ( ) ( )òdl t= Y
t

W g u g u du0 , C8irr
21 2

2
0

0 2 2
2

 ( ) ( ) ( ) ( )ò ò
dl

t t= Y - ¢ ¢ ¢
t t

W u u g u g u du du
2

, C9irr
22

2

0 0
0 2 2 2 2

2 2

( ) ( )( ( )) ( )dl t= Y -W g g0 1 1 , C10irr
31 2

0 2 2

( ( )) ( ) ( ) ( )òdl t t= - Y -
t

W g u g u du1 1 , C11irr
32 2

2
0

0 2 2 2
2
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 ( ) ( ) ( ) ( )ò ò
dl

t t= Y - ¢ ¢ ¢
t t

W u u g u g u du du
2

. C12irr
33

2

0 0
0 3 3 3 3

3 3

Expressing all the integrals above in terms of the protocol g2(t/τ2) and summing them,we arrive at
equation (23).

AppendixD.Deduction of the backward protocol

In this appendix, wewant to express the time-reversed protocol gR(t) in terms of the forward one gF(t). First, the
time-reversed processλR(t) is defined by

( ) ( ) ( ) ( )l l t l t dl= - = + -t t g t . D1R F F0

Second, any reversed process that connects the same equilibrium states asλF(t) can be expressed as

( ) ( ) ( ) ( )l l dl dl= + -t g t . D2R R0

whichmeans that the reversed process drives the system fromλ0+ δλ toλ0, according to some protocol gB(t).
Expressing equation (D1) in the followingway

( ) ( )
( )

( ) [ ( )] ( )

l l t dl
l dl dl t dl
l dl t dl

= + -
= + - + -
= + - - -

t g t

g t

g t1 , D3

R F

F

F

0

0

0

we can identify each termwith equation (D2) and derive equation (27) at the end.

Appendix E. Contributions of the excess power

Using the splitting proposed in equation (38), the optimal excess power can be rewritten as






( ) ( ) ( ) ( )

( ) ( ( ) ( )) ( )

( ) ( )( ( ) ( )) ( )

òt dl

dl t

dl d d t

= Y - ¢ ¢ ¢

+ Y - + Y

+ Y + -

t

+

+

 t
g t

t t g t dt

g
t t g t

g t t

,
2

0

2
0 0 E1

ex
2

0
0

2
0 0

2 2

* *

*

*

The Euler–Lagrange equation (16) can also be rewritten as

 ( ) ( ) ( ) ( )

( ( ) ( )) ( )
( ( ) ( )) ( ) ( )

ò ò
t
t

Y - ¢ ¢ ¢ = Y ¢ ¢ ¢

- Y - + Y
+ Y + Y

t t

+

+

t t g t dt t g t dt

t t g

g

0

0 0 . E2

0
0

0
0

0 0

0 0

* *

*

*

Substituting equations (E2) in (E1), we obtain the contributions referring to the continuous and jumps parts.
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