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The operation of near-term quantum technologies requires the development of feasible, implementable,
and robust strategies of controlling complex many body systems. To this end, a variety of techniques, so-
called “shortcuts to adiabaticity,” have been developed. Many of these shortcuts have already been
demonstrated to be powerful and implementable in distinct scenarios. Yet, it is often also desirable to have
additional, approximate strategies available that are applicable to a large class of systems. Hence, in this
Letter, we take inspiration from thermodynamics and propose to focus on the macrostate, rather than the
microstate. Adiabatic dynamics can then be identified as such processes that preserve the equation of state,
and systematic corrections are obtained from adiabatic perturbation theory. We demonstrate this approach
by improving upon fast quasiadiabatic driving, and by applying the method to the quantum Ising chain in
the transverse field.
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The word “adiabatic” is derived from the Greek adia-
batos, which means literally “impassable.” In thermo-
dynamics, an adiabatic constraint is a “wall” that is
impassable to heat, and thus, an adiabatic process is a
thermodynamic state transformation during which no heat
is exchanged [1]. However, the notion of adiabaticity has
found a much broader application in Hamiltonian dynamics
[2]. In classical mechanics, an “adiabatic invariant” is any
quantity that remains constant under the Hamiltonian
equations of motion, given infinitely slow variations of
the Hamiltonian [2].
This insight led Born to the formulation of the quantum

adiabatic theorem [3], which states that, during infinitely
slow variation of the Hamiltonian, no transitions between
energy levels occur. Obviously, such adiabatic processes
are highly desirable in quantum technological applications.
Recent years have seen tremendous research efforts in
facilitating such excitation-free processes with finite time
driving. Under the umbrella of shortcuts to adiabaticity
(STA) [4,5] a large variety of techniques has been devel-
oped, of which counterdiabatic driving [6–11], invariant
based inverse engineering protocols [12–16], and the fast-
forward technique [17–23] have arguably received the most
attention, with applications in vastly different physical
scenarios. For instance, counterdiabatic driving is particu-
larly well suited to optimally controlling the dynamics of
cold ion traps [24,25]. However, implementing STA in a
more complex quantum system can become rather involved
[26–31]. Thus, it appears very desirable to find alternative
and approximate schemes that may provide more univer-
sally applicable control strategies. This has already led to
the development of “resource friendly” control strategies
[32–37], that provide alternative means of suppressing

excitations arising from populating energetically high-lying
microstates.
One of the main causes for the complexity of finding

realistically useful STA rests in the fact that, to a certain
degree, all methods originate in circumventing the quantum
adiabatic theorem [3]. Hence, the focus is on preserving the
occupation probabilities of the energy eigenstates, i.e.,
microstates [1]. However, in most experimental settings,
quantum states cannot be easily measured; rather, thermo-
dynamic observables are monitored. Therefore, thermody-
namic control has been suggested as a possible way to
construct approximate STA [38], see Ref. [39] for a recent
perspective. However, thermodynamic control methods are
usually applied with a focus on lowering the energetic cost
of a given thermodynamic process [40–44].
In the present Letter, we change the paradigm of this

approach by proposing genuine shortcuts to thermo-
dynamic quasistaticity. To this end, we fully accept the
thermodynamic mind set, namely, we seek STA that
preserve the adiabatic macrostate and not the occupations
of microscopic energy eigenstates of a quantum system.
Hence, we demand that the macrostate of a driven system
(approximately) fulfills an instantaneous equation of state.
Such a control strategy is constructed by exploiting
adiabatic perturbation theory [45], which has recently
proven powerful in assessing nonequilibrium excitations
in driven quantum Ising chains [46,47]. To demonstrate the
versatility of the approach, we benchmark our results
against other STA, in particular, against fast quasiadiabatic
driving [48–51], which is closest in spirit to our approach.
Preliminaries.—We start by establishing notions and

notations. Consider a quantum system described by a
Hamiltonian HðλÞ ¼ P

n EnðλÞjnðλÞihnðλÞj, where EnðλÞ
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and jnðλÞi are parametric, nondegenerate eigenvalues and
eigenstates, respectively. Moreover, λ is an external control
parameter, such as the volume of a gas container or a
magnetic field. In the following, we will be interested in
thermodynamic state transformations that are driven by
varying λ ¼ λðtÞ (also called a protocol), between times ti
and tf, taking the external parameter from an initial value λi
to a final value λf. Moreover, we assume that the quantum
system is thermally insulated, and therefore, its time
evolution is unitary. Note that unitary dynamics are
necessarily thermodynamically adiabatic in the traditional
sense, since no heat is exchanged. Thus, unless otherwise
stated, adiabatic means “quasistatic,” henceforth.
We further assume that the system is initially prepared in

a quantum state that is diagonal in the energy eigenbasis,
ρi ¼

P
n pnjniihnij, where the subscript i means that a

given quantity is evaluated at ti, and jnii ¼ jnðλiÞi. The
time-dependent state is then determined by the von
Neumann equation, iℏ_ρðtÞ ¼ ½HðλÞ; ρðtÞ�, and we denote
derivatives with respect to time by a dot.
It is worth emphasizing that, even if the initial state, ρi, is

chosen to be an equilibrium state, ρðt > tiÞ may be
arbitrarily far from equilibrium. Given an initially canonical
state [ρi ∝ exp ð−βHiÞ], even an infinitely slow process
will generally not keep the system in canonical equilibrium.
This is because the quasistatic evolution preserves the
statistical weights in the initial Hamiltonian. However, in
the present analysis, our main focus is also not the micro-
state, but rather the thermodynamic macrostate.
In (quantum) thermodynamics, a macrostate is fully

characterized by its state variables [1,52], which fulfill
an equation of state (EOS). At any instant, the EOS can be
obtained by calculating the equilibrium average of the
generalized force, FðλÞ, which is given by [1]

FðλÞ ¼ −
∂HðλÞ
∂λ

; ð1Þ

and Λ≡ trfρFg is the state variable conjugate to λ. For any
driven process, and writing the time-dependent quantum
state as ρðtÞ ¼ P

n pnjψnðtÞihψnðtÞj, the corresponding
average generalized force reads

ΛðtÞ ¼
X
n

pnhψnðtÞjFðλÞjψnðtÞi: ð2Þ

Here, jψnðtÞi is a solution of the corresponding
Schrödinger equation.
Thermodynamic state transformations.—Before we ana-

lyze the more general out of equilibrium situation, we
inspect Eq. (2) in the adiabatic limit τ → ∞. The adiabatic
theorem dictates that, if the evolution is slow enough, the
solution to Schrödinger’s equation can be written as [53]

jψ ð0Þ
n ðtÞi ¼ eiϕnðtÞjnðλÞi; ð3Þ

where the superscript (0) denotes the adiabatic limit and
ϕnðtÞ is the usual adiabatic phase (dynamic plus geo-
metric). In this case, Eq. (2) simplifies to

Λð0Þ ¼
X
n

pnFnnðλÞ; ð4Þ

where FmnðλÞ ¼ hmðλÞjFðλÞjnðλÞi. Notice the lack of
explicit time dependence in Eq. (4): this is the conventional
EOS. For infinitely slow variations of λ, Eq. (4) describes
the evolution of the macroscopic state in any mechanically
adiabatic (and thermodynamically adiabatic) process, i.e.,
for a thermodynamic state transformation.
Beyond the adiabatic limit.—Using adiabatic perturba-

tion theory (APT), whose details we leave for the
Supplemental Material [54], we can systematically com-
pute finite-time corrections to the EOS (4). Using Eqs. (1)–
(3) of the Supplemental Material [54] in Eq. (2) and
keeping terms up to Oðτ−1Þ, the first-order correction
becomes

Λð1ÞðtÞ ¼
X
m;n
m≠n

pnℜf2Cð1Þ
mnðtÞF�

mnðλÞg

¼ 2ℏ_λi
X
m;n
m≠n

pnℑ

�
Fmn;i

eiϕmnðtÞ

E2
mn;i

F�
mnðλÞ

�
; ð5Þ

where we used the fact that the product of F�
mnðλÞ and the

first term of Eq. (2) of the Supplemental Material [54] is
purely imaginary. We immediately observe that the first-
order correction to the EOS is directly proportional to the
time derivative of the external parameter at the beginning of
the process. Hence, for all protocols with _λi ¼ 0, the EOS
is preserved up to Oðτ−2Þ in any sufficiently slow process.
We stress that this conclusion is independent of the
Hamiltonian considered, only depending on the validity
of APT. Thus, we have unveiled a universal design
principle for optimal control strategies applicable in any
gapped quantum system, simple as well as complex.
Strategies where the time derivatives of the protocols

vanish at the end points of the evolution have already been
discussed as ways to guarantee adiabaticity in the micro-
state [55–58]. However, we emphasize that the first-order
result for the macrostate only depends on the initial
derivative and not the final derivative. This still leaves a
lot of freedom in finding “optimal” and experimentally
implementable protocols. Thus, it should be obvious that
even better results can be achieved by complementing our
macroscopic strategy with microscopic methods.
Fast quasiadiabatic driving.—One strategy to ensure

APT convergence is the application of fast quasiadiabatic
(FQA) protocols [48–51] and related approaches [5].
If there is only one relevant energy gap EmnðλÞ in the
quantum system, FQA provides a protocol λðtÞ for which
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first-order APT transitions between eigenstatesm and n are
equally likely at any instant. This protocol is the solution to
a first order differential equation [48–51]

ℏ

����
_λðtÞFmnðλÞ
E2
mnðλÞ

���� ¼ c1; ð6Þ

where c1 is a constant that, together with the integration
constant, is uniquely defined by the boundary conditions
λðtiÞ ¼ λi and λðtfÞ ¼ λf. For a generic protocol, micro-
scopic adiabaticity is secured if the left-hand side of Eq. (6)
is much smaller than unity for any t, the quantitative
adiabatic condition [59,60] [Eq. (4) of the Supplemental
Material [54] ]. The boundary conditions always lead to
c1 ∝ τ−1, which means that the FQA protocol still requires
large enough τ for the adiabatic condition to be fulfilled.
FQA’s advantage is that it naturally slows down where
EmnðλÞ is small [see Eq. (6)], and thus, it may reach the
adiabatic condition and make APT converge for a smaller τ,
when compared to a generic protocol.
Curiously, FQA is limited to suppressing first-order

transitions. The authors of Ref. [51] remark that consid-
ering transitions of higher-than-one order APT is not
possible, since the associated differential equation would
not have enough constants to satisfy the boundary con-
ditions on λ and its derivatives. For example, demanding
the second-order APT transition probabilities to be
uniform along the process gives a second-order differential
equation,

ℏ2

���� 1

EmnðλÞ
d
dt

�
_λðtÞFmnðλÞ
E2
mnðλÞ

����� ¼ c2; ð7Þ

which was obtained from Eq. (6) with the proper sub-
stitution to second order coefficients, discussed in the
Supplemental Material [54]. The three available constants
(c2 plus two integration constants) in the solution of Eq. (7)
are insufficient to satisfy the four boundary conditions—
two on λ (same as FQA) and two on _λ, which are necessary
to make the second-order APT correction be the relevant
correction.
Above, we have seen that, from the macroscopic

dynamics, Eq. (5), optimal driving protocols obey _λ ¼ 0
at the beginning (and not at the end). This additional
condition permits us to uniquely solve Eq. (7), if we impose
the same boundary conditions as the FQA method plus
_λðtiÞ ¼ 0, which leads to c2 ∝ τ−2. We will be referring to
this strategy as FQ2, and as we will see shortly, FQ2 clearly
outperforms FQA. Once again, we bring attention to
the fact that making _λðtiÞ ¼ 0 gives null first order APT
correction for the EOS of any gapped system. Equations (6)
and (7), which do depend on the system through its
eigenspectrum, are primarily used to guarantee early
APT validity and can be applied even when the
Hamiltonian is only numerically diagonalizable. In fact,

at low temperature, knowledge of only a few eigenlevels
may be necessary, since only transitions between the
lowest energy eigenstates are relevant (see Fig. 2 of the
Supplemental Material [54]).
Illustrative example: quantum Ising chain.—Now, we

apply the above developed strategy to control a thermo-
dynamically relevant, exactly solvable system: the trans-
verse field Ising model (TI) [61,62]. The Hamiltonian reads

HTIðΓÞ ¼ −
1

2

�
J
XN
j¼1

σzjσ
z
jþ1 þ Γ

XN
j¼1

σxj

�
; ð8Þ

where J is the coupling constant, Γ is the external magnetic
field and σx;zj are standard Pauli matrices for each spin j
(with periodic boundary conditions). In the thermodynamic
limit N → ∞, this system displays a quantum critical point
(QCP) at Γ ¼ J, where the energy gap between ground and
first excited states vanishes. For simplicity, we assume N to
be even and that the system is initially prepared in its
ground state. The force is FTI ¼

P
N
j¼1 σ

x
j=2, while the

nonequilibrium magnetization per spin reads

μðtÞ ¼ 1

2N

XN
j¼1

hσxjiðtÞ: ð9Þ

In any finite time process, the magnetization can be
separated into an adiabatic contribution μð0Þ and an excess
contribution μex. Details for how to calculate the non-
equilibrium average in Eq. (9) can be found in the
Supplemental Material [54].
First, we consider a process keeping the chain entirely in

its paramagnetic phase (Γ > J) and starting at zero temper-
ature, i.e., with the chain initially prepared in its ground
state. We solve FQA and FQ2 for the smallest gap of the
system and compare them to a naive linear protocol
(LIN)—the results for a chain of finite size are shown in
Fig. 1. In Fig. 1(a), we show μ of Eq. (9) vs Γ in a process
that approaches, but does not cross, the QCP. The inset
contains the time dependence of each protocol, where it can
be seen that both FQA and FQ2 adapt to the system’s
spectrum, but FQ2 does so while still keeping null first
derivative at the start. FQA has a very high first derivative at
the initial time, and this ultimately makes its evolution have
notable oscillations around the EOS. On the other hand,
LIN follows the EOS closely, up until a point where the gap
gets too small, and it ends up breaking adiabaticity. Finally,
FQ2 follows the EOS right until the end, which is a
consequence of its compromise to attain adiabaticity while
zeroing the first order correction to the EOS. In Fig. 1(b),
we depict the excess magnetization μex at tf as a function of
τ. It is clear that FQ2 outperforms FQA for a generic τ, even
if FQ2 first crosses the adiabatic μex ¼ 0 line for a
marginally bigger τ than FQA.

μex μ μ at the end of the process vs process duration.
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As a second case, we consider the crossing of the QCP,
from the paramagnetic phase to the ferromagnetic phase. In
a finite size chain, the gap at the QCP is small but nonzero,
which makes adiabaticity difficult but possible to achieve.
In this scenario, the smallness of the energy gap forces the
FQA protocol to slow down dramatically around the QCP
and, consequently, to speed up around the end points. This
speedup is detrimental in the ferromagnetic phase of the TI
chain, where the gap of many other sublevels are compa-
rable to the gap of the lowest sublevel (see Fig. 1 of the
Supplemental Material [54]). Other energy differences can
be taken into account when building FQA protocols (see
Ref. [63]), but the associated differential equation is not
exactly solvable and hardly numerically solvable when
traversing the QCP. Thus, to circumvent this issue, we
apply a similar strategy known as uniform quasiadiabatic

(UQA) protocols [64] to the lowest sublevel of the TI chain.
It is the solution to Eq. (6) with the substitution FmnðλÞ →
∂λEmnðλÞ [5], motivated by the Kibble-Zurek mechanism of
second-order quantum phase transitions. Thus, we define a
UQ2 protocol as the solution of Eq. (7) with the afore-
mentioned substitution, and we compare it to LIN and
UQA in Fig. 2. Figure 2(a) is the equivalent of Fig. 1(a) but
with a considerably larger process duration, which eviden-
ces the difficulty of crossing the QCP while maintaining
adiabaticity (in the mechanical sense). The inset once again
shows the time dependence of each strategy, and it is clear
that both UQA and UQ2 slow down around the QCP. The
conclusion is the same as in the paramagnetic process: UQ2
follows the EOS more closely. Furthermore, as can be seen
in Fig. 1(b), UQ2 gives final μex ¼ 0 for a significantly
smaller τ than the other two protocols, which is a

(a) (b)

FIG. 1. Magnetization of the TI chain in the entirely paramagnetic process with N ¼ 100 starting at zero temperature. The results were
numerically obtained from the exact time-dependent dynamics. (a) State diagram of the TI chain for an adiabatic (quasistatic) evolution
(EOS), the LIN, the FQA, and the FQ2 protocols for Jτ ¼ 3, starting from the top right corner. The inset shows the time dependence of
each protocol. (b) Excess magnetization μex ¼ μ − μð0Þ at the end of the process vs process duration.

(b)(a)

FIG. 2. Magnetization of the TI chain in the QCP crossing process starting at zero temperature with N ¼ 100. The results of both
panels were numerically obtained from the exact time-dependent dynamics. (a) State diagram of the TI chain for an adiabatic
(quasistatic) evolution (EOS), the LIN, the UQA, and the UQ2 protocols for Jτ ¼ 50, starting from the top right corner. The inset shows
the time dependence of each protocol. (b) Excess magnetization μex ¼ μ − μð0Þ at the end of the process vs process duration.
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consequence of its final first derivative also being null at the
end point [see inset of Fig. 2(a)].
Concluding remarks.—Controlling complex many body

quantum systems is an involved task. While some strategies
have been successfully employed in platforms with great
technological promise, such as counterdiabatic driving in
ion traps [24,25], more universally applicable paradigms
appear desirable. To this end, we have proposed to take
inspiration from the mother of all control theories—
thermodynamics. Rather than aiming to control the micro-
state, we have suggested controlling the macrostate and
identifying protocols that preserve the equation of state.
This approach is somewhat akin to invariant based strat-
egies [5,13], on which we comment in the Supplemental
Material [54], where we study thermodynamic shortcuts for
the driven harmonic oscillator [65–67]. However, our
approach significantly goes beyond existing methods, since
using adiabatic perturbation theory, finite-time corrections
can be systematically computed, which gives systematic
conditions for the optimal driving protocols. The utility of
the approach has been demonstrated by improving upon
fast quasiadiabatic driving, and its applicability has been
demonstrated for the driven Ising chain.
The analyses of state diagrams demonstrate the differ-

ence between microscopic adiabaticity and macroscopic
adiabaticity. More specifically, strategies that are better
suited for parametric following of microstates (eigenstates)
are not necessarily better for parametric following of
macrostates (state variables). It is also worth noting that
a notion of relaxation time seems to be absent, which is
perhaps expected in isolated systems where relaxation to
some sort of equilibrium is not guaranteed. Nonetheless,
there is still the notion of a timescale with which the driving
rate must be compared, related to the energy gap between
eigenstates. Last, it is interesting to see that, even though it
is possible to stay close to the equation of state in finite time
driving, such a possibility does not lead to thermodynamic
reversibility. In other words, applying the same optimal
protocol in the reverse process does not give the same
curve in the state diagram as in the forward process and, in
fact, the FQ2 strategy we devised to better follow the
equation of state does not provide protocols with time-
reversal symmetry.
Finally, we note that the present Letter fills the gap in a

hierarchy of strategies developed for securing adiabaticity
in finite time. First, there are standard shortcuts to adia-
baticity, where one seeks to follow the parametric eigen-
states of the system. Second, we have the thermodynamic
shortcuts introduced in the present Letter, which follow the
equation of state. Third, we have the methods from
thermodynamic control, where the focus is on making
sure that the energetic cost of a certain manipulation of
the system is as close as possible to the cost in a quasistatic
process. It is expected that the further down you go in the

hierarchy, the less information is needed to determine the
associated optimal driving protocol.
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