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Abstract—Interventions to improve medication adherence have had limited success and can
require significant human resources to implement. Research focused on improving medication
adherence has undergone a paradigm shift, of late, with a shift towards developing personalized,
theory-driven interventions. The current research integrates foundational and translational
science to implement a mechanisms-focused, context-aware approach. Increasing adoption of
mobile and wearable sensing systems presents new opportunities for understanding how
medication-taking behaviors unfold in natural settings, especially in populations who have
difficulty adhering to medications. When combined with survey and ecological momentary
assessment data, these mobile and wearable sensing systems can directly capture the context
of medication adherence in situ, including personal, behavioral, and environmental factors. The
purpose of this paper is to present a new transdisciplinary research framework in medication
adherence, highlight critical advances in this rapidly-evolving research field, and outline
potential future directions for both research and clinical applications.
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INTRODUCTION
Medication adherence is defined by the World

Health Organization (WHO) as ”the extent to
which a person’s behavior (taking a medicine),
corresponds with agreed upon recommendations
from a health care provider” [19]. Adherence
to long term therapy for chronic illness in de-
veloped countries is about 50% [19]. Interven-
tions aimed at increasing medication adherence
have the potential to provide a significant ben-
efit through both primary prevention of disease
risk factors and secondary prevention of adverse
health outcomes. In fact, increasing the effec-
tiveness of medication adherence interventions
may have a far greater impact on health out-
comes than any improvement in specific medical
treatments [12]. The impact of poor adherence
to medications is expected to continue to in-
crease as the burden of chronic disease increases
globally. Endocrine therapy, including aromatase
inhibitors and Tamoxifen, is prescribed for at
least 5 years after individuals have been treated
for hormone receptor-positive breast cancer to
prevent recurrence of their cancer. Adherence to
these medications (defined as 80% or more doses
taken as prescribed) is associated with significant
increases in recurrence-free survival [18]. Despite
the life-saving benefits of these medications, rates
of persistence and adherence are low [18], with
post-treatment adherence ranging from 41% to
72% and discontinuation ranging from 31% to
73% [11].

Increasing adoption of smartphones has led to
an upsurge in applications targeted at improving
medication adherence. However, these technolo-
gies have focused mainly on cognitive factors
contributing to nonadherence, such as managing
multiple medications [5]. Existing mobile appli-
cations fail to account for an individual’s specific
risks and fail to personalize the interventions
delivered according to those risks. Furthermore,
very few interventions have been assessed for
efficacy in supporting adherence [16]. In this
paper, we propose a new integrated system for
long-term monitoring of medication adherence
consisting of sensor-rich smartphones, wireless
medication event monitoring systems (MEMS),
wireless beacons, and wearable sensors that col-
lect in situ data on adherence. This data will be

used to understand and model medication-taking
behaviors, develop context-sensitive models to
predict nonadherence, and develop and deliver
personalized interventions to improve medication
adherence. The novelty of this project lies in its
capturing of the multidimensional complexities
of medication adherence using ubiquitous mobile
sensing technologies and in using these sensed
data to understand medication-taking behaviors,
predict individual risk factors, and design and
deliver interventions to improve adherence at the
optimal time and in the optimal context.

BACKGROUND
Defining and Measuring Medication Ad-
herence Medication adherence is defined as
whether patients take their medication as pre-
scribed [8] and is critically important for ef-
fective medical treatment. Methods for assessing
medication adherence are categorized as either
direct (e.g. directly measurement of medicine or
biomarkers in blood) or indirect [13] (e.g. patient
self-report, pill counts, and pharmacy refills [8]).
Indirect methods, in particular, have several no-
table limitations. Self-reports are often biased
by inaccurate patient recall or social desirability.
Pill counts, meanwhile, do not accurately capture
exact timing of medication-taking and can be eas-
ily manipulated by patients (e.g., pill dumping).
When used alone, these methods fail to provide
a deeper contextual understanding of reasons for
medication adherence or nonadherence.

Interventions to Increase Medication Adherence
A 2014 systematic review identified 17 ran-

domized controlled trials that evaluated the effi-
cacy of medication adherence interventions [12].
Only five of these studies found medication ad-
herence interventions were associated with both
increased adherence and better clinical outcomes,
even though most interventions studied were
complex and required significant time of health-
care staff. This systematic review concluded in-
terventions may not have been effective because
there is a lack of understanding of barriers to
adherence and the context in which adherence
and nonadherence occurs. Another review of
229 smartphone reminder applications (apps) de-
termined that a “one size fits all” timer-based
reminder was largely ineffective because it did

2 c© 2020 IEEE Published by the IEEE Computer Society Pervasive Computing



not consider a user’s routine [17]. Taken together,
these reviews indicate that previous interventions
to increase medication adherence have broadly
targeted factors associated with lack of adherence
across groups of individuals. However, these in-
tervention approaches may not be relevant to a
specific individual at the time and in the context
that it is delivered and are not sustainable because
of the high burden on health care providers and
the healthcare system.

Factors Associated with Medication Ad-
herence and Nonadherence Substantial re-
search documents reasons why individuals do
not adhere to prescribed medications, including
endocrine therapy, a life saving medication taken
by some cancer survivors to slow or stop can-
cer growth. We examine factors associated with
medication adherence and nonadherence through
the lens of Social Cognitive Theory (SCT) [1],
a commonly used health behavior theory which
can facilitate better understanding of the context
of medication taking by evaluating how environ-
mental factors, personal factors, and a person’s
behavior interact. The SCT guides the selection
of constructs in our new medication adherence
framework and will also guide intervention de-
velopment.

Personal Factors: Physiological, cognitive,
and affective states affect long-term adherence
to medications. Physiological factors significantly
associated with endocrine therapy nonadherence
include side and adverse effects and functional
impairment [11], [18]. The two strongest cog-
nitive predictors of adherence, generally, and en-
docrine therapy, specifically, are self-efficacy and
positive beliefs regarding the importance and ne-
cessity of medications [18]. In addition, individu-
als who are poorly informed about side effects are
less likely to adhere to any medication, including
endocrine therapy, and that updating patients’
knowledge regularly can improve adherence. [3].
Affective states associated with lack of adherence
to medications are distress, depression, and fear
of cancer recurrence [11], [18].

Environmental Factors: A person’s so-
cial environment, physical environment, and the
health system environment influence whether
or not an individual takes medication. Hav-
ing less than desired social support for tak-

ing the medication is linked to endocrine ther-
apy nonadherence [11], [18]. Medication adher-
ence is associated with positive interactions with
health care providers who provide medication
reminders [18]. Family members also facilitate
medication adherence through reminders [18].
Medication adherence can also be facilitated by
aspects of the physical environment; people fre-
quently place medications in places where they
frequently go so that they remember to take
them [18]. Health system environments can also
affect medication adherence, such as via costs of
medication [11], [18].

Behavioral Factors: Medication-taking oc-
curs in the context of other behaviors which
can serve as a cue to action to initiate the
behavior of interest (e.g., brushing teeth, eating
breakfast) [15]. Having a routine or schedule for
medication-taking may facilitate adherence [18].
To date, the field has been limited in monitoring
multiple factors simultaneously due to limitations
in technologies to collect the data and model
these factors dynamically. However, the emer-
gence of mobile technologies enabling remote
health monitoring and studying human behavioral
dynamics [20], [7]. An understanding of the in-
teraction of environmental, personal, and behav-
ioral factors associated with medication-taking in
each individual will enable the development of
personalized approaches to prevent medication
nonadherence [10].

Mobile Sensing and Modeling
Mobile Sensing Smartphones and wearable
technologies have arrays of embedded sensors
that measure mobility, location, acoustics, and
ambient light. These sensors can be harnessed
to passively capture information related to users’
personal and environmental factors and behaviors,
so long as individuals carry or wear the devices.
These technologies are modernizing patient care
with capabilities such as sending and receiv-
ing clinically-relevant messages and supporting
illness management and treatment applications.
Most approaches require individuals to actively
engage with the device by responding to prompts
or launching an app. However, smart devices and
remote sensing technologies can also facilitate
behavioral tracking techniques that require little
to no active response from the user, thus decreas-
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ing patient burden. Mobile behavioral sensing
has been used to draw inferences about how and
where individuals spend their day and to track
behaviors associated with stress and changes in
mental health over time. Ben-Zeev et al. used
a mobile sensing application to gather GPS,
activity, and sleep data in tandem with daily
stress ratings gathered via EMA. They identified
relationships between sensed data such as sleep
and activity and changes in stress and mood [2].
Boukhechba et al. showed that sensed features
such as location entropy can be used in tandem
with social anxiety baseline measures to predict
symptom severity [4]. Further, Gong et al. found
that increased accelerometer movement is tied to
social anxiety symptoms for activities in certain
contexts (e.g. when making a phone call) [7]. The
methodologies and metrics from such studies are
promising, demonstrating that complex human
behavior and psychological states can be inferred
from multimodal data. However, no current sens-
ing systems have been implemented to provide
continuous monitoring within and outside the
home to monitor and support long-term medica-
tion adherence.

PROPOSED FRAMEWORK:
MULTISCALE MODELING AND
INTERVENTION (MMI) SYSTEM

Social Cognitive Theory (SCT) [1] indi-
cates medication-taking behaviors are performed
in the context of an individual’s environments
(e.g., work, social) and other behaviors (e.g.,
eating) and are influenced by personal factors
(e.g., cognition, emotion, experiences of side ef-
fects). A deeper understanding of the context of
medication-taking will provide us with informa-
tion about how, when, with whom, and where
medication is taken. Consequently, we propose a
new sensing systems framework, the Multiscale
Modeling and Intervention (MMI) system, for
modeling the simultaneous interacting behavioral,
environmental, and personal factors that influence
medication adherence or nonadherence. We are
applying this framework to breast cancer sur-
vivors who have completed most treatment and
are prescribed long term endocrine therapy. This
framework is grounded in SCT and accomplishes
four main goals: it 1) senses medication-taking
behaviors in context (i.e. sense personal, envi-

Figure 1: MMI sensing framework and data flow
overview

ronmental, and behavioral parameters,) 2) mod-
els the complex constructs of medication-taking
behavior in context, 3) identifies person-specific
constructs and constraints, and 4) establishes a
methodological foundation for creating personal-
ized interventions to improve medication-taking
behavior. Figure 1 provides an overview of the
MMI system, and Table 1 demonstrates how
sensed data map to the three key SCT constructs.
We now highlight the MMI system components
and design considerations in light of the afore-
mentioned goals.

System Components
The MMI sensing system unites multimodal

sensor data from smartphones, wearable sensors,
wireless beacons, and smartphones. In particu-
lar, the Sensus adaptable sensing system [20] is
central to the MMI system enabling the collec-
tion of behavioral data via ecological momen-
tary assessments (EMAs) and smartphone and
wearable sensor data. Medication-taking is mea-
sured using MEMS devices which do not provide
users with feedback regarding previous opening
of the bottle. Bluetooth beacons are integrated
into the system to transmit environment-specific
contextual information to the user’s smartphone.
Specifically, these beacons are used to sense
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Table 1: SCT Constructs, Measurement Methodology and Exemplar Features

SCT Construct Data Technology Features

Personal
(Physiological,
Affective,
Cognitive)

Hot flashes, pain,
fatigue, stress,
cognition

Galvanic skin response
(GSR), electrocardiogram
(ECG),
photoplethysmography
(PPG), GPS

pattern changes in heart
rate variability, body
temperature, breathing
rate, etc., keystroke
patterns, reduced activity
level,

Behavioral
Sleeping, eating,
medication-
taking

ECG, gyroscope,
accelerometer, GPS

Heart rate variability,
movement variation,
semantic location
diversity

Environmental
(Healthcare
System, Social
Environment,
Physical
Environment)

Type and quality
of social
interactions,
patient-provider
communication,
physical location

Microphone, GPS,
accelerometer

Text and call frequency,
audio signals, social
media activity, location
diversity

proximity, temperature, and ambient lighting lev-
els in a participant’s significant physical envi-
ronment locations (e.g. home). These contextual
data are then used to learn an individual’s event
patterns. For example, placing a beacon in an
individual’s kitchen (e.g., physical environment)
will allow the system to learn when they are
likely having a meal (e.g. engaging in a common
behavior). Passive sensor data from smart devices
are coupled with EMAs to collect self-reported
ground truth for dynamically changing measures
of SCT constructs (e.g., side effects, behaviors
related to medication adherence). Participant bur-
den in responding to EMAs is minimized by
keeping assessments brief and leveraging smart-
sensing plans to trigger prompts. For example,
environmental context (e.g., GPS, beacons) can
be leveraged to infer that a participant is eating
and prompt the user to confirm.

Design Considerations
User-centered Design Including users
throughout the process of the MMI system
design, as well as keeping users engaged with
interventions that arise from the design process,
is of critical importance. We will conduct
participatory design interviews with breast
cancer survivors to assess both the usability and
acceptability of MMI system components (e.g.
wearable sensors, MEMS caps, and EMAs). We
will also examine critical markers of engagement

captured by the system, such as dwell time on
tasks (e.g removing a MEMS cap or responding
to a survey) and task sequences (e.g. responding
to a survey, then removing a MEMS cap).
These markers are particularly useful for
inferring common behavioral constructs and
for optimizing intervention timing to maximize
engagement. For example, consider a routine
such as brushing one’s teeth at night. Inferring
the time at which this behavior typically occurs
(e.g. 8pm) and the behavioral context that is
likely to follow (e.g. sleeping) could help the
MMI system know when to deliver a reminder
to take a medication prescribed to be taken at
bedtime. Another example of an engagement
strategy the MMI system could employ is a
web-based dashboard which displays adherence
rates for the past week as well as motivational
messages encouraging patients to stick to a
medication routine.

Privacy and Security The MMI system will
collect personal and sensitive data, and thus,
specific strategies need to be taken to ensure the
preservation of user privacy and data security.
We will leverage MEMS and wearable devices
that offer a secure on-board storage infrastructure
and transmission protocols. Participant data will
be transferred via APIs that adhere to industry
standards (e.g. use TLS encryption and trusted
tokens) and will be stored in a HIPAA compliant
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Figure 2: A polar coordinates plot demonstrating patterns of medication-taking behavior in breast
cancer survivors leveraging MEMS over a eight-month period; consistent evening pattern (patient ID:
72), changing patterns (patient ID: 45) and random pattern (patient ID: 53). Blue dots are the MEMS
data in the weekday and red dots present the data in the weekend.

cloud. We will leverage privacy-preserving data
processing methods for potentially identifiable
data, such as GPS location, which could be ab-
stracted into clusters to avoid a situation where a
user’s precise location could be pinpointed.

Energy-Efficient Sensing One of the critical
challenges of mobile sensing research is creating
energy efficient systems that minimize power
consumption while capturing enough information
to measure / predict user context. Adaptive sens-
ing methods can be used to control low-level
sensing cycles to collect data only when needed
hence minimizing the a device’s computational
usage (e.g. collect motion data only when the
device is moving). Furthermore, machine learning
methods can be leveraged to learn when to turn on
a specific sensor based on an individual’s patterns
of daily living.

Social Cognitive Theory: A Strong Theoretical
Foundation

SCT has been used extensively in understand-
ing, predicting, and facilitating adherence to a
wide range of behaviors, including medication ad-
herence. The benefit of applying SCT to complex
behaviors like medication adherence is that it in-
cludes the concept of reciprocal determinism and
thus considers interactions among environmental,
personal, and behavioral factors associated with
the medication-taking behavior. We hypothesize
not only that the interaction between these factors

contributes to medication use, but that a change in
one factor may affect other factors to increase or
decrease the likelihood of medication adherence.
Other health behavior theories, which are less
complex, use similar constructs but do not include
reciprocal determinism.

Payne et al.’s systematic review showed fre-
quent adaptation of SCT constructs to mHealth
interventions, providing evidence of feasibility for
our approach [14]. Notably, however, none of the
previous works mentioned in this review present a
framework that has been developed and validated
for the purpose of medication adherence. The
MMI system represents the first framework de-
veloped by a transdisciplinary team of researchers
oriented toward improving medication adherence
in situ.

Preliminary work from our team has already
yielded rich insights into medication-taking be-
havior patterns and represents a key first step
toward building the MMI framework on SCT con-
structs. Boukhechba et al. analyzed data assessing
medication adherence of 33 breast cancer sur-
vivors taking endocrine therapy medication using
MEMS over an eight-month period [3]. These
results indicate that breast cancer survivors have
diverse patterns of medication-taking behavior
over the course of the monitoring period.

Figure 2, provides a visualization of three
of these breast cancer survivors’ patterns of en-
docrine therapy medication taking over the study
period according to the time of day that each
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Figure 3: Conceptual representation of SCT framework. Medication adherence is a part of human
behavior system, and itself is a system. Interventions will be designed to influence the personal,
behavioral,and environmental factors and then facilitate better medication adherence.

person took her medicine. Participant 72 nearly
always took the once daily pill in the evening,
participant 45 took the pill in the morning initially
and then switched to the evening, and participant
53 took the daily medication at various times of
the day with no noticeable pattern. It is important
to note that, the MEMS devices used in this
study provide no feedback to the user; however,
we saw numerous instances of medication non-
adherence suggesting that there was not a sub-
stantial Hawthorne effect.

MMI FRAMEWORK GOALS

Sensing and Modeling Medication-Taking
Behaviors in Context

Medication-taking behavior is part of a
person-specific human behavior system and is a
system itself. Understanding the complex sys-
tem of adherence-related context requires com-
prehension of both stable and dynamic variables.
Static variables refer to characteristics of one’s
life which infrequenly or never change, such as
personality, intelligence, and some demographics.
Dynamic variables, on the other hand, refer to
frequently-changing characteristics such as med-
ication side effects, disease symptoms, health

system interactions, social interactions, and be-
havioral contexts. In order to capture both static
and dynamic variables, the data collected from the
MMI system is translated into contextual features
within the SCT framework (Figure 3). Machine
learning methodologies (e.g., network analysis,
hierarchical sampling for active learning) can then
be used to discover the complex structure of
medication-taking behavior.

Identifying Person-Specific Constructs and
Constraints

Recent works in multiscale pattern recognition
has demonstrated that information fusion methods
provide richer information than isolated data-
driven models [7], [4]. The MMI framework uses
pairwise sensor fusion methods at several junc-
tures. For example, fusing information from com-
munication events (identified from call and text
logs) and fine-grained motion sensor data yields
a reliable behavioral marker of social anxiety lev-
els [7]. High-fidelity time-series data can generate
features from sliding windows or change-detected
windows, and extracted features can be clustered
to identify the semantics of activities. For in-
stance, the relationship between accelerometer
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Figure 4: Mapping personalized intervention options to contextual factors

data and heart rate data can be examined to under-
stand how stress manifests in daily life. Although
the information from an accelerometer sensor
is not accurate enough to identify the complex
entities of the human activities in daily life (e.g.,
sleeping, typing), additional integrative models
which include heart rate, skin temperature, skin
conductance, and other information (e.g., GPS
changes, call and text, and EMAs) can be used in
combination to more closely approximate activity.

Development of Personalized Interventions
Development of personalized interventions

within the MMI system is achieved via inter-
vention modules, which address patient-specific
needs or barriers to medication-taking at time
and place that is most convenient for the pa-
tient. Modules incorporate constructs from SCT
and include delivery of brief content (e.g., text,
audio, video) on the mobile phone via an app,
or on the smartwatch, as well as phone calls
and text messages providing personalized content.
Interventions are designed to only involve the
patient’s health care team in addressing barriers
that require their assistance, reducing the burden
on both patients and health care providers. We
note that frequent low-level interventions, such
as reminders, may annoy the users or the users
may habituate to them and ignore them. There-
fore, determining drawbacks and constraints of
contextual factors such as notification fatigue will

be a critical step in designing future intervention
modules.

Intervention modules are guided by Interven-
tion Mapping [6], an intervention development
model used in public health and behavioral sci-
ences. Intervention Mapping includes six steps:
logic model of the problem, a logic model of
change, program design, program production,
program implementation plan, and evaluation.
The knowledge learned from the computational
models employed in the MMI framework, such
as the contextual factors of medication-taking
behavior and the constraints of these factors, are
uniquely tied to the intervention approaches in the
following ways: 1) determining behavioral and
environmental outcomes the intervention is target-
ing (e.g., remembering to take the medication on
weekends); 2) stating performance objectives for
each outcome; (e.g., realizing that your routine
is different on weekends, linking medication to a
behavior performed every weekend); and 3) de-
termining essential and changeable determinants
using SCT (e.g., determining behaviors that are
performed every weekend, placing medication in
a visible place after it is taken on Friday) of be-
havioral and environmental outcomes as indicated
in the data collected from the MMI system.

Figure 4 demonstrates how computational
models are tied to Intervention Mapping within
the MMI system. The computational models help
identify the SCT construct(s) of the person-
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Figure 5: Hierarchical control theory to deliver interventions. The trajectory of medication-taking
behavior is captured by MEMS (day 100 to day 103, Patient ID: 45).

specific medication-taking behavior, while Inter-
vention Mapping helps identify the relationship
between the targeted constructs and the goals of
the intervention modules, such as reducing side
effects, reducing forgetting, establishing a routine,
increasing social support, and increasing positive
interactions with healthcare providers.

Estimation of Behavioral States for Delivery of
Personalized Interventions

We will formulate the MMI framework as a
computational model for optimal estimation of
the behavioral constructs and control strategies
of the interventions. We propose to use factor
graphs as a common framework to represent both
estimation and control problems. Our work will
complement the gap between low-level computa-
tional models and high-level behavioral science
knowledge. Figure 5 shows an example of our
factor graph that includes both the past estimation
and future control part. The behavioral states
(x(t)) will be represented as a vector of contex-
tual factors we learned from the multimodal and
multiscale data. The transmission matrix between
states (x(t)) and (x(t + 1)) will be initially
estimated in the network analysis approach. The
influence mechanisms between interventions and
the behavioral states will be initiated through
human-the in-the-loop design of the intervention
modules such as the Intervention Mapping pro-
cess. The noise (w(t)) and the constraints (l1...k)
will be initially determined by the probability
functions among contextual factors. With this ini-
tial information process, the format of the factor
graph will be initialized.

The first step of this model-predictive control
is to estimate the behavioral states since the
behavioral states will evolve along with time and
control strategies. Otherwise, constraints of the
behavioral states might also slightly change along
with the evolution of the behavior states and
contextual factors. Therefore, to better develop
control strategies under these constraints (e.g.,
reminders might not work as well during the
weekend as social influence-based interventions),
estimating the behavioral states to obtain an opti-
mal estimate of all constraints, uncertainty param-
eters, and past process noise. Leveraging previous
work in optimal control theory, we will estimate
the cost function Jest as the negative log of
the posterior p(x0:c, w0:c, l1...k, pint|{zij, u0:c−1})
which provides the maximum a-posterior (MAP)
estimate. The fundamental challenge here is to
examine whether or not the construct and con-
straints of medication-taking behavior fit a Gaus-
sian prior assumption. Our work will explore
and advance this knowledge in medication-taking
behavior.

OPEN CHALLENGES
The MMI system establishes a foundation

on which to build personalized interventions for
medication adherence, but it is not the only
answer to such a complex problem. Even after
decades of behavioral health research, modeling
human behavior still presents significant knowl-
edge discovery challenges. Researchers in human
behavior monitoring have noted that lab-based
models cannot solve the challenges in real-world
deployment due to the complexity and uncertain-
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ties in long-term human behavior [2].
Several promising solutions have been pro-

posed to improve performance of the models,
such as active learning and information fusion.
Active learning methods adopt queries or ques-
tionnaires to ask users’ help to annotate labels
of the uncertain data. Researchers in information
fusion, meanwhile, develop advanced machine
learning methods to cope with incomplete mul-
tichannel data. While these advances are promis-
ing, there remain systematic challenges to long-
term deployment of such systems and models,
which we now briefly review.

Grounding mHealth Interventions in Health
Behavior Theories

Though mHealth interventions for human
health and behavior have proliferated in re-
cent years, too few interventions are explicitly
grounded in health behavior theories such as SCT.
A strong understanding of such theories is critical
for both practitioners and researchers alike. Such
an understanding allows practitioners to assess
the fundamental factors contributing to behav-
iors such as medication nonadherence. Selecting
an appropriate theory in which to ground an
mHealth intervention is no small matter and re-
quires strong interdisciplinary collaborations be-
tween researchers from the behavioral sciences,
information science, and computer systems engi-
neering, among other fields.

In addition to forging stronger connections
between mobile interventions and existing behav-
ioral theories, new theories that encapsulate the
flexible, personalized nature of mHealth interven-
tions are needed. In particular, theories which
leverage control systems engineering and other
dynamic feedback models would be powerful,
modern additions to the behavior theory literature.

Accounting for User Context
The dynamics of deciding exactly when,

where, how, and how much to intervene when
promoting and increasing medication-taking be-
havior are complex. A fundamental understanding
of the context of health behavior states is critical
for generating clinical insights from sensed data.
Moreover, knowledge of context is especially
powerful for reducing patient burden and opti-
mizing intervention effectiveness. For example,

consider a patient who must take a medication
that causes an upset stomach when taken without
food. An application which detects motions such
as sitting down (indicating a possible break for
a meal) and opening a pill bottle, based on
accelerometer sensor readings, could 1) determine
when a user typically eats meals, 2) encourage the
user to take the medication at detected mealtimes,
and 3) draw inference about whether the patient
is taking their medication at the recommended
times (e.g. mealtimes). The clinical insights gath-
ered through this detection process could help
a clinician determine whether adverse reactions
such as an upset stomach and subsequent medi-
cation nonadherence are being caused by taking
the medication at non-optimal times (e.g. outside
mealtimes).

This example illustrates why the content and
timing of mHealth interventions must be carefully
designed with user context in mind. Researchers
must consider factors such as the temporal char-
acteristics of the target behavior (e.g., in the
case of medication adherence, timing of medi-
cation taking or missed doses) and the quality
and granularity of sensed data available. Many
mHealth researchers have shifted towards devel-
oping automated just-in-time adaptive interven-
tions (JITAIs). JITAIs enable collecting intensive
longitudinal data via sensors and EMA, present-
ing new opportunities to use tools from control
engineering in service of mHealth interventions.
Researchers must continue to investigate how
these ”human-in-the-loop” models can incentivize
users to leverage interventions for the betterment
of their health.

Developing Patient-Centered Interventions that
Cross Disciplinary Boundaries

Human health behavior is a complex system.
The efficacy and long-term success of mHealth
interventions depends heavily on collaboration
with healthcare professionals such as psychia-
trists, doctors, and nurses, who are well-versed in
the clinical needs and concerns of patients. In the
context of medication adherence, interventions
must be developed alongside care providers in or-
der to identify risk factors for non-adherence (e.g.
adverse reactions) and ways to minimize these
risks in situ. To develop mHealth interventions in
a vacuum, divorced from clinical care settings, is

10 Pervasive Computing



to risk the creation of sub-optimal interventions
that fail to put the patient first. We encourage
researchers to forge interdisciplinary partnerships
in the creation of these interventions.

Transforming the multimodal health data cap-
tured by mobile technologies into clinical insights
requires knowledge from multiple domains, in-
cluding data science, psychology, and medicine.
Moreover, new paradigms in machine learning are
needed to analyze subjective (e.g. EMA survey
responses) and objective (e.g. motion signals)
measures of social and behavioral health in the
same pipeline. One possible approach to this chal-
lenge is to reframe mobile behavioral interven-
tions as closed-loop dynamical systems amenable
to control systems engineering solutions. Re-
gardless of the approach taken, we encourage
researchers to consult experts outside their field
throughout the intervention development process.

Experimental Design and Evaluation
While mHealth interventions have great po-

tential to transform healthcare, there are still
many open challenges to evaluating their efficacy
in practice. We are moving from a “one-size-fits
all” model to a model in which interventions are
tailored and personalized to an individuals unique
context. The experimental design and metrics for
the evaluation are of utmost importance; however,
gold standard methodologies such as random-
ized control trials (RCTs) are impractical. New
experimental designs such as micro-randomized
trials [9], which enable both the determination
of when an intervention should be delivered and
whether it was effective, are needed to truly
evaluate the efficacy of just-in-time-adaptive in-
terventions.

FUTURE WORK

Deployment of the System with Integrated
Personalized Interventions

The natural progression of the development
of the MMI system will be deployment with
real breast cancer survivors prescribed endocrine
therapy. This deployment will enable our team
to refine the MMI system based on user feed-
back. Participants will be instructed to use the
MMI system for several months so that the MMI
system can learn about the participants’ natural

medication taking behaviors. Based on data col-
lected during this period, our team will then de-
velop and clinically validate specific intervention
approaches targeting reasons for non-adherence.

The MMI system offers both flexibility and
personalization in delivery of interventions. For
example, modules may include delivery of brief
content (e.g., text, audio, video) through the
mobile phone via an application or through
the smartwatch, phone calls, and text messages
providing personalized content, or contact with
healthcare providers or other significant people in
the patient’s life. Modules will be delivered at the
precise time that the intervention is needed. For
example, patients who are at risk for not taking
their medication at the time of a side effect, such
as severe joint pain, will be provided with one
or more intervention modules that addresses that
issue when the experience of pain is detected by
the MMI system (e.g., educational content for
addressing joint pain).

We will examine the relationship between the
intervention and the changing medication-taking
behaviors (as measured by MEMS devices) under
different environmental, personal, and behavioral
contexts. Once the MMI system is evaluated with
respect to feasibility, usability, and efficacy, it
should be evaluated in a larger trial.

CONCLUSION
This work presents the MMI system, a trans-

disciplinary, integrated approach to understanding
and developing intervention strategies targeted at
medication adherence in context, and discusses
its application to adherence to endocrine therapy
prescribed to breast cancer survivors. The pro-
posed framework consists of sensor-rich smart-
phones, wireless medication event monitoring
systems (MEMS), wireless beacons, and wearable
sensors that collect in situ data on medication
adherence. The MMI system is a comprehen-
sive framework for studying the relationships be-
tween medication-taking behaviors (as measured
by MEMS devices) and various environmental,
personal, and behavioral contextual factors. This
framework can also guide the development of
context-sensitive models to predict nonadherence,
and the design of personalized interventions that
improve medication adherence, with a focus on
endocrine therapy. Moreover, the MMI system
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establishes a new paradigm in designing personal-
ized mobile health interventions targeting behav-
iors beyond medication adherence. For example,
the same information fusion methods used to
identify links between sensor data and behavior
(e.g. accelerometer data showing the motion of
unscrewing a pill bottle cap) can be extended to
detect other adherence behaviors, such as pricking
one’s finger for testing insulin levels (i.e. for
diabetics). The MMI system is a promising step
forward for personalized health behavior inter-
ventions.

ACKNOWLEDGMENT
Research reported in this publication was sup-

ported by the National Cancer Institute of the Na-
tional Institutes of Health under award numbers
R01CA239246 and R21CA161077. The content
is solely the responsibility of the authors and does
not necessarily represent the official views of the
National Institutes of Health.

REFERENCES
1. A. BANDURA, Social foundations of thought and action:

A social cognitive theory, Prentice-Hall series in social

learning theory., Prentice-Hall, Inc, Englewood Cliffs,

NJ, US, 1986.

2. D. BEN-ZEEV, E. A. SCHERER, R. WANG, H. XIE, AND

A. T. CAMPBELL, Next-generation psychiatric assess-

ment: Using smartphone sensors to monitor behavior

and mental health, Psychiatric Rehabilitation Journal,

38 (2015), pp. 218–226.

3. M. BOUKHECHBA, S. BAEE, A. L. NOBLES, J. GONG,

K. WELLS, AND L. E. BARNES, A social cognitive theory-

based framework for monitoring medication adherence

applied to endocrine therapy in breast cancer sur-

vivors, in Biomedical & Health Informatics (BHI), 2018

IEEE EMBS International Conference on, IEEE, 2018,

pp. 275–278.

4. M. BOUKHECHBA, P. CHOW, K. FUA, B. A. TEACH-

MAN, AND L. E. BARNES, Predicting Social Anxiety

From Global Positioning System Traces of College Stu-

dents: Feasibility Study, JMIR Mental Health, 5 (2018),

p. e10101.

5. V. S. CONN, T. M. RUPPAR, M. ENRIQUEZ, AND

P. COOPER, Medication adherence interventions that

target subjects with adherence problems: Systematic

review and meta-analysis, Research in Social and Ad-

ministrative Phramacy, 12 (2016), pp. 218–246.

6. L. K. B. ELDREDGE, C. M. MARKHAM, R. A. RUITER,

G. KOK, AND G. S. PARCEL, Planning health promotion

programs: an intervention mapping approach, John Wi-

ley & Sons, 2016.

7. J. GONG, Y. HUANG, P. I. CHOW, K. FUA, M. S. GERBER,

B. A. TEACHMAN, AND L. E. BARNES, Understanding

behavioral dynamics of social anxiety among college

students through smartphone sensors, Information Fu-

sion, 49 (2019), pp. 57–68.

8. P. M. HO, C. L. BRYSON, AND J. S. RUMSFELD, Med-

ication adherence, Circulation, 119 (2009), pp. 3028–

3035.

9. P. KLASNJA, E. B. HEKLER, S. SHIFFMAN, A. BORUVKA,

D. ALMIRALL, A. TEWARI, AND S. A. MURPHY, Micro-

randomized trials: An experimental design for develop-

ing just-in-time adaptive interventions, Health psychol-

ogy : official journal of the Division of Health Psychol-

ogy, American Psychological Association, 34S (2015),

pp. 1220–1228.

10. L. R. MARTIN, S. L. WILLIAMS, K. B. HASKARD, AND

M. R. DIMATTEO, The challenge of patient adherence,

Therapeutics and Clinical Risk Management, 1 (2005),

pp. 189–199.

11. C. C. MURPHY, L. K. BARTHOLOMEW, M. Y. CARPEN-

TIER, S. M. BLUETHMANN, AND S. W. VERNON, Adher-

ence to adjuvant hormonal therapy among breast can-

cer survivors in clinical practice: a systematic review,

Breast Cancer Res Treat, 134 (2012), pp. 459–78.

12. R. NIEUWLAAT, N. WILCZYNSKI, T. NAVARRO, N. HOB-

SON, R. JEFFERY, A. KEEPANASSERIL, T. AGORITSAS,

N. MISTRY, A. IORIO, S. JACK, B. SIVARAMALINGAM,

E. ISERMAN, R. MUSTAFA, D. JEDRASZEWSKI, C. COTOI,

AND R. HAYNES, Interventions for helping patients to fol-

low prescriptions for medications, Cochrane Database

of Systematic Reviews, (2014), pp. 1–732.

13. L. OSTERBERG AND T. BLASCHKE, Adherence to medi-

cation, New England Journal of Medicine, 353 (2005),

pp. 487–497.

14. H. E. PAYNE, C. LISTER, J. H. WEST, AND J. M. BERN-

HARDT, Behavioral Functionality of Mobile Apps in

Health Interventions: A Systematic Review of the Lit-

erature, JMIR mHealth and uHealth, 3 (2015), p. e20.

15. W. T. RILEY, A. CESAR, MARTIN, AND D. E. RIVERA,

The importance of behavior theory in control system

modeling of physical activity sensor data, in Annual

International Conference of the IEEE Engineering in

Medicine and Biology Society, 2014, pp. 6880–6883.

16. K. SANTO, S. S. RICHTERING, J. CHALMERS, A. THI-

AGALINGAM, K. C. CHOW, AND J. REDFERN, Mobile

phone apps to improve medication adherence: A sys-

12 Pervasive Computing



tematic stepwise process to identify high-quality apps,

JMIR Mhealth Uhealth, 4 (2016), p. e132.

17. K. STAWARZ, A. L. COX, AND A. BLANDFORD, Don’t

forget your pill!: designing effective medication reminder

apps that support users’ daily routines, in Proceedings

of the SIGCHI Conference on Human Factors in Com-

puting Systems, ACM, 2014, pp. 2269–2278.

18. K. J. WELLS, T. M. PAN, C. VÁZQUEZ-OTERO, D. UNG,
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