

Graduate Program:

DISSERTATION APPROVAL SHEET

NOTE: *The Approval Sheet with the original signature must accompany the thesis or
dissertation. No terminal punctuation is to be used.

Doctor of Philosophy,

Computer Science

Uncertainty for Malware Detection and Cyber Defense

2021

Name of Candidate:

Title of Dissertation:

Andre Nguyen

Computer Science

Dissertation and Abstract Approved:

Professor

Charles Nicholas

11/23/2021 | 4:09:03 PM EST

Professor

11/23/2021 | 11:14:00 PM EST

Edward Raff

Computer Science

ABSTRACT

Title of dissertation: UNCERTAINTY FOR MALWARE
DETECTION AND CYBER DEFENSE

André Tai Nguyen, Doctor of Philosophy, 2021

Dissertation directed by: Professor Charles Nicholas
Professor Edward Ra↵
Department of Computer Science
and Electrical Engineering

As organizations in government and industry increasingly rely on digitized

data and networked computer systems, they face a growing risk of exposure to

cyber attacks. As computer networks grow in size, so do the challenges cybersecurity

professionals face in securing them. With more connected devices, more users, and

more complex systems, adversarial attack opportunities increase exponentially.

Recently, the collection and release of malware datasets has allowed for the

development of machine learning (ML) approaches to detect malware. Existing

ML based approaches to malware detection have not yet leveraged uncertainty in a

systematic manner. Cybersecurity intrinsically requires operating under uncertain

conditions, so ignoring uncertainty is undesirable.

In this thesis, we explore di↵erent ways uncertainty estimation can benefit

cyber defense. In particular, we demonstrate how taking into account uncertainty

can be especially beneficial for highly constrained and quickly evolving malware

detection use cases, laying the groundwork for the increased adoption of uncertainty

aware ML in the cybersecurity community. Leveraging uncertainty, we improve

malware detection rates under extreme false positive rate constraints, improve out

of distribution data detection approaches, and significantly reduce the amount of

compute time needed to take advantage of the benefits of dynamic analysis. Along

the way, we also illustrate why previous evaluation metrics can be misleading and

demonstrate that executable file capabilities can be accurately predicted from raw

byte sequences.

UNCERTAINTY FOR MALWARE DETECTION
AND CYBER DEFENSE

by

André Tai Nguyen

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Charles Nicholas, Chair/Advisor
Professor Edward Ra↵, Co-Advisor
Professor Mauricio Santillana
Professor Frank Ferraro
Professor Tim Oates

© Copyright by
André Tai Nguyen

2021

Acknowledgments

During the last three years, my work has benefited considerably from discus-

sions with my friends and colleagues at the Laboratory for Physical Sciences, at

UMBC, and at Booz Allen Hamilton: Fred Lu, Luke Richards, Richard Zak, Jim

Holt, Lucia Jesus-Santana, Drew Farris, Derek Everett, Rob Brandon, Gary Lopez

Munoz, Mehdi Rezaee, Kasra Darvish, Youssouf Kebe, and many others. In par-

ticular, I would like to Fred Lu for his contributions to the research that led to

chapter 4.

I especially thank my advisors, Edward Ra↵ and Charles Nicholas, as well as

Frank Ferraro, Cynthia Matuszek, and Tim Oates, for their support, criticism, and

advice.

I would like to thank the Laboratory for Physical Sciences, in particular Mark

McLean, and Booz Allen Hamilton for supporting my research.

I am grateful to Mauricio Santillana for introducing me to research and to

machine learning when I was a freshman in college, Finale Doshi-Velez for introduc-

ing me to Bayesian machine learning, and Eli Weinstein for his tips on how to read

e�ciently.

Finally, I thank all my family and friends for their support, and Christ for all

His gifts.

ii

Table of Contents

List of Tables v

List of Figures vii

List of Abbreviations x

1 Introduction and Related Work 1
1.1 The Malware Threat . 1
1.2 Machine Learning Methods for Malware 2
1.3 What’s Missing? . 6
1.4 Goals, Chapters, and Publications . 8

2 The Quantification of Uncertainty 10
2.1 Bayesian Machine Learning . 10
2.2 Bayesian Inference For Deep Learning 12
2.3 Uncertainty Metrics . 18

3 Leveraging Uncertainty for Improved Static Malware Detection Under Ex-
treme False Positive Constraints 21
3.1 Introduction . 21
3.2 Related Work . 24
3.3 Methods . 26

3.3.1 Data . 27
3.3.2 Models . 28

3.3.2.1 EMBER2018 . 28
3.3.2.2 Sophos . 29

3.3.3 Uncertainty Estimation . 30
3.3.4 Classification Metrics . 33

3.4 Experiments and Discussion . 34
3.4.1 Misleading Evaluation . 35
3.4.2 Ensembles . 38
3.4.3 Uncertainty Based Threshold Adjustments 41
3.4.4 Uncertainty on Errors and New AV Classes 45

3.5 Conclusions . 49

4 Out of Distribution Data Detection Using Dropout Bayesian Neural Networks 51
4.1 Introduction . 51
4.2 Related Work . 53
4.3 Methods . 56

4.3.1 Randomized Embeddings . 57
4.3.1.1 Computing an Embedding 57
4.3.1.2 Measuring Uncertainty 57

4.3.2 Baseline Features . 58

iii

4.3.3 How to Measure Embedding Dispersion 59
4.3.3.1 The Problem With Euclidean Distance 59
4.3.3.2 Spectral Normalization Stabilizes Behavior 61
4.3.3.3 Why Cosine Distance Is Needed To Properly Mea-

sure Embedding Dispersion 61
4.3.3.4 Formal Analysis of Cosine Embedding Dispersion . . 63

4.4 Experiments and Results . 67
4.4.1 Image Classification . 68

4.4.1.1 Detecting OOD Data 69
4.4.2 Language Classification . 70
4.4.3 Malware Detection . 74

4.5 Conclusions . 76

5 When should we run more expensive analysis? 77
5.1 Introduction . 77
5.2 Related Work . 78

5.2.1 Learning to Reject/Defer . 78
5.2.2 Active Feature Acquisition . 79

5.3 Data and Models . 80
5.3.1 Dynamic Analysis Features and Model 81

5.4 Predicting Capabilities in Executable Files 83
5.5 Deferring to More Expensive Models 86
5.6 Conclusions . 91

6 Conclusions and Future Work 92

A Out of Distribution Data Detection Using Dropout Bayesian Neural Networks
Appendix 94
A.1 Experimental Result Standard Deviations 94
A.2 Additional Spectral Normalization Results 97
A.3 Cosine Distance vs. Euclidean Distance for Unsupervised Embeddings 98

A.3.1 Simulations . 99
A.3.2 Mean and Variance of the Embedding Norms 99
A.3.3 Correlation Analysis Between Measures of Uncertainty 100

A.4 Additional Experiments on MNIST Variants 101
A.4.1 Is Some OOD Training Data Needed? 101
A.4.2 Results when using Euclidean Randomized Embedding Max-

imum Spread Features . 101
A.4.3 Classifier Feature Importances 102

A.5 Embedding Component Variance . 104
A.6 Dataset Links . 104

iv

List of Tables

3.1 EMBER2018 comparison of the standard global adjustment (labeled
as (g)) to the uncertainty aware local adjustments from Equation 3.2
(labeled as (g+l)) and Equation 3.3 (labeled as (g+lv2)). Best com-
bined score (TPR penalized for over-runs on target FPR) shown in
bold. 40

3.2 Accuracy and AUC for each model and dataset combination. Ensem-
bles are compared to the expected performance of their components.
We note that the maximal value that AUC0.1%FPR can take is 0.1. . 41

3.3 Sophos comparison of the standard global adjustment (labeled as (g))
to the uncertainty aware local adjustments from Equation 3.2 (labeled
as (g+l)) and Equation 3.3 (labeled as (g+lv2)). Best combined score
(TPR penalized for over-runs on target FPR) shown in bold. 44

4.1 Performance with and without the cosine randomized embedding
spread features for various experimental configurations for a dropout
LeNet5 trained on MNIST. Features labeled as “Last” consist of com-
mon baseline features computed using softmax output samples from
the network (predictive entropy, mutual information, and maximum
softmax probability). Features labeled as “Last+Spread” consist of
these baseline features plus our additional randomized embedding
maximum cosine spread features for each layer. Each experiment
was repeated multiple times, and the mean is reported here while the
standard deviation is reported in Appendix A. Best results are shown
in bold. 71

4.2 Performance with and without the cosine randomized embedding
spread features for a Char-CNN with dropout added before every
layer trained to classify languages using the WiLI dataset. Standard
deviations are reported in Appendix A, and best results are shown in
bold. 72

4.3 Performance with and without the cosine randomized embedding
spread features for a MalConv model with dropout added before each
fully connected layer trained to detect malware using EMBER2018.
Standard deviations are reported in Appendix A, and best results are
bolded. 75

v

A.1 Performance with and without the cosine randomized embedding
spread features for various experimental configurations for a dropout
LeNet5 trained on MNIST. Features labeled as “Last” consist of com-
mon baseline features computed using softmax output samples from
the network (predictive entropy, mutual information, and maximum
softmax probability). Features labeled as “Last+Spread” consist of
these baseline features plus our additional randomized embedding
maximum cosine spread features for each layer. Each experiment was
repeated multiple times, and the mean and standard deviation are
reported here. Best results are shown in bold. 95

A.2 Performance with and without the cosine randomized embedding
spread features for a Char-CNN with dropout added before every
layer trained to classify languages using the WiLI dataset. Best re-
sults are shown in bold. 96

A.3 Performance with and without the cosine randomized embedding
spread features for a MalConv model with dropout added before
each fully connected layer trained to detect malware using the EM-
BER2018 dataset. Best results are shown in bold. 96

A.4 Performance with and without the cosine randomized embedding
spread features for a dropout, spectral normalized LeNet5 trained
on MNIST. Best results are shown in bold. 97

A.5 Mean and (variance) of the embedding norms in a simulated context. 100
A.6 Correlation analysis between measures of uncertainty in a simulated

setting. 101
A.7 To compare with methods that do not require any OOD training data

at all, we attempted the following where a linear kernel one class SVM
and an Isolation Forest (IF) are used as outlier detectors. 102

A.8 MNIST variant results when using Euclidean randomized embedding
maximum spread features. 103

vi

List of Figures

3.1 Absolute relative error in TPR when using the invalid evaluation
protocol, for three di↵erent model and dataset combinations. A valid
evaluation protocol will use a validation set ROC curve to select a
threshold given a desired FPR. The evaluation protocol that is cur-
rently the norm in the malware detection literature is invalid because
it uses the test set ROC curve, which is never available in practice,
to select a threshold. The use of the invalid evaluation protocol can
lead to over a 30 percent relative error in TPR. A relative error of
zero would mean that the use of the invalid evaluation protocol is not
a major issue, but this is clearly not the case. 36

3.2 Absolute relative error in TPR when using the invalid evaluation
protocol at various levels of subsampling of the validation set. As
the validation set size decreases, the ability to estimate the FPR
decreases. This causes more errors and a “shortening” of the curves
as it becomes impossible to estimate lower desired FPR rates. 37

3.3 Ensembles that take the average of predictions from randomly seeded
models can lead to significant TPR gains under extreme FPR con-
straints, compared to individual models. Note that the gap in per-
formance grows as FPR becomes smaller, in particular for the FFNN
model. 39

3.4 A comparison of uncertainty distributions for all three EMBER2018
models at test time between samples predicted correctly and incorrectly. 46

3.5 A comparison of uncertainty distributions for the EMBER2018 mod-
els at test time between malware families seen and unseen during
training. 48

3.6 A comparison of uncertainty distributions for an ensemble of Sophos
models at test time on Sophos data between samples predicted cor-
rectly and incorrectly. 49

4.1 Comparison of last layer randomized embedding dispersion distribu-
tions for in distribution data (MNIST) and OOD data (Not-MNIST). 64

4.2 A comparison of the relationships between last layer randomized em-
bedding mean norm and the maximum pairwise distance for Eu-
clidean and cosine distances respectively, for in distribution data
(MNIST) and OOD data (Not-MNIST). Both models using LeNet5
trained for 10 epochs. 65

vii

4.3 While Basque is a language isolate that linguistically does not share
any significant similarities to any other languages, Catalan is a Ro-
mance language with many linguistic similarities to French and Ital-
ian. We expect good estimates of epistemic uncertainty to capture
the property that Catalan is “less OOD” than Basque is. Our co-
sine based embeddings (left) show this desired property. Prior work
using MI (right) is unable to meaningfully distinguish any di↵erence
between the languages. 73

5.1 Detection accuracy for each CAPA rule for both MalConv and the
LGBM model. The LGBM model is consistently more accurate than
MalConv across rules at the cost of higher cost associated with feature
extraction. 84

5.2 The AUC for each CAPA rule for both MalConv and the LGBM
model. While LGBM generally does better than MalConv in terms
of AUC, the LGBM model has worse worst cases. 85

5.3 We would like to MalConv and LGBM to abstain from making a pre-
diction on high uncertainty samples that we then would run CAPA
on. This figure shows the performance of such an approach for vari-
ous uncertainty thresholds (as measured by predictive entropy) corre-
sponding to proportions of the test data being run through CAPA. To
simulate a real world deployment of such a system, we also plot the
thresholds needed to achieve a 99.9% average percentage of CAPA
rules correctly labeled across files as well as the actualized thresholds
chosen using a validation set. The x-axis corresponds to the percent
of the data requiring expensive analysis. The far right corresponds
to running CAPA on all of the data, and the far left corresponds to
predicting on all of the data but never running CAPA. The figure
shows that we can achieve a 99.9% average percentage of CAPA rules
correctly labeled by running CAPA on less than half of the data.
This is significant as CAPA is more than 2200 times more expensive
time-wise compared to MalConv mainly due to the costs associated
with disassembly. 86

viii

5.4 The performance of an approach that uses Bayesian MalConv as a
cheap initial model that all files are run through, followed by a more
expensive dynamic model for certain files, for various predictive en-
tropy thresholds corresponding to various total runtimes. “Reject”
corresponds to letting the dynamic model predict when Bayesian Mal-
Conv’s uncertainty is above a certain threshold, and “Defer” corre-
sponds to letting the dynamic model predict only when Bayesian
MalConv’s uncertainty is above a certain threshold and Bayesian
MalConv predicts that the dynamic model will make the correct pre-
diction. The rejection model with a threshold chosen on a held-out
validation set achieves a test accuracy roughly equal to that of the
ensemble model while requiring dynamic analysis to be run on only
13.2 percent of the test data, saving a year’s worth of compute time
compared to the ensemble model. 89

5.5 The performance of an approach that uses Bayesian MalConv as a
cheap initial model that all files are run through, followed by a more
expensive LGBM on EMBER features model for certain files, for var-
ious predictive entropy thresholds. 90

A.1 A comparison of the relationships between denoising autoencoder ran-
domized embedding mean norm and the maximum pairwise distance
for Euclidean distance and cosine distance respectively, for in distri-
bution data (MNIST) and OOD data (Not-MNIST). Regression line
fits are provided for each as well for easier comparison. 99

A.2 Random Forest Gini feature importances for MNIST variant experi-
ments. Means and standard deviations are shown. 103

ix

List of Abbreviations

AV Anti-Virus

BDL Bayesian Deep Learning

FPR False Positive Rate

LGBM Light Gradient Boosting Machine

MCMC Markov Chain Monte Carlo
MI Mutual Information
ML Machine Learning

NN Neural Network

OOD Out Of Distribution

PE Portable-Executable

TPR True Positive Rate

VI Variational Inference
VM Virtual Machine

x

Chapter 1

Introduction and Related Work

Organizations in government and industry increasingly rely on information

technology, digitized data, and networked computer assets. Consequently, they face

a growing risk of exposure to cyber attacks (i.e., malicious attempts at stealing,

altering, or destroying information technology systems and data). Yet, as computer

networks grow in size, so do the challenges cybersecurity professionals face in secur-

ing them. With more connected devices, more users, and more complex systems,

adversarial attack opportunities increase exponentially. In 2018, on average, large

organizations took almost 200 days to identify a cyber breach and almost 70 days

to contain those breaches once they were identified [144].

1.1 The Malware Threat

Malicious software is one of the most common methods adversaries use to

exploit computer networks. Malware files are created with malicious intent to cause

an e↵ect not desired by a computer system owner. Generally, malware-based attacks

use manipulated software to intentionally cause damage or access data. A single

successful malware attack can result in millions of dollars in damages, with recent

annual financial impact measured to be in the hundreds of billions of dollars [9, 8,

87]. Each day, adversaries design new and increasingly complex malware systems,

1

challenging security professionals to deploy robust and e↵ective counter measures.

As a result, malware detectors have become a critical component of a cyber-

security strategy. Traditionally, anti-virus systems used static and signature-driven

systems (i.e., systems that looked for specific software known to be malicious) to

detect malware [193]. More recently, dynamic software analysis has become increas-

ingly popular, where evaluated software is run in a secure environment to directly

observe whether or not it behaves maliciously. Egele et al. [53] provide a survey on

challenges, features, techniques, and tools for dynamic malware analysis.

While powerful, anti-virus and dynamic analysis tools have limitations. In

particular, these methods can be time consuming when the data volume and velocity

are high [157], with certain methods such as dynamic analysis having particularly

high computational cost.

1.2 Machine Learning Methods for Malware

The collection and release of malware datasets has allowed for the development

of machine learning approaches to detect malware. The machine learning based

automation of static and dynamic analysis enables a faster investigation of more

files and allows human analysts to focus on “hard” samples.

Well-known examples of malware datasets are the EMBER datasets from An-

derson and Roth [6] and the Drebin dataset from Arp et al. [12] and Spreitzenbarth

et al. [173]. The EMBER2017 dataset is an open source dataset of over a million

portable executable files (PE files) scanned by VirusTotal in or before 2017 [6]. The

2

dataset includes metadata, features derived from the PE files, and a benchmark

model trained on those derived features. While the raw PE files are not available as

part of EMBER, they can be downloaded via VirusTotal. A second EMBER2018

dataset was later released with a million PE files scanned in or before 2018. The

EMBER2018 dataset was designed to be more challenging for machine learning al-

gorithms to classify than the EMBER2017 dataset. The older Drebin dataset of

Android malware contains 5560 applications from 179 di↵erent malware families

collected between August 2010 and October 2012 [12, 173]. Newer is the 2020 “in-

dustry scale” Sophos AI SOREL-20M dataset, consisting of 20 million files [74].

Machine learning can be applied to the malware domain in many ways. Binary

classification algorithms can be used to produce a decision about whether or not a

file is malicious. Multi-class classification algorithms can be used to sort malware

by family or type. Unsupervised learning can be used to find similar groups of files

and summarize malware. On the o↵ensive side, reinforcement learning can be used

to design new malware that evades anti-virus systems [7]. Ra↵ and Nicholas [147]

and similarly Gibert, Mateu, and Planes [69] provide modern surveys on machine

learning applied to malware classification.

The application of machine learning to malware poses many challenges not

often seen in other applications. For example, the rapid evolution of malware tech-

niques leads to fast concept drift. This is a problem even within malware families.

For example, the Zeus banking Trojan’s source code was leaked in 2011, leading to a

plethora of mutations and variants [128]. Today, Zeus is the most prevalent banking

Trojan in the wild and is a weapon of choice for cyber criminals targeting banks

3

and small businesses.

The majority of the existing research in machine learning applied to malware

detection has focused on the automation of static malware analysis, where a file is

analyzed without being run. Ra↵ et al. [151] introduce MalConv, a convolutional

neural network for malware detection that operates on the raw byte sequences of files.

The authors note that malware classification from byte sequences can be considered

as one of the longest sequence time series classification problems in practice, and as

a result of the uniqueness of the problem, much conventional deep learning wisdom

was found to not apply in the context of malware classification on raw bytes. Ra↵ et

al. [149] develop a new approach to temporal max pooling that improves MalConv’s

memory and computational costs. They also introduce a new global channel gating

design that results in an attention mechanism capable of learning feature interactions

across millions of time steps. Yan, Qi, and Rao [199] and Krčál et al. [101] are also

examples of deep learning based static analysis.

While promising, these deep learning based static analysis approaches have

been shown to be susceptible to adversarial attacks. Adversarial attacks on machine

learning systems have goals that are somewhat similar to malware. These adversarial

attacks seek to design data that result in a machine learning system behaving in

a way that the system’s creator did not expect or intend [71, 22]. Demetrio et

al. [44] suggest through the use of model interpretation techniques that MalConv

does not seem to learn to use meaningful features but rather information from the

header which can be easily manipulated. They use this to develop an adversarial

attack against MalConv that uses file header manipulation. Kolosnjaji et al. [100]

4

and similarly Kreuk et al. [102] demonstrate adversarial attacks against MalConv

that modifies bytes at the end of malware samples. Papernot [139] provide a good

discussion of adversarial attacks on malware classifiers and provide experimental

results on the Drebin dataset.

The development of adversarial attacks against machine learning systems used

for malware detection has led to an iteration of improving defences and attacks,

similar to the cycle seen in cyber defense and o↵ense. Fleshman et al. [56] introduce

a defense against adversarial attacks that uses non-negative weight constraints in

the context of binary classification tasks with asymmetric costs. In the malware

domain, the attackers objective is usually to make malware seem benign, not to

make benignware seem malicious. Their defense is shown to remedy attacks such as

that from Kreuk et al. [102] and Kolosnjaji et al. [100].

The use of machine learning for malware detection and classification has also

led to research in new evaluation methods for these algorithms. Fleshman et al.

[57] introduce a new method to test and compare machine learning based static

malware classifiers and signature based anti-virus tools, by measuring changes in

performance in the face of adversarial modifications. Their results show that pure

machine learning based systems can be more robust than traditional anti-virus prod-

ucts at detecting evasive malware, though may be slower to adapt to significantly

novel attacks.

We note that machine learning is also useful for cyber defense outside of just

malware related tasks. Lin et al. [108] provide a survey of deep learning for software

vulnerability detection for example.

5

1.3 What’s Missing?

The modeling of uncertainty for decision making is notably missing from the

current machine learning for malware literature. Understanding when a machine

learning model is uncertain about its prediction is critical in high risk applications

such as cyber defense, where a successful attack can have broad implications on

national security and even deadly consequences.1 When an automated malware

detection algorithm is uncertain about a sample, the uncertainty estimate could be

used to flag the sample for analysis by a more computationally expensive algorithm

or for review by a human. Furthermore, the uncertainty could be used to adjust

prediction thresholds to achieve a desired outcome such as low false positives and

could be used to guide human analysis towards an “interesting” property of the

sample, narrowing the search space for the human analyst.

As we will explore in the next section, the Bayesian framework allows for the

principled modeling of uncertainty in machine learning.

While there exist some methods in the malware analysis research literature

that are labeled as “Bayesian,” the majority of these do not fit the definition of

Bayesian with respect to the modeling of uncertainty. Instead, these methods simply

apply Bayes’ Theorem to point estimates as is done in the majority of implemen-

tations of Naive Bayes and of Bayesian Belief Networks [203, 109, 206]. The use of

Bayes’ Theorem is not su�cient to make a machine learning algorithm statistically

Bayesian. If a posterior distribution is not computed and a maximum likelihood es-

1
https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-

death.html

6

timate or a maximum a posteriori estimate is computed instead, then the approach

is not Bayesian [132].

A notable exception is the Bayesian work of Backes and Nauman [16] which

tackles uncertainty in machine learning for Android malware using probabilistic

programming and the Drebin dataset. The work clearly motivates the use and need

for Bayesian machine learning in malware analysis. The use of Bayesian models

is shown to improve accuracy and was also used to detect real malware samples

that were incorrectly labeled as false positives. The authors suggest that there has

been no Bayesian machine learning applied to malware previous to their paper.

A Bayesian logistic regression model is used, and coverage metrics are introduced

for Uncertain Positives and Uncertain Negatives. The paper also introduces two

methods for augmenting predictions using uncertainty.

Tangential but still of interest, Sartea, Farinelli, and Murari [162] model ac-

tive dynamic malware analysis as a Bayesian Game (in Game Theory, a game where

players have incomplete information about each other) between an analyst agent

and a malware agent. In particular, families of malware are mapped to types of

Bayesian games. The analyst takes actions to perform dynamic analysis under un-

certainty over the game type/malware family. This approach integrates uncertainty

directly into the task of dynamic analysis and minimizes the number of actions (so by

extension time and computation) needed to perform accurate malware classification.

Atapour-Abarghouei, Bonner, and McGough [14] introduce a one shot learn-

ing approach for classifying ransomware post-infection using screenshots of the

ransomware splash screen. Model uncertainty is estimated using dropout-based

7

Bayesian inference approximations. This uncertainty allows for the detection out of

distribution data at test time, mapping to new ransomware or unrelated images. We

note that this approach is image-based rather than file-based and cannot be used

to prevent an attack.

1.4 Goals, Chapters, and Publications

The growing reliance on networked computer systems and digitized data has

increased the exposure of organizations in government and industry to cyber attacks.

However, the recent collection and release of malware datasets has allowed for the

development of machine learning based malware detection algorithms. While cy-

bersecurity intrinsically requires operating under uncertain conditions, current ML

based approaches to malware detection have not yet leveraged uncertainty in a sys-

tematic manner. In this thesis, we explore di↵erent ways uncertainty estimation

can benefit cyber defense. In particular, we demonstrate how taking into account

uncertainty can be especially beneficial for highly constrained and quickly evolving

malware detection use cases, laying the groundwork for the increased adoption of

uncertainty aware ML in the cybersecurity community.

This thesis represents the amalgamation of three publications:

• chapter 3: Andre T. Nguyen, Edward Ra↵, Charles Nicholas, James Holt.

“Leveraging Uncertainty for Improved Static Malware Detection Under Ex-

treme False Positive Constraints.” Proceedings of the 1st International Work-

shop on Adaptive Cyber Defense at IJCAI 2021. [134]

8

• chapter 4: Andre T. Nguyen, Fred Lu, Gary Lopez Munoz, Edward Ra↵,

Charles Nicholas, James Holt. “Out of Distribution Data Detection Using

Dropout Bayesian Neural Networks.” Under review.

• chapter 5: Andre T. Nguyen, Richard Zak, Fred Lu, Robert Brandon, Gary

Lopez Munoz, Edward Ra↵, Charles Nicholas, James Holt. “Minimizing com-

pute costs: When should we run more expensive malware analysis?” In prepa-

ration.

In addition to these chapters, chapter 2 provides an introduction to the quan-

tification of uncertainty in machine learning, and chapter 6 summarizes conclusions

and potential future research directions.

9

Chapter 2

The Quantification of Uncertainty

The Bayesian framework allows for the principled modeling of uncertainty in

machine learning and decision making [20]. Within this framework, probabilities

represent degrees of belief as opposed to the frequentist interpretation of proba-

bilities as long run frequencies [110]. Bayesian inference uses Bayes’ Theorem to

update beliefs (that are represented in the form of probability distributions) when

new data is observed. Reverend Thomas Bayes introduced Bayes’ Theorem in the

special case where the prior is uniform [18]. Pierre-Simon Laplace later introduced

Bayes’ Theorem in its general form [106]. Bayesian inference in its modern form

was developed by Sir Harold Je↵reys [90], though not without controversy [84, 1].

Martin, Frazier, and Robert [123] provide a thorough review of Bayesian computa-

tion in parametric settings through a historical lens, and Schoot et al. [164] provide

a primer on Bayesian statistics.

2.1 Bayesian Machine Learning

In the context of machine learning, a Bayesian update takes the following form

where ✓ represents model parameters, D represents the data, and M represents the

model class:

P (✓|D,M) =
P (D|✓,M)P (✓|M)

P (D|M)

10

P (✓|D,M) is the posterior belief about the model parameters given the data, P (D|✓,M)

is the likelihood of the data given the model parameters, P (✓|M) is the prior belief

about model parameters, and P (D|M) is the marginal likelihood or evidence. These

are related by Bayes’ rule.

For prediction, the posterior predictive can be computed as follows where D is

the training data andD
⇤ is the test data: P (D⇤|D) =

R
P (D⇤|D, ✓)P (✓|D)d✓. When

data points are conditionally independent given model parameters then P (D⇤|D, ✓) =

P (D⇤|✓), and we can write:

P (D⇤|D) =

Z
P (D⇤|✓)P (✓|D)d✓

The posterior predictive is an example of Bayesian model averaging [80], a posterior

weighted average of P (D⇤|✓).

As a result of the No Free Lunch Theorem [192], which states that there is no

single best model class that is optimal for all tasks, model classes often need to be

compared. Bayesian model selection takes a similar approach to that of Bayesian

model parameter selection. We can compute the posterior over model classes as

follows:

P (M |D) =
P (D|M)P (M)

P (D)

Assuming a uniform prior over model classes, the maximum a posteriori (MAP)

estimate, the mode of the posterior distribution, is the model class that maximizes

the marginal likelihood P (D|M) =
R
P (D|✓,M)P (✓|M)d✓. MacKay [118] discusses

11

model comparison in the context of Bayesian neural networks.

Bayesian inference is usually intractable due to the integrals involved, unless

the prior distribution is conjugate to the likelihood distribution. Unfortunately,

conjugate priors exist for only exponential family distributions [132] and so can’t be

directly applied to complex models like Bayesian deep neural networks.

2.2 Bayesian Inference For Deep Learning

As exact Bayesian inference cannot be done for Bayesian deep learning models,

approximate inference methods need to be used.

A straightforward approach is to use a Laplace approximation to model the

posterior over neural network weights as a Gaussian [115, 43]. Ritter, Botev, and

Barber [156] construct a Kronecker factored Laplace approximation to the posterior.

Kristiadi, Hein, and Hennig [103] add uncertainty units to a pre-trained network that

are trained post-hoc using an uncertainty-aware loss to improve uncertainty under

a Laplace approximation.

Proper Markov Chain Monte Carlo (MCMC) methods will always perfectly

sample from the posterior given enough time. The MCMC method of choice is

Hamiltonian Monte Carlo (HMC) as described in Neal [133] under the name “hybrid

Monte Carlo.” Betancourt [21] provides an in-depth introduction to HMC. While

HMC is notoriously di�cult to tune, methods such as the No-U-Turn Sampler of

Ho↵man and Gelman [81] attempt to automate the tuning. While considered the

gold standard, HMC isn’t scalable because the method requires gradient computa-

12

tions that use the entire dataset. Recently, new methods for scaling HMC have been

introduced such as Stochastic Gradient HMC [35] which according to the evaluation

of Yao et al. [201] performs well in terms of capturing uncertainty. Ma, Chen, and

Fox [114] provide a complete framework for constructing MCMC samplers, includ-

ing stochastic gradient MCMC samplers. Cobb et al. [40] introduce (among other

things) a Python package, hamiltorch, that simplifies the use of HMC with Py-

Torch [140]. Welling and Teh [184] introduce a method that uses simpler Langevin

dynamics to allow for a stochastic gradient based sampling of the posterior.

There has been interesting recent work around the development of Bayesian

coresets, which scale sampling-based inference methods by subsampling and weight-

ing data to produce a high fidelity summary of the entire dataset [86, 30, 31, 29].

As MCMC is hard to scale and tune in practice, variational inference, which

converts the integration problem into an optimization problem where the poste-

rior is approximated using a simpler variational distribution, is often used instead

[91, 23]. In particular, the exact posterior p(·|D) is approximated by a variational

approximation q(·) by minimizing the Kullback-Leibler divergence:

q
⇤ = argmin

q2Q
KL(q(·)||p(·|D))

q
⇤ = argmin

q2Q

Z
q(✓) log

q(✓)

p(✓|D)
d✓

q
⇤ = argmin

q2Q

Z
q(✓) log

q(✓)p(D)

p(✓, D)
d✓

q
⇤ = argmin

q2Q
log p(D)�

Z
q(✓) log

p(✓, D)

q(✓)
d✓

13

The log p(D) term does not depend on q, so it can be dropped from the optimization,

and the subtracted term that remains is called the evidence lower bound (ELBO).1

So the optimization becomes

q
⇤ = argmax

q2Q
ELBO(q)

The scaling of Bayesian methods to sizable datasets has been largely made

possible by stochastic variational inference [82]. Black box automatic stochastic

variational inference methods [104, 153, 177, 49] that only require the specification

of the model log-likelihood have improved the usability and adoption of Bayesian

methods and has sped up model iteration.

Variational inference for neural networks was first introduced in the early

1990’s [78]. Graves [72] revived interest in variational inference for neural networks

by introducing a stochastic variational method for inference in neural networks, and

Blundell et al. [24] improves on this method.

Gal and Ghahramani [62] and Gal [60] introduce an easy to implement ap-

proach to variational inference in Bayesian neural networks. In particular, they

show that a neural network with dropout [79, 174], a technique commonly used

to reduce overfitting in neural networks by randomly dropping units during train-

ing, applied before every weight layer, is equivalent to an approximation of a deep

Gaussian process [42]. They also show that training with dropout e↵ectively per-

forms variational inference for the deep Gaussian process model. Leaving dropout

1
ELBO is a lower bound since the KL divergence is always positive, and as a result log p(D) �

ELBO.

14

on at test time allows for sampling from the posterior distribution. Gal, Hron, and

Kendall [63] improve uncertainty calibration in these models by automatically tuning

the dropout probabilities using gradient methods. Smith and Gal [169] show that

training ensembles of these models with di↵erent initializations can be beneficial

when the true posterior is concentrated in many local modes of similar likelihood.

The connections between Bayesian neural networks and Gaussian processes

[154] have long been studied. Neal [133] and Williams [188] discuss the connections

between infinitely wide Bayesian neural networks and Gaussian processes. Hybrid

combinations of deep neural networks and Gaussian processes such as the Stochastic

Variational Deep Kernel Learning model of Wilson et al. [190] use deep neural

networks to learn the kernel of a Gaussian process. Amersfoort et al. [2] improve

on Stochastic Variational Deep Kernel Learning by using a bi-Lipschitz constraint

to encourage the feature extractor to approximately preserve distances. Bradshaw,

Matthews, and Ghahramani [25] explore similar models, showing evidence that they

are more robust to adversarial examples. Garnelo et al. [67] introduce the neural

process which like the Gaussian process defines a distribution over functions and

like neural networks is computationally e�cient. Rudner et al. [160] establish a

connection between Gaussian processes with deep kernels and neural processes. Liu

et al. [111] develop an approach to make deep residual neural networks input distance

aware (with respect to the training data manifold) by replacing the final layer of

the network with a Gaussian process approximation and by employing spectral

normalization to preserve distances from the input to the output of the network.

Variational inference methods that leverage the optimization techniques used

15

in traditional deep learning have also been developed. Maclaurin, Duvenaud, and

Adams [119] show how stochastic gradient descent with early stopping can be used

for variational inference. In a similar manner, Maddox et al. [120] build o↵ of

stochastic weight averaging [88] to fit a distribution using the stochastic gradient

descent trajectory. Wilson and Izmailov [189] extend this technique using an ensem-

bling approach to sample around multiple posterior modes. Khan et al. [96] modify

the Adam optimizer [98] to perform variational inference. Another Bayesian neural

network inference approach that is related [77] to variational inference is the expec-

tation propagation [126] based probabilistic back propagation of Hernández-Lobato

and Adams [76].

The quality of uncertainty estimates depends on how well the posterior distri-

bution of the Bayesian neural network is approximated. Yao et al. [201] and Vadera

et al. [179] provide comparisons of uncertainty quality for various BDL inference

procedures. Variational inference is known to underestimate uncertainty [117]. A

related problem, which is highlighted by Giordano, Broderick, and Jordan [70] and

Turner and Sahani [178], is that variational inference will not capture all of the true

posterior modes as it approximates the posterior with a simpler distribution. This

can be problematic for many applications. For example, this underestimation of

uncertainty can lead to there being test data that has low uncertainty while being

far away from the observed training data, and as a result, out of distribution data

such as new classes and adversarial examples cannot be detected [169].

We note that while most work in Bayesian deep learning captures uncer-

tainty in model weights, Antorán, Allingham, and Hernández-Lobato [10] performs

16

probabilistic reasoning over network depth, extended in Antorán, Allingham, and

Hernández-Lobato [11] to perform neural architecture search.

Deep learning does not necessarily need to be Bayesian to provide uncertainty

estimates. Lakshminarayanan, Pritzel, and Blundell [105] propose an alternative

to Bayesian deep learning that trains an ensemble of randomly initialized models.

These deep ensembles are shown to produce competitive uncertainty estimates both

in domain [13] and out of distribution [138], due to their ability to explore di↵erent

modes in function space [58]. Training ensembles can be done e�ciently [85, 185]

and extended to ensemble over hyperparameters [186].

Wilson and Izmailov [189] show that deep ensembles are not a competing

approach to Bayesian deep learning but in fact are an approach for approximate

Bayesian marginalization. Wilson and Izmailov [189] use the Bayesian interpreta-

tion of deep ensembles to derive MultiSWAG, an improvement on deep ensembles.

Pearce et al. [141] also show that modified ensembling leads to Bayesian approximate

inference.

Hooker [83] proposes a frequentist testing method for diagnosing extrapolation,

a task similar to the estimation of epistemic uncertainty. Munson and Kegelmeyer

[131] similarly explore the detection of extrapolation risk. Schulam and Saria [165]

proposes an approximation to the bootstrap [52] that is shown to produce predictive

distributions competitive to those produced by Bayesian methods.

17

2.3 Uncertainty Metrics

Two kinds of uncertainty can be distinguished [60]. Aleatoric uncertainty is

caused by inherent noise and stochasticity in the data. More training data will not

help to reduce this kind of uncertainty. Epistemic uncertainty, on the other hand, is

caused by a lack of similar training data. In regions lacking training data, di↵erent

model parameter settings that produce diverse or potentially conflicting predictions

can be of comparable likelihood under the posterior.

For classification tasks where epistemic and aleatoric uncertainty don’t need

to be di↵erentiated, uncertainty can be measured using the predictive distribution

entropy:

H[P (y|x,D)] = �
X

y2C

P (y|x,D) logP (y|x,D)

Aleatoric uncertainty can be measured using expected entropy:

EP (✓|D)H[P (y|x, ✓)]

Mutual information can be used to measure epistemic uncertainty:

I(✓, y|D, x) = H[P (y|x,D)]� EP (✓|D)H[P (y|x, ✓)]

Monte Carlo estimates obtained by sampling from the posterior can be used to

approximate the terms of these equations for our Bayesian models [169]. In partic-

ular, P (y|x,D) ⇡ 1
T

PT
i=1 P (y|x, ✓i) and EP (✓|D)H[P (y|x, ✓)] ⇡ 1

T

PT
i=1 H[P (y|x, ✓i)]

18

where the ✓i are samples from the posterior over models and T is the number of

samples. Other methods that measure disagreement between samples, such as the

estimated variance of the samples, can be used to estimate epistemic uncertainty as

well.

Depeweg et al. [45] demonstrate a decomposition of uncertainty into epistemic

and aleatoric components in the context of Bayesian neural networks with latent

variables [46] for e�cient active learning in the presence of complex noise and for

risk sensitive reinforcement learning. Kendall and Gal [94] discuss neural network

uncertainty in the context of computer vision, and Filos et al. [55] evaluate the

robustness of Bayesian deep learning in the context of diabetic retinopathy diagnosis.

Epistemic uncertainty can be viewed as measuring how far prediction time

data is from the manifold induced by the training data. In other words, mutual

information can be used to measure distance from the training data distribution.

This is useful for detecting out of distribution data as well as uncovering adversarial

attacks [169]. Xiao, Gomez, and Gal [195] use epistemic uncertainty to detect out of

distribution language data. Gal and Smith [65] develop theoretical results that show

that with the right model architecture and good uncertainty estimation, Bayesian

neural networks can be immune to adversarial attacks.

We have discussed the threat posed by malware, the current state of machine

learning based malware detection, and the tools of uncertainty. In the remaining

chapters, we develop and explore new methods for leveraging uncertainty to improve

machine learning applied to malware detection. In particular, in the next chapter,

we develop a new, uncertainty-based approach to thresholding a model’s decision

19

under extreme false positive rate constraints.

20

Chapter 3

Leveraging Uncertainty for Improved Static Malware Detection

Under Extreme False Positive Constraints

The detection of malware is a critical task for the protection of computing

environments. This task often requires extremely low false positive rates (FPR) of

0.01% or even lower, for which modern machine learning has no readily available

tools. We introduce the first broad investigation of the use of uncertainty for mal-

ware detection across multiple datasets, models, and feature types. We show how

ensembling and Bayesian treatments of machine learning methods for static malware

detection allow for improved identification of model errors, uncovering of new mal-

ware families, and predictive performance under extreme false positive constraints.

We additionally demonstrate how previous works have used an evaluation protocol

that can lead to misleading results.

3.1 Introduction

Classifying a new file as benign (safe to run) or malicious (not safe, termed

“malware”) is a current and growing issue. Malware already causes billions in dam-

ages [8, 87], and with healthcare systems increasingly targeted has directly led to

deaths [51]. For years most anti-virus (AV) vendors have been seeing at least 2

million malicious new files per month [172], and benign files on a network tend to

21

outnumber malicious files at a ratio of 80:1 [107]. This creates a common need for

malware detection systems to operate with extremely low false positive rates. If

false positives are too frequent, then analysts, IT, and support sta↵ have to spend

too much work on non-threats while simultaneously interrupting normal workflow.

Even with this focus, Computer Incident Response Teams (CIRT) are often deal-

ing with over 50% false positive rates and cite it as the main issue with current

tooling [135].

The natural goal for AV style deployments of a malware detector is to maxi-

mize the true positive rate (TPR) for some maximally acceptable false positive rate

(FPR). Production deployments are often concerned with FPRs of 0.1% at most,

and preferably 0.001%. The issue of low FPR has been recognized since the very

first research on machine learning based malware detection [95], yet surprisingly lit-

tle work has been done to study how to maximize TPR@FPR. We present the first

work addressing this gap by applying ideas from ensembling and Bayesian uncer-

tainty estimation to a variety of common malware detection methods in use today

on the two largest public corpora. In doing so we develop a number of contributions

and previously unrealized insights:

1. All prior malware detection work we are aware of have evaluated TPR@FPR

incorrectly or not specified their approach. The common error is to measure

the TPR at the desired FPR on the test set, but this presupposes knowledge

of the exact threshold to achieve the desired FPR. By instead estimating the

threshold on a validation set, we show prior results have often misidentified

22

their true TPR rates.

2. While the benefits of ensembling have long been known, it is often presumed

that significant model diversity is required to obtain meaningful benefit. We

show even moderately diverse or Bayesian approaches can significantly improve

the TPR, especially for the low-FPR regimes needed for malware detection.

3. By using a Bayesian approach to estimate the epistemic and aleatoric uncer-

tainty of a model on a given sample, we develop a new approach to thresholding

a model’s decision that can improve TPR and better approximate the desired

FPR on unseen data.

4. Malware detection deployment requires detecting novel malware families, an

intrinsically out-of-distribution task. We show how epistemic and aleatoric

uncertainty relates to errors and novel malware families, allowing for faster

detection of new threats.

The rest of the work reported on in this chapter is organized as follows. First

we will review the related research to our work in section 3.2. Next we will detail

the data, algorithms, and metrics used in all of our experiments in section 3.3.

We present extensive experimental results organized by our major contributions in

section 3.4, which show that prior TPR estimates could be o↵ by � 35% relative

error, that ensembles of limited diversity can raise TPR rates by � 11%. Then

we leverage uncertainty estimates to show a statistically significant improvement

over the naive approach of thresholding models for TPR/FPR trade-o↵s, and that

23

our uncertainty estimates is useful to malware analysts in identifying miss-predicted

files. Our conclusions are presented in section 3.5.

3.2 Related Work

The need for low FP rates has been paramount since the inception of machine

learning malware detection research by Kephart et al. [95]. Much of the history in

this domain is focused on “signature” like tasks, where the goal was to recognize

the set of already known malware, smaller than the total population of malware.

This led to works that used training and testing data for evaluation [68, 59]. This

approach is not meaningful for determining TPR at any FPR due to over-fitting,

and is not tenable due to the now large and growing population of malware with

more sophisticated obfuscation techniques. There is no agreed upon threshold for

exactly how low FPs should be, with most published work ranging from 0.1% down

to 0.00002% [152, 171, 143, 5, 142, 99, 163, 150]. All of these works evaluate

their false positive rates on the test set, selecting the threshold from the test set

that gives them the desired FPR, and then report the associated TPR. This is an

understandable but incorrect approach, because the threshold is selected explicitly

from the test set, when our goal is to test the ability of the model to achieve an

FPR on unseen data. As far as we are aware, our work is the first in the malware

detection space to identify this and propose selecting the threshold from a validation

set, and then evaluate the precision of the FPR estimate in conjunction with the

obtained TPR.

24

It is also worth noting that these cited prior works attempt to minimize FPR

primarily by feature selection, engineering, or ML process pipeline choices that they

believe will result in a more accurate model or be biased towards low FPR. Our

approach is instead model agnostic, and seeks to better understand the nature of

selecting thresholds to achieve TPR@FPR targets and improving it with uncertainty

estimates. The only other work we are aware of that has this goal is from the

related domain of spam detection by Yih, Goodman, and Hulten [204] who propose

two dataset re-weighting approaches, but also determine their success using the test

set. Because they focus on data re-weighting their approach is orthogonal to our

own, and both could be used simultaneously. The closest other work we are aware is

[50] that develop di↵erentiable approximations to AUC and Precision at a minimum

Recall, but their approach does not apply to our situation because we instead need a

maximum FP rate and specific points on the AUC curve. Further, our need for very

low FPR is problematic for their setting as a mini-batch of data will be insu�cient

for estimating low FPR.

A number of prior works have investigated diverse ensembles of di↵erent kinds

of algorithms to improve malware detection accuracy [202, 113, 92, 125, 97], fol-

lowing the common wisdom that averaging over diverse and uncorrelated predictors

improves accuracy [191, 26, 89]. As far as we are aware, we are the first to study the

performance of small ensembles of low-diversity (i.e, di↵erent runs of the same algo-

rithm) and identify their especially large impact on TPR when needing extremely

low FPR. This is important for malware detection as a diverse ensemble often neces-

sitates algorithms that are too slow for deployment, and high compute throughput

25

is critical to practical utility in this domain.

Building upon the use of ensembles, the modeling of uncertainty for decision

making is notably missing from the current machine learning for malware literature.

An exception is the approach of Backes and Nauman [16] which introduces new

classes for uncertain decisions in the context of a simple Bayesian logistic regression

model applied to the Drebin Android malware dataset [12, 173]. Understanding

when a machine learning model is uncertain about its prediction is critical in high

risk applications such as malware detection. When an automated malware detection

algorithm is uncertain about a sample, the uncertainty estimate could be used to flag

the sample for analysis by a more computationally expensive algorithm or for review

by a human. Our work is the first we are aware of to study how modeling uncertainty

can be used to improve TPR@FPR scores, and to aid analysts by showing new

samples with high uncertainty are more likely to be novel malware families.

3.3 Methods

We provide details about the data and machine learning models used in our

experiments. The majority of the existing research in machine learning applied to

malware detection has focused on the automation of static malware analysis, where a

file is analyzed without being run. We will also focus on the static analysis problem.

26

3.3.1 Data

Due to the need to estimate low FPR rates, we use the two largest available

corpora for malware detection. These are the EMBER2018 and Sophos AI SOREL-

20M datasets. We note that both of these datasets focus on low FPR evaluation,

but make the same error in evaluation. Our first results in section 3.3 will show the

relative magnitudes of the errors.

We use the EMBER2018 dataset which consists of portable executable files

(PE files) scanned by VirusTotal in or before 2018 [6]. The dataset contains 600,000

labeled training samples and 200,000 labeled testing samples, with an equal number

of malicious and benign samples in both sets. The malicious samples are also labeled

by malware family using AVClass [166]. All of the testing samples were first observed

after all of the training samples. EMBER2018 includes vectorized features for each

sample encoding general file information, header information, imported functions,

exported functions, section information, byte histograms, byte-entropy histograms,

and string information [6]. While the 1.1TB of raw PE files are not available as

part of EMBER2018, they can be downloaded via VirusTotal. We note that the

EMBER2018 dataset was designed to be more challenging for machine learning

algorithms to classify than the original EMBER2017 dataset.

We also use the recent Sophos AI SOREL-20M dataset, consisting of 20 million

files [74]. The much larger number of data points in the Sophos dataset is advertised

as “industry scale” and allows for the exploration of FPR constraints much smaller

than allowed by EMBER2018. In particular, the test set size for Sophos consists of

27

1,360,622 malicious samples and 2,834,441 benign samples. As part of the Sophos

dataset release, two baseline models are provided, including a feed-forward neural

network (FFNN) and a LightGBM (LGBM) gradient-boosed decision tree model.

Five versions of each of the models are pre-trained using di↵erent random seeds on

the Sophos data using the same featurization as EMBER2018.

3.3.2 Models

3.3.2.1 EMBER2018

We apply three models to the EMBER2018 dataset that each rely on di↵erent

types of features. The first model we apply is a Bayesian deep learning model

based on the MalConv model of Ra↵ et al. [151], a convolutional neural network for

malware detection that operates on the raw byte sequences of files. We will refer

to this model as Bayesian MalConv (BMC). As exact Bayesian inference cannot be

done for deep neural networks such as MalConv, approximate inference methods

need to be used.

Gal and Ghahramani [62] introduced an easy to implement approach to vari-

ational inference in Bayesian neural networks. In particular, they showed that a

neural network with dropout, a technique commonly used to reduce overfitting in

neural networks by randomly dropping units during training [79, 174], applied be-

fore every weight layer is equivalent to an approximation of a deep Gaussian process

[42], and that training with dropout e↵ectively performs variational inference for

the deep Gaussian process model. The posterior distribution can be sampled from

28

by leaving dropout on at test time. For Bayesian MalConv, we follow this approach

and apply dropout before each fully connected layer of the MalConv model, with a

dropout probability of p = 0.1. We use the Adam optimizer [98] to train the model,

and we produce 16 samples at evaluation time using multiple forward passes on the

trained model with dropout left on.

The second model we apply is a Bayesian logistic regression (BLR) model

which takes as input the binary presence of 94,225 byte 8-grams [150, 148] selected

using LASSO from the one million most common byte 8-grams. Dropout is used in

a similar manner to Bayesian MalConv, with a dropout probability of p = 0.1 and

16 samples at evaluation time.

The third model we apply is an ensemble of 16 Light Gradient Boosting Ma-

chine (LGBM) models [93] trained with di↵erent random seeds on the EMBER

features as described in Anderson and Roth [6].

3.3.2.2 Sophos

We apply two models to the Sophos dataset that both rely on the EMBER2018

featurization. The first is an ensemble of 5 feed-forward neural network (FFNN)

models as described in Harang and Rudd [74], a simplified version of the model

from Rudd et al. [159], trained using di↵erent random seeds. The second is an

ensemble of five LGBM models trained using di↵erent random seeds. We use the

publicly available pre-trained models provided with the Sophos dataset as our en-

semble members for both models. While 5 ensemble members may seem small,

29

Ovadia et al. [138] found that increasing ensemble sizes beyond 5 has diminishing

returns with respect to the quality of the uncertainty estimates, so an ensemble

size of 5 may be su�cient. Our results will show that not only are they su�cient,

but for our goal of low FPR they can be significantly more e↵ective than has been

previously reported.

3.3.3 Uncertainty Estimation

The Bayesian framework allows for the principled modeling of uncertainty in

machine learning and decision making. Within this framework, probabilities rep-

resent degrees of belief as opposed to the frequentist interpretation of probabilities

as long run frequencies [110]. Bayesian inference uses Bayes’ Theorem to update

beliefs (that are represented in the form of probability distributions) when new data

is observed.

In the context of machine learning, a Bayesian update takes the following form

where ✓ represents model parameters, D represents the data, and M represents the

model class: P(✓|D,M) = P(D|✓,M)P(✓|M)
P(D|M) , where P(✓|D,M) is the posterior belief

about the model parameters given the data, P(D|✓,M) is the likelihood of the data

given the model parameters, P(✓|M) is the prior belief about model parameters,

and P(D|M) is the marginal likelihood or evidence. Bayesian inference is usually

intractable due to the integrals involved, unless the prior distribution is conjugate

to the likelihood distribution. Unfortunately, conjugate priors exist for only expo-

nential family distributions [132] and so can’t be directly applied to complex models

30

like Bayesian deep neural networks.

As exact Bayesian inference cannot be done for Bayesian deep learning models,

approximate inference methods need to be used. Given su�cient compute time,

Markov Chain Monte Carlo (MCMC) methods can be used to sample from the

posterior [133]. Unfortunately, common sampling based approaches are di�cult to

scale to problems in the malware space where practical dataset sizes are measured in

terabytes because they requires gradient computations over the entire dataset. As

MCMC is hard to scale in practice, variational inference is often used instead which

converts the integration problem into an optimization problem where the posterior is

approximated using a simpler variational distribution [23]. Variational inference for

neural networks was first introduced in the early nineteen nineties [78], and Graves

[72] revived interest in variational inference for neural networks by introducing a

stochastic variational method for inference in neural networks.

We note that complicated Bayesian inference is not necessarily needed to pro-

vide useful uncertainty estimates. Lakshminarayanan, Pritzel, and Blundell [105]

introduce an alternative that trains an ensemble of randomly initialized models.

These deep ensembles have been shown to produce competitive uncertainty esti-

mates [138, 13] because they are able to explore di↵erent modes in function space

[58]. Wilson and Izmailov [189] argue that deep ensembles are not a competing ap-

proach to Bayesian deep learning but rather are an e↵ective approach for Bayesian

model averaging.

Two kinds of uncertainty can be distinguished [60]. Aleatoric uncertainty is

caused by inherent noise and stochasticity in the data. More training data will not

31

help to reduce this kind of uncertainty. Epistemic uncertainty on the other hand is

caused by a lack of similar training data. In regions lacking training data, di↵erent

model parameter settings that produce diverse or potentially conflicting predictions

can be comparably likely under the posterior.

For classification tasks where epistemic and aleatoric uncertainty don’t need

to be di↵erentiated, uncertainty can be measured using the predictive distribution

entropy:

H[P(y|x,D)] = �
X

y2C

P(y|x,D) logP(y|x,D)

Aleatoric uncertainty can be measured using expected entropy:

ualea = EP(✓|D)H[P(y|x, ✓)]

Mutual information can be used to measure epistemic uncertainty:

uepis = I(✓, y|D, x) = H[P(y|x,D)]� EP(✓|D)H[P(y|x, ✓)]

Monte Carlo estimates obtained by sampling from the posterior can be used to

approximate the terms of these equations for our Bayesian models [169]. In partic-

ular, P(y|x,D) ⇡ 1
T

PT
i=1 P(y|x, ✓i) and EP(✓|D)H[P(y|x, ✓)] ⇡ 1

T

PT
i=1 H[P(y|x, ✓i)]

where the ✓i are samples from the posterior over models and T is the number of

samples.

For our ensemble based models which are not explicitly Bayesian (because each

ensemble member receives the same weight) but Bayesian inspired, uncertainties can

32

be computed in a similar way where the ✓i are no longer samples from a posterior,

but instead multiple independent trainings of a model with T di↵erent random seeds.

3.3.4 Classification Metrics

We use multiple metrics to evaluate and compare approaches.

Accuracy is defined as the percent of correct predictions made. Area under the

receiver operating characteristic curve (AUC) is the probability that the classifier

will rank a randomly selected malicious file higher in probability to be malicious

than a randomly selected benign file. The true positive rate (TPR) is defined as

the number of true positives over the sum of true positives and false negatives. The

false positive rate (FPR) is defined as the number of false positives over the sum of

false positives and true negatives.

An important contribution of our work is to recognize that the TPR obtained

at any given FPR on the test set is not the actual measure of interest in malware

detection, but an over-fit measure due to the implicit assumption that the correct

decision threshold is known at test time. The threshold must be estimated during

training or validation, and then applied to the test set. This means we have a target

maximum FPR TFPR that we wish to obtain, and a separate actualized FPR that

is obtained on the test set. In order to capture the trade-o↵ between TPR and

actualized FPR constraint satisfaction, we define the following combined metric

33

Equation 3.1 where TFPR is the desired maximum FPR.

C = TPR� max(actualized FPR� TFPR, 0)

TFPR
(3.1)

This metric captures that we have a desired TPR, but penalizes the score

based on the degree of violation of the FPR. This is done by a division so that the

magnitude of the violation’s impact grows in proportion to the target FPR shrinking.

This matches the nature of desiring low FPR itself. For example, 90% TPR at a

target FPR of 0.1% is still quite good if the actualized FPR is 0.11% (C = 0.8), but

is unacceptably bad if the target FPR was 0.01% (C = �9.1).

3.4 Experiments and Discussion

Now that we have discussed the methods of our work and the metrics by which

they will be examined, we will show empirical results demonstrating our primary

contributions: 1) Evaluating test-set performance thresholds from the test set leads

to misleading results at lower FPR, 2) Simple non-diverse ensembles can dramati-

cally improve TPR at any given FPR rate, 3) we can further improve TPR@FPR by

explicitly modeling Bayesian uncertainty estimates into our decision process, and 4)

these uncertainty estimates have practical benefits to application by showing that

errors and previously unseen malware families have uncertainty distributions that

place more weight on higher uncertainties. For each of these we will include the

empirical results on the EMBER2018 and the Sophos 2020 corpora, and include

additional discussion and nuance to how these relate to practical deployment.

34

3.4.1 Misleading Evaluation

A currently accepted practice for evaluating malware detection models under

FPR constraints is to report the test set ROC curve. Once the test set ROC curve is

produced, the desired FPR rates from the curve are selected to show their associated

TPR. This is misleading as in practice the test set is not available when choosing

the decision threshold, causing this evaluation procedure to be invalid. Instead, we

must recognize that there are a priori target FPRs that are the FP rates that we

desire from the model, and the actualized FPRs which is what is obtained on the test

(read, “production”) data. Selecting the threshold from the test set hides that the

target and actualized FPRs are di↵erent, especially for low FPRs that require large

amounts of data to estimate. The valid approach to this scenario when evaluating

a classifier at di↵erent FPRs is to select the thresholds using a validation set. Once

the thresholds are selected that obtain the target FPRs, they can be applied to

the test set to obtain the actualized FPRs and their associated TPRs. We show

the impact this has on the entire TPR/FPR curve in Figure 3.1 which shows the

absolute relative error in TPR for a given actualized FPR. Depending on the model

and dataset, the resulting TPR for any actualized FPR can change by over 30%,

and the relative error generally increases as the FPR decreases. This is expected

because low FPRs naturally require more data to estimate: if you want an FPR of

1:1,000 and you want 1,000 FPRs to estimate the threshold from you would expect

to need 1, 0002 =1 million examples.

We note that the Sophos FFNN model seems to be particularly robust with the

35

Figure 3.1: Absolute relative error in TPR when using the invalid evaluation proto-
col, for three di↵erent model and dataset combinations. A valid evaluation protocol
will use a validation set ROC curve to select a threshold given a desired FPR. The
evaluation protocol that is currently the norm in the malware detection literature is
invalid because it uses the test set ROC curve, which is never available in practice,
to select a threshold. The use of the invalid evaluation protocol can lead to over a
30 percent relative error in TPR. A relative error of zero would mean that the use of
the invalid evaluation protocol is not a major issue, but this is clearly not the case.

lowest error in Figure 3.1. This is in part a testament to the FFNN approach, but

more broadly a function on the magnitude of the Sophos dataset. With 2.5 million

samples in the validation set and 4.2 million in the test set, the corpus is large

enough to mitigate the impact of some inappropriate practices. To demonstrate the

36

impact the validation set can have, we show the same results in Figure 3.2 when

only the validation set used to select the threshold is reduced by various orders of

magnitude.

Figure 3.2: Absolute relative error in TPR when using the invalid evaluation protocol
at various levels of subsampling of the validation set. As the validation set size
decreases, the ability to estimate the FPR decreases. This causes more errors and a
“shortening” of the curves as it becomes impossible to estimate lower desired FPR
rates.

One can clearly see that as the validation set size decreases, the ability to

estimate the FPR decreases. This causes more errors and a “shortening” of the

37

curves as it becomes impossible to estimate lower desired FPR rates. This last

point is important as some prior works have reported FPRs lower than what their

dataset could accurately estimate. If the test set size times the desired FPR is less

than 100 samples, it is unlikely the TPR@FPR reported will be an accurate estimate

(e.g., as done in [5]).

We make explicit to note that this distinction between invalid vs. valid ap-

proaches is not a critique on the evaluation of entire ROC curves. The fundamental

distinction is whether we care about the entire ROC curve, or only specific points

from the ROC curve. If we care about the entire ROC curve, evaluating the ROC

on the test set is valid and appropriate. But because malware detection is concerned

with particular points from the ROC curve, it becomes necessary to evaluate if the

approach can hit its desired location on the curve (i.e., a specific FPR in produc-

tion). There are also valid scenarios to consider just the ROC curve as a whole for

malware analysis and its associated AUC, as it represents a metric of ability to rank

that is applicable to other scenarios within malware detection and analysis. Our

critique is for just those concerned with AV-like deployments that aim for low FPRs

specifically.

3.4.2 Ensembles

We have now shown that the correct approach to developing a ROC curve

when one wishes to evaluate specific points on the curve is to select the threshold

from a validation set rather than the test set. We will apply this to the results

38

of this section to show that creating an ensemble of randomly seeded models can

improve the obtained TPR at almost any actualized FPR, especially under extreme

FPR constraints. Figure 3.3 shows the ROC curves for individual models as well as

for the ensemble consisting of those individual models. The Sophos trained FFNN

ensemble notably performs significantly better than any individual member of the

ensemble, with the gap in performance widening as FPR becomes smaller.

Figure 3.3: Ensembles that take the average of predictions from randomly seeded
models can lead to significant TPR gains under extreme FPR constraints, compared
to individual models. Note that the gap in performance grows as FPR becomes
smaller, in particular for the FFNN model.

39

Table 3.1: EMBER2018 comparison of the standard global adjustment (labeled
as (g)) to the uncertainty aware local adjustments from Equation 3.2 (labeled as
(g+l)) and Equation 3.3 (labeled as (g+lv2)). Best combined score (TPR penalized
for over-runs on target FPR) shown in bold.

Target FPR=1% Target FPR=0.1% Target FPR=0.01%

Method TPR FPR Comb. TPR FPR Comb. TPR FPR Comb.

BMC (g) 7.602E-01 1.177E-02 5.832E-01 4.998E-01 8.100E-04 4.998E-01 2.422E-01 8.000E-05 2.422E-01
BMC (g+l) 7.617E-01 1.217E-02 5.447E-01 4.998E-01 8.300E-04 4.998E-01 2.431E-01 9.000E-05 2.431E-01
BMC (g+lv2) 7.594E-01 1.166E-02 5.934E-01 5.016E-01 8.200E-04 5.016E-01 2.434E-01 9.000E-05 2.434E-01

BLR (g) 7.778E-01 9.550E-03 7.778E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
BLR (g+l) 7.781E-01 9.560E-03 7.781E-01 5.977E-02 7.500E-04 5.977E-02 1.000E-04 8.600E-04 -7.600E+00
BLR (g+lv2) 7.781E-01 9.560E-03 7.781E-01 5.248E-02 7.800E-04 5.248E-02 9.000E-05 7.900E-04 -6.900E+00

LGBM (g) 8.805E-01 1.805E-02 7.547E-02 6.954E-01 1.550E-03 1.454E-01 4.888E-01 8.000E-05 4.888E-01
LGBM (g+l) 8.680E-01 1.494E-02 3.740E-01 6.892E-01 1.390E-03 2.992E-01 5.142E-01 9.000E-05 5.142E-01
LGBM (g+lv2) 8.693E-01 1.488E-02 3.813E-01 6.917E-01 1.430E-03 2.617E-01 5.142E-01 9.000E-05 5.142E-01

The fact that these are all the same type of model, but with di↵erent random

seeds at initialization, is an important and not previously recognized phenomena.

Classical wisdom is that ensembles should maximize diversity to reduce correlation

of predictions, and thus maximize accuracy. But in our scenario malware detection

models are designed to be lightweight in model size, low latency, and high through-

put, so that the AV system does not interrupt the users of a computing system.

A classically diverse model with di↵erent types of algorithms or features, as done

in prior work in this space, ends up including approaches that are many orders

of magnitude larger and slower than the lighter weight approaches we study in this

work. Because we can use multiple versions of the same type of model with the same

features, we can maintain the high throughput, low latency, and size requirements

while obtaining these large gains in TPR.

Table 3.2 compares the accuracy, AUC, and AUC @ 0.1% FPR achieved

by ensembles to the average of those achieved by individual ensemble members.

In all cases, the ensemble has better performance than the expected performance

40

of individual ensemble members, even though they are using an ensemble of low

diversity. Of particular importance is the performance of each model in the low

FPR domain has a greater relative improvement (median 11% improvement) than

one may have anticipated looking at more standard metrics like Accuracy and AUC

(median improvements of 0.6% and 0.4% respectively). The only exception to this is

the Logistic Regression approaches which have di�culty operating at the extremely

low FPR ranges, which we will see repeated.

Table 3.2: Accuracy and AUC for each model and dataset combination. Ensembles
are compared to the expected performance of their components. We note that the
maximal value that AUC0.1%FPR can take is 0.1.

Dataset Model Accuracy AUC AUC0.1%FPR

Ember

Bayesian MalConv 91.64 97.47 0.04079
MalConv 90.88 97.05 0.03288

Bayesian Log. Reg. 94.72 98.15 0.0
Log. Reg. 94.15 97.32 0.0
LightGBM Ensemble 93.98 98.62 0.06054
LightGBM 93.88 98.55 0.05433

Sophos

FFNN Ensemble 98.81 99.83 0.09274
FFNN 98.56 99.75 0.08990

LightGBM Ensemble 86.10 98.41 0.04459
LightGBM 85.47 98.05 0.03637

3.4.3 Uncertainty Based Threshold Adjustments

While ensembling predictions by taking an average leads to improved results,

there is more information within ensembles that can be leveraged to further ame-

liorate performance under extreme FPR constraints. In particular, estimates can

be computed for epistemic (uepis) and aleatoric (ualea) uncertainty. We introduce a

simple threshold adjustment approach that leverages data point specific uncertainty

41

to locally adjust the threshold based on the uncertainty. We explore two uncertainty

aware local threshold adjustments:

ŷadj = ŷ + ↵1 · uepis + ↵2 · ualea (3.2)

ŷadj = ŷ + ↵1 · exp(↵3 · uepis) + ↵2 · exp(↵4 · ualea) (3.3)

where ŷ is the original ensemble prediction for a data point, uepis is the epistemic

uncertainty (mutual information) for a data point’s prediction, ualea is the aleatoric

uncertainty (expected entropy) for a data point’s prediction, the ↵i are learned

scaling factors, and ŷadj is the uncertainty adjusted prediction for a data point. The

scaling factors are learned by iteratively optimizing each ↵i to maximize TPR given

a desired FPR, where after each scaling factor adjustment a new global adjustment is

computed. Equation 3.2 and Equation 3.3 capture linear and exponential behaviors

respectively.

Because TPR@FPR is not a di↵erentiable metric, we use a gradient free ap-

proach to altering the weights ↵. In particular, we use a coordinate descent style

approach where we take turns optimizing the individual ↵i values while holding all

others fixed, repeating the process until convergence. This is feasible thanks to the

convex behavior that occurs with respect to the TPR scores. If ↵i is set too large,

then the associated feature (e.g, uepis or ualea) becomes the only e↵ective factor

by overshadowing all other components, but is not su�cient on its own to make

meaningful predictions, resulting in a low TPR when selecting the target FPR. If

42

the weight is too small then the associated feature has no impact, and the result is

unchanged. This creates the two “low points” and a weight that results in a higher

score (hopefully) exists between the two extrema. This can then be selected with

high precision by using a golden search by treating the extrema as brackets on a

solution. We use Brent’s method to solve this because it allows faster searches by

approximating the problem with a parabola when possible, and switching to golden

search in the worst case, allowing it to solve the optimization quickly.1

This gives us an approach to directly optimize our target metric even though

it is non-di↵erentiable, and to do so with high precision in just a few minutes of

computation. All optimization occurs on the validation set. The ↵i are optimized

in an alternating manner for Equation 3.2 and in a randomized sequential manner

for Equation 3.3. Brent’s method is used as the optimizer [27], with a bracketing

interval of [�100, 100] for Equation 3.2 and of [�10, 10] for Equation 3.3. A ROC

curve is then computed using the locally adjusted ŷadj to obtain the final global

threshold. For all methods, when fitting the global and local threshold adjustments

using the validation set, a target FPR of 0.9 times the actual desired FPR is used in

order to conservatively satisfy the constraint given di↵erences in the test set data.

We briefly note that we had also tried optimizing the uncertainty scaling fac-

tors and thresholds jointly using a CMA-ES gradient-free optimization approach

[73]. Unfortunately, the obtained solutions were not precise enough given the ex-

tremely small FPR constraints, leading us to use the iterative optimization of each

variable using Brent’s method.

1
In our experience each call to Brent’s method takes less than 100 optimization steps.

43

The results comparing our new uncertainty augmented local adjustments Equa-

tion 3.2 (g+l) and Equation 3.3 (g+lv2) against the naive approach (g) are provided

in Table 3.1 and Table 3.3 for the EMBER2018 and Sophos datasets respectively.

Bolded are the methods that performed best by the combined score Equation 3.1

which penalizes going over the target FPR. We note that across datasets, models,

and target constraints, the inclusion of uncertainty based local adjustments (g+l and

g+lv2) improves over the standard use of only a global threshold adjustment (g).

Both approaches are statistically significant in their improvement (Wilcoxon-signed

rank test p-values of 0.02 and 0.01 respectively). In almost all cases if (g+lv2) is the

best performer, (g+l) is the second best. Similarly, when (g+lv2) is not the best, it

is usually second best after g+l.

Table 3.3: Sophos comparison of the standard global adjustment (labeled as (g))
to the uncertainty aware local adjustments from Equation 3.2 (labeled as (g+l))
and Equation 3.3 (labeled as (g+lv2)). Best combined score (TPR penalized for
over-runs on target FPR) shown in bold.

Target

FPR

Test

Perf.

LGBM FFNN

(g) (g+l) (g+lv2) (g) (g+l) (g+lv2)

1%

TPR 8.060E-01 8.125E-01 8.150E-01 9.779E-01 9.779E-01 9.779E-01
FPR 1.175E-02 1.123E-02 1.125E-02 8.664E-03 8.663E-03 8.666E-03

Comb. 6.315E-01 6.899E-01 6.904E-01 9.779E-01 9.779E-01 9.779E-01

0.1%

TPR 5.264E-01 5.318E-01 5.343E-01 9.440E-01 9.471E-01 9.450E-01

FPR 1.493E-03 1.088E-03 9.699E-04 9.695E-04 9.473E-04 1.024E-03

Comb. 3.338E-02 4.434E-01 5.343E-01 9.440E-01 9.471E-01 9.208E-01

0.01%

TPR 2.296E-01 2.352E-01 2.371E-01 9.017E-01 9.037E-01 9.086E-01
FPR 4.339E-05 5.751E-05 5.786E-05 8.855E-05 9.032E-05 8.961E-05

Comb. 2.296E-01 2.352E-01 2.371E-01 9.017E-01 9.037E-01 9.086E-01

0.001%

TPR 9.940E-02 1.007E-01 1.075E-01 8.022E-01 8.046E-01 8.043E-01

FPR 3.881E-06 4.586E-06 4.939E-06 4.234E-06 5.292E-06 5.998E-06

Comb. 9.940E-02 1.007E-01 1.075E-01 8.022E-01 8.046E-01 8.043E-01

The only case where (g) performed best is when using the Bayesian Logistic

44

Regression (BLR) model on the EMBER corpus at a target FPR of 0.01%. In this

one case we have pushed the model beyond what it is capable of achieving, and all

three methods perform poorly - by happenstance the global threshold’s degenerate

solution of claiming that there is no malware receives a better score due to our

uncertainty approaches failing to meet the FPR goal, which has a high penalty.

However, we would argue our uncertainty based approaches are still preferable in

this scenario because the degenerate model (g) is equivalent to having no anti-virus

installed.

3.4.4 Uncertainty on Errors and New AV Classes

Our local threshold adjustments using epistemic and aleatoric uncertainty es-

timates show improved TPR for extremely low target FPRs. We further investigate

how this is possible, and in doing so show that these uncertainty estimates provide

an additional benefit to practical application. The errors of our models are cor-

related with both uncertainty measures. This means we can use the uncertainty

measures not just as a means of adjusting the threshold, but as a sourcing tool for

analysts. The data with the highest uncertainty scores are the most likely to be

miss-predicted, and thus guide the analysts to the samples where their time is best

spent.

Figure 3.4a, Figure 3.4b, and Figure 3.4c on the EMBER2018 dataset and Fig-

ure 3.6b and Figure 3.6a on the Sophos data show that the uncertainty distributions

for test samples that the models ultimately got wrong place most of their weight on

45

(a) EMBER, Bayesian MalConv

(b) EMBER, Bayesian Logistic Regression

(c) EMBER, LGBM Ensemble

Figure 3.4: A comparison of uncertainty distributions for all three EMBER2018
models at test time between samples predicted correctly and incorrectly.

46

higher uncertainties. Consistently, the uncertainty distribution for test samples that

a model ultimately got right places most of its weight on lower uncertainties. This

suggests that overall system performance can be improved by leveraging uncertainty

and flagging high uncertainty predictions for further processing and review. This

explains the success of our approach, which can learn to use the uncertainty terms

as a kind of additional o↵set. The more we want to lower the FPR rate, the less we

should trust the model’s outputs if uncertainty is high.

Of the 200,000 files in the EMBER2018 test set, 363 belong to new malware

families that were not present in the train set (we note that all the test set are new

files that did not exist prior, as the train/test split is a split in time). Figure 3.5a and

Figure 3.5c show that the Bayesian MalConv and LightGBM ensemble uncertainty

distributions for test samples from malware families seen during training place most

of their weight on lower uncertainty values, whereas the uncertainty distributions

for novel families not seen during training place most of their weight on higher

uncertainty values. Figure 3.5b however shows that the Bayesian logistic regression

model mostly does not exhibit this behavior, likely due to the simplicity of the

model class which limits the extent to which predictions can disagree. Overall,

these results suggest that for some models, uncertainties can be leveraged for the

detection of new, out of training distribution, malware families.

47

(a) Bayesian MalConv

(b) Bayesian Logistic Regression

(c) LGBM

Figure 3.5: A comparison of uncertainty distributions for the EMBER2018 models
at test time between malware families seen and unseen during training.

48

(a) Sophos, FFNN Ensemble

(b) Sophos, LGBM Ensemble

Figure 3.6: A comparison of uncertainty distributions for an ensemble of Sophos
models at test time on Sophos data between samples predicted correctly and incor-
rectly.

3.5 Conclusions

We have provided evidence that uncertainty estimation using ensembling and

Bayesian methods can lead to significant improvements in machine learning based

malware detection systems. In particular, improvements were especially large under

extreme false positive rate constraints which are common in deployed, production

scenarios. Local uncertainty based threshold adjustments were shown to lead to

49

higher TPRs while satisfying desired FPR maximums. We additionally demon-

strated how previous works have used an evaluation protocol that can lead to mis-

leading results, and how uncertainty can be used to better detect model errors and

new malware families.

Obtaining uncertainties has an inherent additional computational cost at pre-

diction time which may limit use in resource limited deployed contexts. However,

recent advances such as BatchEnsemble [185] have introduced new methods to avoid

the computational and memory costs of naive ensembles.

We are currently working with professional malware analysts and teams that

believe this approach may benefit them in production environments based on the evi-

dence this work has provided. Future work includes leveraging uncertainty estimates

to decide when to run more expensive malware analysis algorithms and techniques

such as dynamic analysis, exploring and explaining malware specific drivers of un-

certainty, and evaluating these methods over a long period of time in production.

While we have discussed how uncertainty can be used to improve decision

making in malware detection algorithms, the question of when a machine learning

algorithm should not make a decision is also important. We investigate this question

in the next chapter.

50

Chapter 4

Out of Distribution Data Detection Using Dropout Bayesian Neural

Networks

4.1 Introduction

Detecting out of distribution (OOD) data at test time is critical in a variety of

machine learning applications. For example, in the context of malware classification

[147], OOD data could correspond to the emergence of a new form of malicious

attack. Gal and Ghahramani [62] developed an approach to variational inference in

Bayesian neural networks (BNNs) that showed a neural network with dropout [79,

174], a technique commonly used to reduce overfitting in neural networks (NNs)

by randomly dropping units during training, applied before every weight layer is

equivalent to an approximation of a deep Gaussian process [42]. Training with

dropout e↵ectively performs variational inference for the deep Gaussian process

model, and the posterior distribution can be sampled from by leaving dropout on

at test time. This approach to Bayesian deep learning has been popular in practice

as it is easy to implement and scales well.

Measures of uncertainty usually are a function of the sampled softmax outputs

of such a BNN, for example predictive entropy and mutual information. There is

however useful information at every intermediate layer of a dropout BNN. The

51

dropout based approach to Bayesian deep learning su↵ers, like most variational

inference methods, from the tendency to fit an approximation to a local mode instead

of to the full posterior because of a lack of representational capacity and because of

the directionality of the KL divergence [169, 189]. This behavior however allows us

to expect the randomized intermediate representation samples in a dropout BNN to

be meaningfully related as they are sampled from a local mode.

In this chapter, we explore how to leverage additional information generated

at every layer of the network for the task of OOD data detection at test time.

In particular, we interpret the intermediate representation of a data point at a

particular layer as a randomized embedding. The embedding is randomized due to

the use of dropout at test time.

The idea to use a randomized embedding induced by the intermediate layers of

a dropout BNN has been attempted previously, but can fail due to the underlying

Euclidean distance metric used in previous work. The use of Euclidean distance

does not account for the confounding variability caused by changes in embedding

magnitudes. We will theoretically justify and empirically show that by instead using

a measure based on cosine distance, this problem can be rectified. We then leverage

this improved uncertainty estimation to show better OOD data identification across

three highly di↵erent tasks to demonstrate the robustness of our approach.

The objective of this chapter is not to develop a state-of-the-art approach

to OOD data detection, but rather in the context of dropout BNNs to: (1) show

how to cheaply improve OOD data detection in systems where a dropout BNN

is already deployed, by using intermediate computational results that are already

52

being computed but not fully leveraged, and (2) provide theoretical and practical

evidence to highlight why it is valuable to deconflate angular information about

embedding dispersion from embedding norm information. Additionally, previous

works have evaluated OOD detection by assuming access to a large OOD dataset

of similar size to the in distribution dataset. This is an unrealistic assumption as

in areas like cyber security where OOD examples are limited and expensive. So, we

also examine the e↵ect of small dataset sizes for OOD detection in our experiments.

4.2 Related Work

Two kinds of uncertainty can be distinguished [94]. Aleatoric uncertainty is

caused by inherent noise and stochasticity in the data. More training data will not

help to reduce this kind of uncertainty. Epistemic uncertainty on the other hand is

caused by a lack of similar training data. In regions lacking training data, di↵erent

model parameter settings that produce diverse or potentially conflicting predictions

can be comparably likely under the posterior. OOD data is expected to have higher

uncertainty, epistemic in particular. Mukhoti et al. [130] prove that one cannot infer

epistemic uncertainty from a deterministic model’s softmax entropy, so additional

information is needed to estimate epistemic uncertainty.

Uncertainty modeling using probabilistic embeddings has primarily been used

for estimating aleatoric uncertainty [137, 167, 38, 33] in tasks such as determining the

quality of a test input image. These methods do not easily translate to estimating

epistemic uncertainty. For example, Oh et al. [137] try to apply their method on an

53

epistemic uncertainty estimation task and find that it did not work well for novel

classes, and they leave the modeling of epistemic uncertainty as future work.

The only prior work we are aware of that looks at a randomized embedding

approach similar to ours is by Terhörst et al. [175], who use dropout at test time

to generate a stochastic embedding. They estimate face image quality through the

stability of the embedding as measured using Euclidean distance. As we will show,

the use of Euclidean distance is problematic as it does not account for factors a↵ect-

ing embedding norms and more generally, the assumptions made by Terhörst et al.

[175] are not met in reality. We also note that they are actually estimating epistemic

uncertainty (see [137] for an explanation) when test image quality is an inherently

aleatoric uncertainty estimation problem. We will show both empirical evidence

as well as mathematical grounding as to why our proposed approach, without the

addition of any complexity, fixes these issues.

There is evidence that intermediate layers of a neural network contain infor-

mation useful for epistemic uncertainty estimation and out of distribution detection.

Postels et al. [146] establish a connection between the density of hidden represen-

tations and the information-theoretic surprise of observing a specific sample in the

setting of a deterministic neural network. In particular, they suggest that the first

layers of a neural network should be used to estimate epistemic uncertainty due

to feature collapse, a phenomena where out-of-distribution data is mapped to in-

distribution feature representations in later layers of a network [3, 130], though they

also suggest that OOD data detection can benefit from aggregating uncertainty

information from several layers. Our work di↵ers from their work as we are not

54

fitting a density to representations of the training data, increasing the applicability

of our approach to situations where fitting and storing a density is not an option

for computational or regulatory reasons.

Other recent work has also looked at uncertainty estimation using a single

forward pass of a neural network that has had its intermediate representations reg-

ularized to produce good uncertainty estimates [3, 111]. We note that many single

forward pass based methods like Mukhoti et al. [130] and Liu et al. [111] require

residual based networks in combination with spectral normalization to enforce a

bi-Lipschitz inductive bias [17]. While the method of Amersfoort et al. [3] is not

residual network constrained, it requires significant changes to the model and train-

ing procedure. While our approach requires multiple forward passes (as is the case

with all dropout BNNs), it does not require any modifications to existing dropout

BNNs, by only using information that is already being computed within a dropout

BNN.

Mandelbaum and Weinshall [122] propose a confidence score that uses a data

embedding derived from the penultimate layer of a neural network. The embedding

is achieved using either a distance-based loss or adversarial training. Similarly to

other methods, this method requires density estimation, and our work di↵ers as

our method does not involve a comparison to nearest neighbors from the training

set, which may be di�cult to deploy in practice due to both storage and regulatory

constraints.

Many works have investigated OOD data detection in probabilistic contexts.

Ovadia et al. [138] benchmarks Bayesian deep learning methods in the context of

55

dataset shift and OOD data at test time. Xiao, Gomez, and Gal [195] use epistemic

uncertainty to detect OOD language data. Ren et al. [155] detect OOD data using

likelihood ratios in the context of deep generative models and evaluate on OOD

genomic sequences. Our work makes a contribution to probabilistic OOD identifi-

cation by being the first work to systematically investigate the appropriate use of

the randomized embeddings induced by the intermediate layers of a dropout BNN.

4.3 Methods

In a supervised setting, suppose a neural network structure with N (non-

linearity included) layers fi, i 2 [1, N] where x1 is the input and xN+1 is the predic-

tion: xi+1 = fi(xi). Gal and Ghahramani [62] showed that a neural network with

dropout [79, 174] applied before every weight layer is equivalent to an approximation

of a deep Gaussian process [42], and that training with dropout e↵ectively performs

variational inference for the deep Gaussian process model. Dropout randomly omits

neural network units. At test time, the posterior distribution can be sampled from

by leaving dropout on. This gives us the network structure:

xi+1 = fi(dropout(xi)) (4.1)

56

4.3.1 Randomized Embeddings

4.3.1.1 Computing an Embedding

In the context of a trained dropout Bayesian neural network, we can use the

intermediate representations from the various layers (the xi+1 in Equation 4.1) as a

randomized embedding of a data point. The embedding is randomized as multiple

forward passes with dropout on will yield di↵erent embedding values. The varia-

tion in the embedding values could be used to measure epistemic uncertainty [137],

allowing for the detection of OOD data and dataset shift.

4.3.1.2 Measuring Uncertainty

A datum is embedded to a set of randomized embedding values at each layer.

We can compute the maximum pairwise distance between the embeddings for a

specific datum at a specific layer. This can be done at each layer in the BNN,

giving us a feature for each layer that can then be used for tasks such as OOD

identification. All previous work has used Euclidean distance to compute the pairwise

distances, without examining the appropriateness of Euclidean distance for the task.

Part of our contribution is an analysis in subsubsection 4.3.3.3 of why Euclidean

distance is in fact not appropriate, and we introduce a preferable cosine distance

based approach which we use in all of our experiments. A small value of 1e-6

was added to the embeddings to avoid numerical issues caused by corner-case zero

normed embedding vectors.1 In our experiments, embeddings from non-linear layers

1
We also note that normalized Euclidean distance, where embedding vectors are normalized to

unit length prior to computing Euclidean distance, could also be used in place of cosine distance

57

Algorithm 1: Computing Randomized Embedding Based Features for
OOD Data Detection
Input: A datum x, a N layer NN trained with dropout {f1, ..., fN}, and

number of samples T .
Output: N randomized embedding based features z1, ..., zN , each

corresponding to a layer in the network, for a OOD data
detection task.

1 for t 1 to T do
2 for i 1 to N do
3 xi+1,t fi(dropout(xi,t))
4 for i 1 to N do
5 zi max(PairwiseCosineDistances(xi,:))
6 return z1, ..., zN // Return features.

(such as convolutions) are flattened prior to computing this metric. A summary of

our approach can be found in algorithm 1. The intuition behind this approach is

that if measured appropriately, the “spread” or maximal variation in a datum’s

embedding contains uncertainty information. If all embedding samples are realized

to a same point in the embedding space, then there is less uncertainty than if the

embedding samples are realized to wildly di↵erent parts of the embedding space.

4.3.2 Baseline Features

We compare the addition of our randomized embedding based features to a

set of common baseline features. For classification tasks, uncertainty estimates in

dropout BNNs are usually a function of the sampled softmax outputs. In particular,

overall uncertainty can be measured using predictive distribution entropy:

H[P(y|x,D)] = �
X

y2C

P(y|x,D) logP(y|x,D)

as its square can be shown to be proportional to cosine distance.

58

To isolate and measure epistemic uncertainty mutual information can be used:

I(✓, y|D, x) = H[P(y|x,D)]� EP(✓|D)H[P(y|x, ✓)]

The terms of these equations can be approximated using Monte Carlo esti-

mates obtained by sampling from the dropout BNN posterior [169]. In particular,

P(y|x,D) ⇡ 1
T

PT
i=1 P(y|x, ✓i) and EP(✓|D)H[P(y|x, ✓)] ⇡ 1

T

PT
i=1 H[P(y|x, ✓i)] where

the ✓i are samples from the posterior over models and T is the number of samples.

In addition to predictive distribution entropy and mutual information, we also use

maximum softmax probability (the value of the largest element of P(y|x,D)) as a

feature, shown by Hendrycks and Gimpel [75] to be an e↵ective baseline for the

OOD data detection task.

4.3.3 How to Measure Embedding Dispersion

We will now explore why Euclidean distance as used by previous works is

not appropriate to measure randomized embedding dispersion. We illustrate using

a LeNet5 [200] model with added dropout before each layer trained on MNIST,

with MNIST variants as OOD data. Further data, model, and experimental details

correspond to those expanded upon in subsection 4.4.1.

4.3.3.1 The Problem With Euclidean Distance

Terhörst et al. [175] suggest the Euclidean distance to measure when a data

point is suitable for a downstream task, where lower variability in the stochastic

59

embedding induced by a dropout neural network suggests higher suitability for a

data point. In particular, they use the sigmoid of the negative mean Euclidean

distance between all stochastic embedding pairs for a data point as the measure of

suitability. In other words, their hypothesis is that a form of uncertainty can be

measured using the Euclidean distance between embedding samples.

We find that if Euclidean distance is used as the metric to measure distance

between samples, their hypothesis holds only with excessive training and likely over-

fitting. Figure 4.1a shows that with enough training to get to the accuracy plateau

(10 epochs of training with a batch size of 64, with a test accuracy of 0.9885), we

actually see the opposite e↵ect. Embeddings for OOD data are actually less spread

out than embeddings for in distribution data. Figure 4.1b shows that with excessive

training (100 epochs of training, with a lower test accuracy of 0.9882), we see that

the hypothesis holds better but note that there is still a good amount of overlap

between the histograms, limiting the usefulness for OOD detection (and adding a

di�cult to select stopping criteria). We note that what we are observing is not

feature collapse.

This points to two issues that we need to resolve. First, how can we get

consistent behavior regardless of over/under-training? Second, how can we more

usefully measure spread in a way that matches intuition?

60

4.3.3.2 Spectral Normalization Stabilizes Behavior

Spectral normalization rescales the weights during training with the spectral

norm of the weight matrix, enforcing a Lipschitz constraint that bounds the deriva-

tive of the learned function [127]. This helps to preserve distance as a data point

makes its way through the network. Figure 4.1c shows that a spectral normalized

version of the network results in consistent behavior even with longer training (100

epochs of training, with a test accuracy of 0.9927). So, there is a solution to the

first problem. However, we still see that the spread for OOD data is lower than for

in distribution data.

4.3.3.3 Why Cosine Distance Is Needed To Properly Measure Em-

bedding Dispersion

Previous research around OOD detection has noted that a lower maximal

softmax output value is correlated with a data point being OOD [75]. One possible

explanation could be logits (softmax inputs) of smaller norm. This would make

intuitive sense as potentially, less neurons would activate for OOD data since OOD

data would lack the in distribution features the network is looking for.

The squared Euclidean distance between vectors u and v can be written as,

where ✓ is the angle between u and v:

||u� v||2 = ||u||2 + ||v||2 � 2 ||u|| ||v|| cos ✓ (4.2)

61

If embedding norms are inherently smaller for OOD data, then Euclidean distance

which is norm dependent cannot be used to compare embedding spread across OOD

and in distribution datasets, due to confounding. As shown in Equation 4.2, angu-

lar information is a↵ected by norm in both an additive and multiplicative manner

with Euclidean distance. So, assuming confounding caused by systematic norm

di↵erences, cosine distance should be used to isolate the angular information when

measuring embedding dispersion. If Euclidean distance mostly captures information

already captured by the norm, then the benefit of being Bayesian for this task is

not fully leveraged as norm can be estimated with a single point estimate. To take

full advantage of a dropout BNN, angular information about embedding dispersion

needs to be deconflated from embedding norm information.

We explored this hypothesis and found it to be empirically true and formally

justifiable. In Figure 4.2a, Euclidean distance is used to measure embedding dis-

persion, we see that dispersion is correlated with the logits norm and that the

relationship is nearly identical for OOD and in distribution data. This means that

measuring the spread of the embeddings using Euclidean distance conveys little

extra information than just looking at the norm of the logits. In Appendix subsec-

tion A.3.2, we perform a simulation to further illustrate this problem in the case of

a two layer ReLU activated network.

We want to measure spread in a way that is independent of the embedding

norm. This can be done a couple of di↵erent ways. For example, a simple switch

to cosine distance could be used, or the embeddings could be normalized prior to

using Euclidean distance (which can be shown to be related to cosine distance). As

62

illustrated in Figure 4.2b, using cosine distance results in OOD and in distribution

data having behaviors that are no longer identical. Appendix section A.3 shows

similar results in an unsupervised setting involving a stacked denoising autoencoder

variant.

Figure 4.1d shows the same information as Figure 4.1a, except a cosine dis-

tance based measure of spread is used instead of a Euclidean based one. With cosine

distance, we now see the expected behavior of OOD having more spread than in dis-

tribution, and we see a better separation as well which is good for OOD detection.

We have shown results for the last layer of a network but note that a similar anal-

ysis can be done for each layer. Having shown empirical evidence for why angular

information needs to be isolated from norm information when measuring embedding

dispersion, we next provide a formal analysis for why cosine distance allows for an

additional source of information.

4.3.3.4 Formal Analysis of Cosine Embedding Dispersion

We aim to compute a metric that is invariant to the relative magnitudes among

embedding samples, and also accurately represents the dispersion of the embedding

samples. In the following, we argue that the mutual information score is not satisfac-

tory for these two objectives. Our goal is not to replace the mutual information as an

uncertainty measure, but rather to demonstrate that our pairwise cosine similarity

yields an additional source of information that is not captured otherwise.

Let {zi}mi=1 denote m embedding vectors sampled through dropout. The mu-

63

0 20 40 60 80 100
0

200

400

600

800

Max Pairwise Euclidean

C
ou

nt

In Dist.

Out Dist.

(a) LeNet5 with 10 epochs of training, Eu-

clidean based measure of embedding disper-

sion.

0 2,000 4,000
0

500

1,000

1,500

Max Pairwise Euclidean

C
ou

nt

In Dist.

Out Dist.

(b) LeNet5 with 100 epochs of training, Eu-

clidean based measure of embedding disper-

sion.

20 40 60
0

200

400

600

Max Pairwise Euclidean

C
ou

nt

In Dist.

Out Dist.

(c) Spectral Normalized LeNet5 with 100

epochs of training, Euclidean measure of dis-

persion.

0 0.5 1 1.5 2
0

200

400

600

800

Max Pairwise Cosine

C
ou

nt

In Dist.

Out Dist.

(d) LeNet5 with 10 epochs of training, cosine

based measure of embedding dispersion.

Figure 4.1: Comparison of last layer randomized embedding dispersion distributions
for in distribution data (MNIST) and OOD data (Not-MNIST).

tual information score is defined as

I(w, y|D, x) = H[p(y|x,D)]� Ep(w|D)H[p(y|x, w)]

and is approximated by

Î(w, y|D, x) = H

"
1

m

mX

i=1

softmax(zi)

#
� 1

m

mX

i=1

H [softmax(zi)]

64

0 20 40 60
0

20

40

60

80

Mean Norm

M
a
x

P
a
ir
w
is
e
E
u
c
li
d
.

In Dist.

OOD

(a) Euclidean distance.

0 20 40 60

0

1

2

Mean Norm

M
a
x

P
a
ir
w
is
e
C
o
s
in

e

In Dist.

OOD

(b) Cosine distance.

Figure 4.2: A comparison of the relationships between last layer randomized embed-
ding mean norm and the maximum pairwise distance for Euclidean and cosine dis-
tances respectively, for in distribution data (MNIST) and OOD data (Not-MNIST).
Both models using LeNet5 trained for 10 epochs.

where H(·) is the entropy function H(y) = �
P

i yi log yi.

We first introduce a theorem from Amos [4] that clarifies the geometric proper-

ties of the softmax function. The proof is readily shown using Lagrange multipliers.

Theorem 4.3.1. The softmax function softmax(x)j =
exp(xj)P
i exp(xi)

is a map from Rd

to the (d� 1)-simplex that satisfies

softmax(x) = argmin
0<y<1

�x>
y �H(y) s.t. 1>y = 1

From this we see that the softmax solution is a balance between two competing

objectives: maximizing x
>
y which aims to place all weight on the coordinate with

the largest xi value, and maximizing the entropy of y which steers toward the uniform

vector with value 1/d. In addition, the softmax temperature changes the relative

weighting, which allows us to evaluate the e↵ect of the magnitude of the embedding

65

vector. We leverage this for a further Lemma and Theorem:

Lemma 4.3.2. The softmax function with temperature ↵, defined by softmax(x/↵),

satisfies

softmax(x/↵) = argmax
0<y<1

x
>
y + ↵H(y) s.t. 1>y = 1

Proof. From the previous theorem we get softmax(x/↵) = argmin0<y<1�(x/↵)>y�

H(y) s.t. 1>y = 1. Multiplying by scalar ↵ and switching the optimization to max-

imizing the negative does not change the optimal solution, yielding the statement

above.

These facts help indicate that softmax-based metrics are not suited for as-

sessing the angular dispersion among vectors. We note that the mapped vector is

↵-dependent and hence dependent on the L2 magnitude of the input vector. Further-

more, arbitrary translations of the vector, which can completely change the direction

of the vector, do not impact the softmax. These observations are formalized below.

Theorem 4.3.3. The softmax function is invariant to translation of input vector

x. It is not invariant to scaling x except in the special case when x1 = x2 = . . . =

xd. Furthermore, as the magnitude of x increases (without changing direction),

the softmax shifts weight to the vertex of the simplex corresponding to the largest

coordinate in x.

Proof. Invariance to translation follows from observing that softmax(x + K) =

exp(xj +K)/
P

i exp(xj +K) = exp(xj)/
P

i exp(xj) = softmax(x).

The dependence on scaling follows from Lemma 1.2. Consider two vectors

66

x, x
0 such that x

0 = x/↵. The value of ↵ adjusts the scale of the H(y) term.

Since the max x>
y objective aims to shift weight in y to the largest x coordinate

and the maxH(y) objective aims to distribute weight evenly, their solutions do

not coincide, giving softmax(x) and softmax(x0) di↵erent solutions. In the special

case that x1 = x2 = . . . = xd then x
>
y is constant, so the optimization of H(y)

gives the uniform distribution vector. Otherwise, increasing the magnitude of x0 is

equivalent to sending ↵! 0, which decreases the contribution of H(y). This causes

the solution vector to shift weight to the element with largest value in x.

We confirm this analysis by simulation in Appendix subsection A.3.3, where we

find that our new cosine-based feature adds an orthogonal measure of information

that is not captured in previously used measures of uncertainty.

4.4 Experiments and Results

In this section, we evaluate the value of randomized embedding based features

across three di↵erent OOD data detection tasks in the vision, language, and malware

domains. All experiments were implemented in PyTorch [140], and neural networks

were optimized using Adam with the default recommended settings [98]. A dropout

probability of p = 0.1 was used, and when sampling from the base neural network

models to compute features for OOD detection, 32 samples are used. Experiments

were run on an 80 CPU core machine with 512GB of RAM using a single 16GB Tesla

P100 GPU. Experiment specific details are described in their respective sections.

We explore the use of two model classes for the OOD detection algorithms.

67

The first model is an L2-regularized logistic regression (LR) with the regularization

strength chosen using 3-fold cross-validation. We min-max scaled the input features

for the LR model to the range [0, 1] based on the training data. The second model

is a 500 tree random forest (RF) classifier. We choose these two models to assess

linear vs. non-linear behavior in the OOD detection task. We also explore the e↵ect

of varied, small training set sizes for the OOD task in all of our experiments. In

many production contexts such as cyber security, examples of OOD data are limited

and usually expensive to obtain.

4.4.1 Image Classification

For our vision experiments, similarly to the evaluation protocol from [3, 155,

146, 130] we explore MNIST variants as OOD data. In particular, we train our base

model, a LeNet5 [200] with added dropout before each layer, on MNIST and use

Kuzushiji-MNIST [39], notMNIST [28], and Fashion-MNIST [194] as OOD data.

When training the downstream OOD data detection algorithms, we train the OOD

detector on one of the OOD datasets and test on the other two. For example, we first

train a digit classifier on MNIST. Then, we train an OOD data detector that uses

randomized embedding based features from the digit classifier to classify MNIST vs.

notMNIST. Then we test the OOD data detector on MNIST vs. Kuzushiji-MNIST

and Fashion-MNIST.

Due to its importance in practical use, we will test the sample e�ciency of the

OOD tasks (i.e., how few samples of OOD are needed to detect future OOD data).

68

In particular, we evaluate performance, as measured by area under the receiver

operating characteristic curve (captures desired data ordering performance) and

accuracy (captures desired decision making value), using training datasets consisting

of n=1000, 100, and just 10 data points from each class (in distribution and OOD).

We note that this di↵ers from most previous works which have evaluated by assuming

access to a large OOD dataset of similar size to the in distribution dataset, an often

unrealistic assumption. Each experiment was run 100 times with random training

set samples, where all appropriate data not in the training set is included in the test

set, and we report a mean and standard deviation for each. In all of our experiments,

the standard deviations are much smaller than e↵ect sizes, so we report only the

means in this section, and standard deviations can be found in appendix section A.1.

4.4.1.1 Detecting OOD Data

Table 4.1 compares performance with and without the cosine embedding spread

features for various experimental configurations and OOD detection models for a

dropout LeNet5 trained for 100 epochs. Features labeled as “Last” consist of com-

mon baseline features computed using softmax output samples from the network

(predictive entropy, mutual information, and maximum softmax probability). Fea-

tures labeled as “Last+Spread” consist of these baseline features plus our additional

randomized embedding maximum cosine spread features for each layer.

The inclusion of the additional cosine spread features improves OOD detec-

tion performance consistently across datasets, training set sizes, and model types.

69

In limited cases where the “Spread” features do not improve the LR model, the

RF model with “Spread” features performs the best overall, suggesting that the

relationship is not necessarily linear. Table A.4 in the Appendix summarizes results

from a similar experiment where the base model is a spectral normalized dropout

LeNet5 trained for 100 epochs. A comparison of Table 4.1 and Appendix Table A.4

suggests that, while spectral normalization is not required to see an improvement

from the inclusion of cosine spread features, spectral normalization does improve

OOD detection performance consistently.

In Appendix section A.4, we further examine the need for a small amount of

OOD training data, evaluate Euclidean based spread features, and investigate the

feature importances associated with our cosine spread features.

4.4.2 Language Classification

Out of distribution data detection is also of interest in natural language pro-

cessing, where systems are trained to work on specific languages, and inputs from

other languages are considered OOD [195]. For these experiments, we train a Char-

CNN [205] with dropout added before every layer to classify languages using the

WiLI dataset [176]. Training consisted of 50 epochs with a batch size of 128,

where the 100 most common characters in the training set (after stripping accents)

were used as the vocabulary and each datum was truncated/padded to a length of

200 characters. We train the language classification model to distinguish between

French, Spanish, German, English, Italian, and Portuguese text. We use Basque,

70

Table 4.1: Performance with and without the cosine randomized embedding spread
features for various experimental configurations for a dropout LeNet5 trained on
MNIST. Features labeled as “Last” consist of common baseline features computed
using softmax output samples from the network (predictive entropy, mutual infor-
mation, and maximum softmax probability). Features labeled as “Last+Spread”
consist of these baseline features plus our additional randomized embedding maxi-
mum cosine spread features for each layer. Each experiment was repeated multiple
times, and the mean is reported here while the standard deviation is reported in
Appendix A. Best results are shown in bold.

OOD Num/Class n=1000 n=100 n=10

Metric AUC Acc AUC Acc AUC Acc
Train Test Model Features

Fashion Kuzushiji LR Last 0.969 0.914 0.967 0.909 0.963 0.884
Last+Spread 0.979 0.914 0.973 0.911 0.967 0.901

RF Last 0.960 0.917 0.952 0.905 0.942 0.884
Last+Spread 0.979 0.922 0.974 0.921 0.969 0.907

notMNIST LR Last 0.966 0.912 0.965 0.909 0.960 0.879
Last+Spread 0.983 0.932 0.979 0.925 0.967 0.892

RF Last 0.959 0.920 0.950 0.903 0.938 0.880
Last+Spread 0.985 0.940 0.976 0.924 0.963 0.901

Kuzushiji Fashion LR Last 0.973 0.920 0.972 0.917 0.967 0.899
Last+Spread 0.989 0.948 0.983 0.937 0.978 0.922

RF Last 0.964 0.920 0.956 0.907 0.946 0.896
Last+Spread 0.986 0.943 0.978 0.931 0.967 0.914

notMNIST LR Last 0.967 0.914 0.965 0.910 0.960 0.886
Last+Spread 0.984 0.931 0.975 0.914 0.966 0.888

RF Last 0.960 0.922 0.950 0.904 0.938 0.888
Last+Spread 0.982 0.935 0.971 0.921 0.954 0.896

notMNIST Fashion LR Last 0.966 0.911 0.957 0.906 0.959 0.893
Last+Spread 0.978 0.937 0.969 0.928 0.977 0.925

RF Last 0.960 0.910 0.955 0.904 0.946 0.887
Last+Spread 0.988 0.943 0.982 0.935 0.978 0.920

Kuzushiji LR Last 0.960 0.900 0.946 0.893 0.951 0.882
Last+Spread 0.966 0.893 0.949 0.886 0.967 0.902

RF Last 0.956 0.906 0.950 0.901 0.941 0.883
Last+Spread 0.978 0.906 0.973 0.915 0.969 0.906

Polish, Luganda, Finnish, Tongan, and Xhosa as out of distribution languages. All

of our in and out of distribution languages are chosen to use the Latin writing

71

system. For the OOD task, training sets consisted of n=100, 50, 25, and 10 data

points from each class (in distribution and OOD). Each experiment was run 100

times with random training data subsamples, where all languages not trained on

are tested on. Table 4.2 shows that the inclusion of our randomized embedding

based features consistently improves OOD detection across experimental settings,

with average and maximal AUC improvements of 0.06 and 0.15.

Table 4.2: Performance with and without the cosine randomized embedding spread
features for a Char-CNN with dropout added before every layer trained to classify
languages using the WiLI dataset. Standard deviations are reported in Appendix A,
and best results are shown in bold.

OOD Num/Class n=100 n=50 n=25 n=10

Metric AUC Acc AUC Acc AUC Acc AUC Acc
Train Test Model Features

Basque rest LR Last 0.888 0.798 0.883 0.794 0.882 0.792 0.878 0.786
Last+Spread 0.926 0.843 0.919 0.836 0.921 0.835 0.926 0.828

RF Last 0.862 0.797 0.857 0.793 0.851 0.792 0.842 0.789
Last+Spread 0.924 0.845 0.920 0.840 0.918 0.835 0.914 0.824

Finnish rest LR Last 0.888 0.795 0.885 0.792 0.881 0.790 0.883 0.786
Last+Spread 0.910 0.818 0.908 0.818 0.909 0.821 0.910 0.818

RF Last 0.864 0.794 0.858 0.792 0.850 0.789 0.840 0.783
Last+Spread 0.913 0.821 0.907 0.821 0.905 0.818 0.904 0.814

Luganda rest LR Last 0.891 0.806 0.889 0.803 0.887 0.800 0.881 0.794
Last+Spread 0.943 0.864 0.939 0.854 0.935 0.847 0.931 0.837

RF Last 0.866 0.800 0.859 0.797 0.854 0.796 0.843 0.785
Last+Spread 0.936 0.862 0.930 0.852 0.926 0.843 0.921 0.831

Polish rest LR Last 0.900 0.824 0.897 0.821 0.891 0.816 0.887 0.812
Last+Spread 0.939 0.866 0.938 0.864 0.935 0.860 0.934 0.852

RF Last 0.870 0.793 0.860 0.787 0.854 0.783 0.850 0.780
Last+Spread 0.937 0.871 0.932 0.863 0.928 0.855 0.922 0.841

Tongan rest LR Last 0.857 0.815 0.841 0.811 0.815 0.800 0.791 0.771
Last+Spread 0.886 0.811 0.877 0.810 0.884 0.819 0.880 0.813

RF Last 0.765 0.699 0.766 0.695 0.769 0.684 0.785 0.701
Last+Spread 0.915 0.847 0.913 0.845 0.906 0.836 0.903 0.823

Xhosa rest LR Last 0.894 0.807 0.891 0.804 0.886 0.800 0.879 0.794
Last+Spread 0.944 0.866 0.940 0.857 0.933 0.846 0.931 0.838

RF Last 0.864 0.787 0.857 0.782 0.849 0.778 0.846 0.774
Last+Spread 0.939 0.868 0.934 0.860 0.928 0.852 0.921 0.835

72

0 0.5 1 1.5 2
0

1

2

Randomized Embed. Feat. Norm

D
en
si
ty

Basque

Catalan

0 0.2 0.4 0.6
0

1

2

3

4

Mutual Information

D
en
si
ty

Basque

Catalan

Figure 4.3: While Basque is a language isolate that linguistically does not share
any significant similarities to any other languages, Catalan is a Romance language
with many linguistic similarities to French and Italian. We expect good estimates
of epistemic uncertainty to capture the property that Catalan is “less OOD” than
Basque is. Our cosine based embeddings (left) show this desired property. Prior
work using MI (right) is unable to meaningfully distinguish any di↵erence between
the languages.

We note that while OOD data detection is usually treated as a purely binary

classification task by most previous work, OOD versus in distribution is a false

binary. There are di↵erent levels and degrees of how OOD data can be. In the

context of language, we can examine the nuances between di↵erent flavors of OOD

data. While Basque is a language isolate that linguistically does not share any

significant similarities to any other languages, Catalan is a Romance language with

many linguistic similarities to French and Italian (and Spanish to a lesser extent).

While both Basque and Catalan are considered OOD in our setting, we expect good

estimates of epistemic uncertainty to capture the property that Catalan is “less

OOD” than Basque is. Figure 4.3 shows that this desired property is captured

by the norm of our randomized embedding features, while the mutual information

distributions for Basque and Catalan are nearly indistinguishable.

73

4.4.3 Malware Detection

Finally, we evaluate the usefulness of our randomized embedding based fea-

tures in the context of malware detection. Uncovering new or significantly di↵erent

malware is of particular interest in the quickly evolving cyber security space. We

use a dropout variant of the MalConv model [151], a convolutional NN for malware

detection that operates on raw byte sequences. We apply dropout before each fully

connected layer of MalConv. Applying dropout to only the last layers of a NN cor-

responds to using maximum a posteriori (MAP) estimates for the initial layers and

Bayesian estimates for the later layers [61]. We train the dropout MalConv model

for 5 epochs with a batch size of 32 on the EMBER2018 dataset which consists of

portable executable files (PE files) scanned by VirusTotal in or before 2018 [6].

We run two experiments on the Bayesian MalConv model. First, of the 200000

files in the EMBER test set, 363 have as their top most likely malware family label

(as labeled by AVClass [166]) a family that was not present in the train set. We

evaluate OOD detection performance first on these unseen malware families. Second,

we evaluate OOD detection performance on a di↵erent malware dataset containing

malware samples obtained from a Brazilian financial entity [32]. The malware from

this dataset could be considered as OOD due to di↵ering geographical specificity

and intent, leading to the use of malware tactics, techniques, and procedures likely

specific to a Brazilian banking target. There are also temporal di↵erences as the

Brazilian samples were all collected before the EMBER dataset, and we additionally

only used malware first seen by VirusTotal before 2012. OOD task training sets

74

consisted of n=100, 50, and just 25 data points from each class (in distribution and

OOD). Each experiment was run 100 times with random train/test splits, where all

of the data not in the training set is included in the test set. Results are summarized

in Table 4.3, showing that the inclusion of our randomized embedding based features

consistently improves OOD detection across experimental settings. Because of the

high class imbalance in this use case, as access to good OOD data is more limited in

the malware domain, we reported the ROC AUC and the recall for the OOD class

in Table 4.3, noting that recall is often the primary metric of interest in practice for

cyber security.

Table 4.3: Performance with and without the cosine randomized embedding spread
features for a MalConv model with dropout added before each fully connected layer
trained to detect malware using EMBER2018. Standard deviations are reported in
Appendix A, and best results are bolded.

OOD Num/Class n=100 n=50 n=25

Metric AUC Recall AUC Recall AUC Recall
Experiment Model Features

EMBER2018 LR Last 0.789 0.704 0.786 0.682 0.778 0.650
Last+Spread 0.793 0.718 0.783 0.689 0.766 0.658

RF Last 0.757 0.735 0.752 0.727 0.748 0.714
Last+Spread 0.791 0.784 0.782 0.764 0.770 0.743

Brazilian LR Last 0.685 0.645 0.680 0.607 0.668 0.584
Last+Spread 0.741 0.620 0.734 0.617 0.712 0.605

RF Last 0.724 0.693 0.705 0.674 0.679 0.652
Last+Spread 0.839 0.797 0.813 0.772 0.776 0.736

75

4.5 Conclusions

We have demonstrated why previous attempts at measuring randomized em-

bedding dispersion using Euclidean distance are inherently flawed. Then we intro-

duced and theoretically justified a cosine distance based, lightweight approach to

test time OOD data detection in the context of dropout Bayesian neural networks.

Information that is already computed is used as randomized embeddings, training

dataset information does not need to be stored, additional regularization methods

are not needed (though do help), and auxiliary neural networks do not need to be

trained to take advantage of this additional information. While we note that our

approach is limited to dropout BNNs, the popularity of the dropout approxima-

tion to BNNs and the existence of previous works exploring the use of stochastic

embeddings based on dropout BNNs suggests the applicability of our approach to

practice. Our approach can be deployed anywhere a dropout BNN is already de-

ployed with minimal additional overhead. Future work includes the investigation of

more elaborate features based o↵ of the randomized embeddings.

We have discussed the use of uncertainty to improve malware detection as

well as out of distribution data detection in single algorithm settings. In the next

chapter, we evaluate the practical impact uncertainty quantification can have on

multi-algorithm malware detection systems.

76

Chapter 5

When should we run more expensive analysis?

5.1 Introduction

The detection of malware is critical as malware has already caused billions in

damages [8, 87] and cyber attacks on healthcare systems have directly led to deaths

[51]. Detecting malware is a computationally challenging task due to the scale of

the volume and velocity of incoming data. Many anti-virus (AV) vendors see over 2

million new malicious files each month [172], and benign files on a network tend to

outnumber malicious files at a ratio of 80:1 [107].

A vast array of machine learning based malware detection algorithms have

been developed with the goal of classifying new files as benign (not malware) or

malicious (contains malware) [147]. Unsurprisingly, machine learning based malware

detection algorithms vary widely in their strengths, weaknesses, and computational

costs (associated with both model execution and especially feature extraction).

In the context of machine learning based malware detection systems that lever-

age multiple algorithms, we demonstrate how uncertainty quantification combined

with auxiliary prediction targets can minimize compute costs while maximizing over-

all system accuracy. In particular, we estimate uncertainty using Bayesian and en-

sembling based approaches, and we train computationally cheaper algorithms to

predict the success of more expensive algorithms. This results in an easy to imple-

77

ment approach applicable to a wide variety of AV systems.

We first demonstrate how CAPA based capability detection in executable files

can be sped up by using cheaper machine learning algorithms capable of abstaining

on uncertain predictions. We then demonstrate how malware detection can be

improved by using a static analysis feature based machine learning algorithm that

defers to a dynamic analysis feature based machine learning algorithm when the

static model is unsure and predicts that the dynamic model will do well. This

improves malware detection accuracy while minimizing the use of costly dynamic

analysis.

5.2 Related Work

5.2.1 Learning to Reject/Defer

Backes and Nauman [16] suggest the running of more expensive malware anal-

ysis when the initial analysis results in a high uncertainty prediction as an interesting

question for future malware detection research. This problem in its general form

has been studied in the machine learning space, and we adapt and apply these ideas

to the malware detection task.

Madras, Pitassi, and Zemel [121] introduce adaptive rejection learning, also

known as learning to defer. Learning to defer extends and generalizes rejection

learning [41, 37, 36, 15, 182] by learning to adapt to the strengths, weaknesses,

and biases of the downstream decision maker. There is a connection to the gating

network approach of adaptive mixtures of local experts, the di↵erence being that

78

the decision maker is assumed to be a fixed expert under learning to defer [89].

Mozannar and Sontag [129] use the method of Madras, Pitassi, and Zemel [121] as a

baseline and also tackle the problem of learning to defer. Similarly, Wilder, Horvitz,

and Kamar [187] introduce methods to optimize teams consisting of humans and

machine learning algorithms.

5.2.2 Active Feature Acquisition

An area related to learning to defer is active feature acquisition, the sequential

decision process of whether to query more features or not under budget constraints.

Noriega-Campero et al. [136] discuss active feature acquisition in the context of fair

classification. Gao and Koller [66] introduce an active classification process that

combines multiple classifiers and features at test time using an instance specific

decision path. Similarly, Saar-tsechansky, Melville, and Provost [161] use value of

information to rank feature acquisition options. There are many ways to measure

the value of information such as information gain, classification loss, and decision

robustness for example [34]. Xu et al. [197] and Xu et al. [198] develop algorithms

that select features individually for each test data point and reduce trees of classifiers

into cascades of classifiers. While cascades and trees of models are popular [112, 183],

Xu, Weinberger, and Chapelle [196], instead of using a cascade of classifiers, extend

stage-wise regression to directly incorporate feature extraction cost into the objective

during training to minimize test time computation. Des Jardins, MacGlashan, and

Wagsta↵ [47] constructs a cascaded ensemble of classifiers to selectively acquire

79

missing features at both train and test time. Wang et al. [182] develop prediction

cascades that use additional augmenting classifiers that evaluate the distributional

output of the earlier classifier to estimate its uncertainty. Many cascade based

methods have an assumed ordering of cascade members, unable to adaptively reorder

members based on the datum at hand, and Gao and Koller [66] di↵ers by balancing

expected classification gain with computational cost where observations are selected

dynamically based on previous observations to achieve instance-specific decision

paths. Active feature acquisition can also be formulated as a Markov Decision

Process [168, 158, 48].

More broadly, this problem is fundamentally related to the task of estimating

the value of information [54], a highly multidisciplinary problem with roots in infor-

mation theory [124]. Behrens et al. [19] show evidence that humans modulate their

learning rates based on environment volatility and uncertainty, and in a way that

can be predicted by a Bayesian learner. This supports the hypothesis of Bayesian

reasoning in humans. Feltham [54] provide a formal framework for measuring the

value of information in the context of accounting. In particular, a framework to

calculate the expected payo↵ for an information system from the perspective of the

decision maker is developed.

5.3 Data and Models

As in chapter 3, we use the EMBER2018 dataset, we use a dropout Bayesian

MalConv model when predicting on raw binaries, and a LGBM model is used when

80

predicting on the EMBER extracted features. In this chapter, we additionally de-

velop a model for dynamic analysis logs, and we also extract capabilities in the

executable files using CAPA with the SMDA recursive disassembler as a backend.1

For a comparison of computational costs, on an NVIDIA Tesla P100 GPU,

a 16 sample Bayesian MalConv model can process about 51.2 EMBER2018 files a

second on average (about 0.02 seconds per file for feature extraction, prediction, and

sampling). The EMBER features take on average about 0.09 seconds to extract per

file (note that this excludes the downstream prediction model, so the actual cost

is slightly higher). CAPA feature extraction takes about 45.75 seconds per model

on average (this also excludes the downstream model). Finally, running dynamic

analysis on a file (excluding downstream prediction models) takes an average of 526

seconds (8 minutes and 46 seconds). In other words, running MalConv on a file is

over 26, 300 times faster than running a dynamic analysis based model.

5.3.1 Dynamic Analysis Features and Model

We used a proprietary dynamic execution sandbox provided by a United States

based software security company. The dynamic analysis tool uses libvirt to work

with QEMU2 to manage virtual machines (VMs) running Windows 7 32-bit.

The dynamic analysis tool first puts the sample for analysis into the VM,

starts its custom monitoring application, starts the sample, saves the monitor’s log

file, and pulls the log from the VM to the host. Then the tool kills the VM image,

1
https://github.com/mandiant/capa

2
https://www.qemu.org/

81

and creates a new one from a template so that the VM is clean for every sample.

These dynamic analysis logs were featurized by taking a domain knowledge

driven approach similar to that of Anderson and Roth [6]. The dynamic analysis

engine captures broad information about DNS, registry, file, process, and security

events from the dynamic execution of the sample. These events contain raw informa-

tion which we used to then extract the following features for each file: event subtype

counts, event subtype information counts, number of unique processes by user, PID

counts by user, event key frequencies, count of registry bytes written, registry key

path information, timing information, authentication signature information, hashed

event message, hashed command line information, and counts of unnamed events.

We then train a LGBM model on top of these features.

We note that it is possible that some executables did not exhibit all their

behavior or functionality during dynamic analysis because they were not in the

proper environment (for example if the executable targets a specific Windows build),

did not have access to all the resources needed for execution (for example if the

executable was unable to connect to the internet or to its command-and-control

server), or had some built-in anti-reverse engineering techniques (for example the

executable might wait a few days before executing). In other words, it is likely that

some malicious files may not have necessarily exhibited malicious behaviors during

dynamic analysis. As a result, even though dynamic analysis is more expensive than

static analysis, it does not always result in better malware detection when used in

isolation. We will show that judiciously running dynamic analysis on a subset of

files will improve malware detection accuracy while keeping analysis costs low.

82

5.4 Predicting Capabilities in Executable Files

While most machine learning based approaches to malware have focused on

the detection of maliciousness, there has been less work on the identification of

behaviors, which is a critical component to malware analysis [170]. We investigated

the prediction of CAPA outputs using an 8 sample Bayesian MalConv model as

well as an 8 sample LGBM ensemble trained on the EMBER features. We used as

prediction targets the 350 CAPA rules from the Mandiant standard collection 3 plus

a target for failures, so a total of 351 non-exclusive labels for each file. Figure 5.1

shows detection accuracy for each CAPA rule for both MalConv and the LGBM

model. We note that accuracy is high across rules, suggesting that CAPA may not

need to be run for all samples when outcomes can be predicted. The LGBM model

is consistently more accurate than MalConv across rules at the cost of higher cost

associated with feature extraction. Figure 5.2 shows the AUC for each CAPA rule

for both MalConv and the LGBM model. While LGBM generally does better than

MalConv in terms of AUC, the LGBM model has worse worst cases.

Running CAPA only on files where a prediction model such as MalConv or

LGBM is uncertain would greatly reduce computational costs (CAPA is more than

2200 times more expensive time-wise compared to MalConv mainly due to the costs

associated with disassembly). In other words, we would like to enable MalConv and

LGBM to abstain from making a prediction on high uncertainty samples that we

then would run CAPA on. Figure 5.3 shows the performance of such an approach for

3
https://github.com/mandiant/capa-rules

83

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

LGBM Accuracy

M
al
C
on

v
A
cc
u
ra
cy

CAPA Prediction Accuracies By Rule

Figure 5.1: Detection accuracy for each CAPA rule for both MalConv and the LGBM
model. The LGBM model is consistently more accurate than MalConv across rules
at the cost of higher cost associated with feature extraction.

various uncertainty thresholds (as measured by predictive entropy) corresponding

to proportions of the test data being run through CAPA. To simulate a real world

deployment of such a system, we also plot the thresholds needed to achieve a 99.9%

average percentage of CAPA rules correctly labeled across files as well as the actu-

alized thresholds chosen using a validation set. The validation and test sets were

temporally split to correspond to samples first seen in November 2018 and December

2018 respectively. We note that the ideal and actualized uncertainty thresholds are

84

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

LGBM AUC

M
al
C
on

v
A
U
C

CAPA Prediction AUCs By Rule

Figure 5.2: The AUC for each CAPA rule for both MalConv and the LGBM model.
While LGBM generally does better than MalConv in terms of AUC, the LGBM
model has worse worst cases.

close, and compute time spent on CAPA extraction can be cut by more than half.

In other words, an approximate average percentage of CAPA rules correctly labeled

of 99.9% can be attained while running only less than half of the files though CAPA,

using a 2200 times faster MalConv prediction for the rest of the files. This leads

to substantial gains in a deployed production setting where it is not feasible to run

CAPA on all of the data. Furthermore, in highly compute constrained settings, a

98% average of CAPA rules correctly labeled can be achieved by using only MalConv

85

Figure 5.3: We would like to MalConv and LGBM to abstain from making a pre-
diction on high uncertainty samples that we then would run CAPA on. This figure
shows the performance of such an approach for various uncertainty thresholds (as
measured by predictive entropy) corresponding to proportions of the test data being
run through CAPA. To simulate a real world deployment of such a system, we also
plot the thresholds needed to achieve a 99.9% average percentage of CAPA rules
correctly labeled across files as well as the actualized thresholds chosen using a val-
idation set. The x-axis corresponds to the percent of the data requiring expensive
analysis. The far right corresponds to running CAPA on all of the data, and the
far left corresponds to predicting on all of the data but never running CAPA. The
figure shows that we can achieve a 99.9% average percentage of CAPA rules cor-
rectly labeled by running CAPA on less than half of the data. This is significant
as CAPA is more than 2200 times more expensive time-wise compared to MalConv
mainly due to the costs associated with disassembly.

and never actually running CAPA. This result also provides evidence that MalConv

is capable of learning to pick up on features that are predictive of capabilities in

executables.

5.5 Deferring to More Expensive Models

Dynamic malware analysis is more expensive than static malware analysis.

Human malware analysis is more expensive than automated malware analysis. Ide-

86

ally, we would like to incur the minimal analysis cost per file needed to determine if

that file is malicious or benign. In other words, we want to run cheap, automated

static analysis first and only run more expensive analysis such as dynamic analysis

if the static analysis model is uncertain. Additionally, we want to train the static

analysis model to be adaptive to the dynamic analysis model’s strengths and weak-

nesses. Even if uncertain, the static analysis model should make a prediction if it

thinks the dynamic analysis model will perform worse on the kind of data being

predicted on.

Using Bayesian MalConv as the static model, Figure 5.4 shows the perfor-

mance of such an approach for various predictive entropy thresholds corresponding

to various total runtimes. Following the naming conventions from Madras, Pitassi,

and Zemel [121], “reject” corresponds to letting the dynamic model predict when

Bayesian MalConv’s uncertainty is above a certain threshold, and “defer” corre-

sponds to letting the dynamic model predict only when Bayesian MalConv’s uncer-

tainty is above a certain threshold and Bayesian MalConv predicts that the dynamic

model will make the correct prediction. To enable a Bayesian MalConv model to

defer, we train it with dual equally weighted prediction tasks: the malware classifi-

cation task as well as the prediction of whether or not the dynamic model will make

a correct prediction on the sample.

Our approach di↵ers from that of Madras, Pitassi, and Zemel [121] in two

ways. First, while their approach can be seen as a mixture of Bernoullis where a

binary deferral decision gating variable is used to both express uncertainty and to

try to predict which model will have a lower loss, our approach explicitly decouples

87

uncertainty from the prediction of a downstream model’s performance. This decou-

pling notably allows for an easier interpretation of the reasons for a deferral decision,

and in many cases likely results in an easier learning problem as well. Second, the

Bayesian uncertainty based approach described in Appendix F of Madras, Pitassi,

and Zemel [121] uses only uncertainty to reject and, unlike our work, does not

provide a way to incorporate the prediction of a downstream model’s performance.

To simulate a real world deployment, we plot the actualized uncertainty thresh-

olds chosen using a validation set to maximize malware detection accuracy. The

validation and test sets were temporally split to correspond to samples first seen in

November 2018 and December 2018 respectively. We also plot the accuracy achieved

by an ensemble model that averages the predictions of the MalConv and dynamic

models together. Unsurprisingly, the ensemble model outperforms both MalConv

and the dynamic model used in isolation, but we note that both MalConv and dy-

namic analysis need to be run on every single file in order to compute the ensemble

predictions.

We highlight that the rejection model with a threshold chosen on a held-out

validation set achieves a test accuracy roughly equal to that of the ensemble model

while requiring dynamic analysis to be run on only 13.2 percent of the test data,

saving a year’s worth of compute time compared to the ensemble model! The defer

approach achieves an accuracy higher than that of the ensemble while requiring

dynamic analysis to be run on only 17.3 percent of the test data. Even if the

uncertainty threshold is set too high, the benefit of the defer approach is seen as

accuracy never dips below that of the MalConv model, demonstrating that MalConv

88

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

·107

0.84

0.86

0.88

0.90

0.92

0.94

Total Runtime (seconds)

M
al
w
ar
e
D
et
ec
ti
on

A
cc
u
ra
cy

Reject
Defer
Reject Validation Threshold
Defer Validation Threshold
MalConv
Dynamic Model
Ensemble

Figure 5.4: The performance of an approach that uses Bayesian MalConv as a cheap
initial model that all files are run through, followed by a more expensive dynamic
model for certain files, for various predictive entropy thresholds corresponding to
various total runtimes. “Reject” corresponds to letting the dynamic model predict
when Bayesian MalConv’s uncertainty is above a certain threshold, and “Defer”
corresponds to letting the dynamic model predict only when Bayesian MalConv’s
uncertainty is above a certain threshold and Bayesian MalConv predicts that the dy-
namic model will make the correct prediction. The rejection model with a threshold
chosen on a held-out validation set achieves a test accuracy roughly equal to that of
the ensemble model while requiring dynamic analysis to be run on only 13.2 percent
of the test data, saving a year’s worth of compute time compared to the ensemble
model.

is able to accurately predict when the dynamic model will make a mistake. We note

that this result in combination with MalConv’s ability to accurately predict CAPA

outputs suggests that MalConv is capable of uncovering useful features in the binary

89

data.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·104

0.910

0.915

0.920

0.925

0.930

0.935

0.940

0.945

0.950

Total Runtime (seconds)

M
al
w
ar
e
D
et
ec
ti
on

A
cc
u
ra
cy

Reject
Defer
Reject Validation Threshold
Defer Validation Threshold
MalConv
LGBM
Ensemble

Figure 5.5: The performance of an approach that uses Bayesian MalConv as a cheap
initial model that all files are run through, followed by a more expensive LGBM on
EMBER features model for certain files, for various predictive entropy thresholds.

Finally, in Figure 5.5, we show a similar analysis where a LGBM model trained

on EMBER features is used instead of the dynamic model as the more expensive

downstream model. While in this case running the more expensive model on all of

the data results in a best performing ensemble model, the reject and defer mod-

els show the desired behavior of improving accuracy in a compute budget limited

situation.

90

5.6 Conclusions

We have shown that cheaper static analysis features can be used to predict

the outcomes of more expensive disassembly-based analysis. We have also developed

a dynamic analysis model that is complementary to static analysis-based models.

In both cases, we showed how uncertainty can be used to minimize compute costs.

Future work includes the investigation of chaining together a larger number of al-

gorithms and approaches. In the next chapter, we will discuss broader avenues for

future research in the context of this thesis in its entirety.

91

Chapter 6

Conclusions and Future Work

In this thesis, we have demonstrated how uncertainty estimation can benefit

cyber defense. In particular, our experiments have shown how taking into account

uncertainty can be especially beneficial for highly constrained and quickly evolving

malware detection use cases. Leveraging uncertainty, we have improved malware

detection rates under extreme false positive rate constraints, improved out of dis-

tribution data detection approaches, and greatly reduced the amount of compute

time needed to take advantage of the benefits of dynamic analysis. Along the way,

we have also illustrated why previous evaluation metrics can be misleading and

demonstrated that executable file capabilities can be accurately predicted from raw

byte sequences. Hopefully, this lays the groundwork for the increased adoption of

uncertainty aware ML in the cybersecurity community.

Potential avenues for future work that follow directly from our research include

exploring and explaining malware specific drivers of uncertainty, the investigation

of more elaborate features based o↵ of randomized embeddings, and the evaluation

of these methods in a real world, deployed environment over a long period of time

in production.

A clearly valuable direction of research we have not discussed is the use of

uncertainty for active learning [116] in the context of malware detection. Much work

92

exists around uncertainty for active learning in the machine learning community. For

example, Gal, Islam, and Ghahramani [64] and Pop and Fulop [145] demonstrate

the use of ensembles of dropout neural networks for active learning. However, the

application of such methods to cyber defense remains largely unexplored. This

direction would be advantageous to explore as data labeling in cybersecurity is

particularly di�cult and expensive.

93

Appendix A

Out of Distribution Data Detection Using Dropout Bayesian Neural

Networks Appendix

A.1 Experimental Result Standard Deviations

We repeated each of our experiments multiple times and computed a mean and

standard deviation for each experiment and evaluation metric. In all of our exper-

iments, the standard deviations are much smaller than e↵ect sizes, so we reported

only the means in section 4.4. Here we report the complete results, which include

standard deviations, for all of our experiments. Vision experiment results are sum-

marized in Table A.1. Language experiment results are summarized in Table A.2.

Malware experiment results are summarized in Table A.3.

94

Table A.1: Performance with and without the cosine randomized embedding spread
features for various experimental configurations for a dropout LeNet5 trained on
MNIST. Features labeled as “Last” consist of common baseline features computed
using softmax output samples from the network (predictive entropy, mutual infor-
mation, and maximum softmax probability). Features labeled as “Last+Spread”
consist of these baseline features plus our additional randomized embedding maxi-
mum cosine spread features for each layer. Each experiment was repeated multiple
times, and the mean and standard deviation are reported here. Best results are
shown in bold.

Num/Class n=1000 n=100 n=10
Metric AUC Acc AUC Acc AUC Acc
Statistic avg std avg std avg std avg std avg std avg std

OOD Train OOD Test OOD Model Features

Fashion Kuzushiji LR Last 0.969 0.000 0.914 0.001 0.967 0.004 0.909 0.009 0.963 0.024 0.884 0.023
Last+Spread 0.979 0.001 0.914 0.003 0.973 0.008 0.911 0.013 0.967 0.035 0.901 0.033

RF Last 0.960 0.001 0.917 0.002 0.952 0.005 0.905 0.009 0.942 0.015 0.884 0.038
Last+Spread 0.979 0.001 0.922 0.004 0.974 0.003 0.921 0.005 0.969 0.008 0.907 0.018

notMNIST LR Last 0.966 0.001 0.912 0.002 0.965 0.003 0.909 0.011 0.960 0.004 0.879 0.024
Last+Spread 0.983 0.001 0.932 0.003 0.979 0.005 0.925 0.015 0.967 0.011 0.892 0.021

RF Last 0.959 0.002 0.920 0.004 0.950 0.005 0.903 0.010 0.938 0.014 0.880 0.038
Last+Spread 0.985 0.001 0.940 0.004 0.976 0.004 0.924 0.006 0.963 0.009 0.901 0.020

Kuzushiji Fashion LR Last 0.973 0.000 0.920 0.001 0.972 0.001 0.917 0.006 0.967 0.011 0.899 0.016
Last+Spread 0.989 0.001 0.948 0.002 0.983 0.004 0.937 0.008 0.978 0.004 0.922 0.014

RF Last 0.964 0.001 0.920 0.002 0.956 0.005 0.907 0.009 0.946 0.015 0.896 0.025
Last+Spread 0.986 0.001 0.943 0.002 0.978 0.004 0.931 0.006 0.967 0.009 0.914 0.016

notMNIST LR Last 0.967 0.000 0.914 0.001 0.965 0.002 0.910 0.010 0.960 0.005 0.886 0.020
Last+Spread 0.984 0.001 0.931 0.004 0.975 0.008 0.914 0.020 0.966 0.007 0.888 0.021

RF Last 0.960 0.001 0.922 0.003 0.950 0.005 0.904 0.010 0.938 0.017 0.888 0.026
Last+Spread 0.982 0.001 0.935 0.003 0.971 0.006 0.921 0.006 0.954 0.010 0.896 0.019

notMNIST Fashion LR Last 0.966 0.003 0.911 0.003 0.957 0.018 0.906 0.012 0.959 0.037 0.893 0.023
Last+Spread 0.978 0.003 0.937 0.005 0.969 0.016 0.928 0.015 0.977 0.014 0.925 0.018

RF Last 0.960 0.002 0.910 0.004 0.955 0.005 0.904 0.011 0.946 0.018 0.887 0.032
Last+Spread 0.988 0.001 0.943 0.005 0.982 0.004 0.935 0.007 0.978 0.006 0.920 0.017

Kuzushiji LR Last 0.960 0.006 0.900 0.007 0.946 0.030 0.893 0.021 0.951 0.057 0.882 0.035
Last+Spread 0.966 0.006 0.893 0.010 0.949 0.028 0.886 0.031 0.967 0.030 0.902 0.035

RF Last 0.956 0.002 0.906 0.005 0.950 0.006 0.901 0.012 0.941 0.020 0.883 0.033
Last+Spread 0.978 0.001 0.906 0.008 0.973 0.004 0.915 0.012 0.969 0.008 0.906 0.023

95

Table A.2: Performance with and without the cosine randomized embedding spread
features for a Char-CNN with dropout added before every layer trained to classify
languages using the WiLI dataset. Best results are shown in bold.

Num/Class n=100 n=50 n=25 n=10
Metric AUC Acc AUC Acc AUC Acc AUC Acc
Statistic avg std avg std avg std avg std avg std avg std avg std avg std

OOD Train OOD Test OOD Model Features

Basque rest LR Last 0.888 0.005 0.798 0.008 0.883 0.014 0.794 0.010 0.882 0.015 0.792 0.011 0.878 0.029 0.786 0.019
Last+Spread 0.926 0.019 0.843 0.019 0.919 0.033 0.836 0.023 0.921 0.034 0.835 0.025 0.926 0.026 0.828 0.023

RF Last 0.862 0.008 0.797 0.007 0.857 0.013 0.793 0.011 0.851 0.015 0.792 0.013 0.842 0.015 0.789 0.021
Last+Spread 0.924 0.008 0.845 0.011 0.920 0.011 0.840 0.013 0.918 0.012 0.835 0.017 0.914 0.013 0.824 0.018

Finnish rest LR Last 0.888 0.003 0.795 0.006 0.885 0.006 0.792 0.008 0.881 0.013 0.790 0.011 0.883 0.008 0.786 0.015
Last+Spread 0.910 0.019 0.818 0.017 0.908 0.032 0.818 0.022 0.909 0.035 0.821 0.024 0.910 0.041 0.818 0.028

RF Last 0.864 0.006 0.794 0.007 0.858 0.009 0.792 0.011 0.850 0.014 0.789 0.015 0.840 0.020 0.783 0.024
Last+Spread 0.913 0.011 0.821 0.012 0.907 0.013 0.821 0.012 0.905 0.014 0.818 0.014 0.904 0.016 0.814 0.015

Luganda rest LR Last 0.891 0.002 0.806 0.005 0.889 0.004 0.803 0.008 0.887 0.006 0.800 0.009 0.881 0.026 0.794 0.015
Last+Spread 0.943 0.006 0.864 0.016 0.939 0.008 0.854 0.017 0.935 0.009 0.847 0.014 0.931 0.009 0.837 0.017

RF Last 0.866 0.006 0.800 0.007 0.859 0.010 0.797 0.011 0.854 0.014 0.796 0.013 0.843 0.027 0.785 0.038
Last+Spread 0.936 0.005 0.862 0.009 0.930 0.008 0.852 0.014 0.926 0.009 0.843 0.015 0.921 0.011 0.831 0.018

Polish rest LR Last 0.900 0.003 0.824 0.003 0.897 0.010 0.821 0.007 0.891 0.019 0.816 0.012 0.887 0.042 0.812 0.021
Last+Spread 0.939 0.010 0.866 0.014 0.938 0.014 0.864 0.017 0.935 0.021 0.860 0.023 0.934 0.020 0.852 0.022

RF Last 0.870 0.010 0.793 0.011 0.860 0.017 0.787 0.015 0.854 0.021 0.783 0.023 0.850 0.029 0.780 0.034
Last+Spread 0.937 0.005 0.871 0.008 0.932 0.008 0.863 0.011 0.928 0.009 0.855 0.012 0.922 0.018 0.841 0.024

Tongan rest LR Last 0.857 0.115 0.815 0.060 0.841 0.159 0.811 0.076 0.815 0.198 0.800 0.088 0.791 0.244 0.771 0.155
Last+Spread 0.886 0.060 0.811 0.056 0.877 0.091 0.810 0.069 0.884 0.101 0.819 0.074 0.880 0.125 0.813 0.085

RF Last 0.765 0.063 0.699 0.055 0.766 0.074 0.695 0.067 0.769 0.092 0.684 0.075 0.785 0.129 0.701 0.101
Last+Spread 0.915 0.016 0.847 0.029 0.913 0.019 0.845 0.028 0.906 0.030 0.836 0.035 0.903 0.051 0.823 0.054

Xhosa rest LR Last 0.894 0.004 0.807 0.008 0.891 0.007 0.804 0.008 0.886 0.019 0.800 0.013 0.879 0.046 0.794 0.022
Last+Spread 0.944 0.009 0.866 0.014 0.940 0.014 0.857 0.019 0.933 0.020 0.846 0.024 0.931 0.028 0.838 0.029

RF Last 0.864 0.009 0.787 0.013 0.857 0.016 0.782 0.020 0.849 0.021 0.778 0.027 0.846 0.028 0.774 0.032
Last+Spread 0.939 0.006 0.868 0.011 0.934 0.009 0.860 0.013 0.928 0.012 0.852 0.017 0.921 0.024 0.835 0.021

Table A.3: Performance with and without the cosine randomized embedding spread
features for a MalConv model with dropout added before each fully connected layer
trained to detect malware using the EMBER2018 dataset. Best results are shown
in bold.

Num/Class n=100 n=50 n=25
Metric AUC Recall AUC Recall AUC Recall
Statistic avg std avg std avg std avg std avg std avg std

Experiment OOD Model Features

EMBER2018 LR Last 0.789 0.007 0.704 0.043 0.786 0.008 0.682 0.054 0.778 0.018 0.650 0.066
Last+Spread 0.793 0.008 0.718 0.042 0.783 0.013 0.689 0.067 0.766 0.027 0.658 0.080

RF Last 0.757 0.011 0.735 0.046 0.752 0.015 0.727 0.060 0.748 0.023 0.714 0.079
Last+Spread 0.791 0.011 0.784 0.045 0.782 0.014 0.764 0.057 0.770 0.018 0.743 0.084

Brazilian LR Last 0.685 0.007 0.645 0.054 0.680 0.010 0.607 0.072 0.668 0.042 0.584 0.078
Last+Spread 0.741 0.023 0.620 0.039 0.734 0.023 0.617 0.049 0.712 0.034 0.605 0.063

RF Last 0.724 0.016 0.693 0.038 0.705 0.023 0.674 0.055 0.679 0.035 0.652 0.081
Last+Spread 0.839 0.010 0.797 0.034 0.813 0.016 0.772 0.054 0.776 0.024 0.736 0.083

96

A.2 Additional Spectral Normalization Results

We repeated the vision OOD data detection experiments from subsubsec-

tion 4.4.1.1 on a spectral normalized dropout LeNet5 trained for 100 epochs. While

spectral normalization is not required to see an improvement from the inclusion of

cosine spread features, spectral normalization improves OOD detection performance

consistently, as shown in Table A.4 when compared to Table A.1.

Table A.4: Performance with and without the cosine randomized embedding spread
features for a dropout, spectral normalized LeNet5 trained on MNIST. Best results
are shown in bold.

Num/Class n=1000 n=100 n=10
Metric AUC Acc AUC Acc AUC Acc
Statistic avg std avg std avg std avg std avg std avg std

OOD Train OOD Test OOD Model Features

Fashion Kuzushiji LR Last 0.982 0.003 0.921 0.005 0.978 0.016 0.921 0.016 0.980 0.040 0.908 0.032
Last+Spread 0.984 0.002 0.926 0.006 0.980 0.015 0.926 0.019 0.984 0.008 0.915 0.024

RF Last 0.979 0.001 0.936 0.004 0.972 0.004 0.931 0.010 0.963 0.014 0.919 0.024
Last+Spread 0.985 0.001 0.939 0.004 0.982 0.002 0.940 0.007 0.981 0.008 0.932 0.017

notMNIST LR Last 0.982 0.003 0.916 0.008 0.975 0.025 0.915 0.024 0.979 0.049 0.905 0.036
Last+Spread 0.982 0.002 0.922 0.009 0.975 0.025 0.922 0.026 0.983 0.012 0.913 0.025

RF Last 0.978 0.001 0.933 0.005 0.971 0.005 0.929 0.012 0.962 0.014 0.917 0.026
Last+Spread 0.984 0.001 0.942 0.004 0.981 0.003 0.940 0.008 0.980 0.007 0.932 0.018

Kuzushiji Fashion LR Last 0.988 0.000 0.948 0.002 0.987 0.003 0.944 0.008 0.979 0.045 0.918 0.033
Last+Spread 0.987 0.001 0.949 0.002 0.985 0.003 0.944 0.007 0.981 0.041 0.932 0.037

RF Last 0.980 0.001 0.946 0.002 0.972 0.004 0.938 0.007 0.966 0.009 0.930 0.021
Last+Spread 0.985 0.001 0.950 0.002 0.982 0.004 0.947 0.003 0.983 0.002 0.943 0.007

notMNIST LR Last 0.986 0.000 0.937 0.001 0.985 0.002 0.934 0.007 0.979 0.029 0.910 0.025
Last+Spread 0.986 0.001 0.946 0.001 0.984 0.003 0.939 0.006 0.983 0.017 0.922 0.021

RF Last 0.979 0.001 0.941 0.002 0.972 0.004 0.933 0.008 0.964 0.011 0.924 0.023
Last+Spread 0.985 0.001 0.947 0.001 0.982 0.002 0.944 0.003 0.982 0.002 0.937 0.010

notMNIST Fashion LR Last 0.988 0.001 0.946 0.002 0.986 0.003 0.941 0.009 0.983 0.018 0.916 0.027
Last+Spread 0.988 0.001 0.951 0.002 0.985 0.006 0.944 0.010 0.986 0.002 0.932 0.016

RF Last 0.980 0.001 0.945 0.002 0.971 0.005 0.938 0.007 0.966 0.010 0.931 0.017
Last+Spread 0.987 0.001 0.952 0.001 0.984 0.002 0.947 0.004 0.983 0.004 0.941 0.010

Kuzushiji LR Last 0.986 0.000 0.936 0.002 0.984 0.003 0.934 0.007 0.984 0.002 0.911 0.023
Last+Spread 0.989 0.000 0.947 0.001 0.987 0.002 0.942 0.006 0.987 0.003 0.923 0.018

RF Last 0.980 0.001 0.942 0.002 0.972 0.004 0.934 0.007 0.963 0.011 0.926 0.018
Last+Spread 0.987 0.000 0.947 0.001 0.984 0.002 0.944 0.004 0.983 0.005 0.936 0.012

97

A.3 Cosine Distance vs. Euclidean Distance for Unsupervised Em-

beddings

We also investigated cosine distance versus Euclidean distance for measuring

randomized embedding dispersion in the unsupervised setting. In particular, we

investigated a stacked denoising autoencoder variant [180, 181] where all layers

are trained at the same time instead of stage-wise, and dropout with a dropout

probability p = 0.1 is used as the corrupting process at each layer of the encoder.

At test time, the dropout corruption is left on to generate randomized embeddings.

The denoising autoencoder was trained on MNIST for 20 epochs with a batch size of

64 using the Adam optimizer with a learning rate of 0.001, the default recommended

settings, and a weight decay of 0.01. Image inputs were flattened, and the encoder

architecture consisted of 6 ReLU activated linear layers of output dimensions: 784,

400, 400, 120, 120, and 84. The decoder architecture is similar to the encoder

architecture but in reverse order.

Figure A.1a and Figure A.1b show consistent results. Embedding dispersion

as measured by Euclidean distance is related to mean norm in an identical manner

across in distribution and OOD data. While not as well separated as in the super-

vised setting, in distribution data has lower embedding dispersion as measured by

cosine distance when compared to OOD data.

98

0 2 4

·104

0

2

4

6
·104

Mean Norm

M
ax

P
ai
rw

is
e
E
u
cl
id
ea
n
D
is
ta
n
ce

In Dist.

In Dist. Regression Line

OOD

OOD Regression Line

(a) Denoising autoencoder, Euclidean dis-

tance.

0 2 4

·104

0.2

0.4

0.6

0.8

Mean Norm

M
ax

P
ai
rw

is
e
C
os
in
e
D
is
ta
n
ce

In Dist.

In Dist. Regression Line

OOD

OOD Regression Line

(b) Denoising autoencoder, cosine distance.

Figure A.1: A comparison of the relationships between denoising autoencoder ran-
domized embedding mean norm and the maximum pairwise distance for Euclidean
distance and cosine distance respectively, for in distribution data (MNIST) and
OOD data (Not-MNIST). Regression line fits are provided for each as well for easier
comparison.

A.3.1 Simulations

A.3.2 Mean and Variance of the Embedding Norms

We perform a simulation to further illustrate the problem with the use of

Euclidean distance in the case of a two layer ReLU activated network. As the depth

of the BNN increases, the mean and variance of the embedding norms dramatically

increase across layers, in particular as a consequence of the ReLU activation. This

is known and bounds for this can be derived mathematically using the identity

max(x, 0) = 0.5(x + |x|) in the normal random matrix situation. However, we

identify that the variance of the norms experiences a further increase due to the

e↵ect of dropout on preceding layers causing a carryover of variance into subsequent

99

layers. Because dropout samples are taken across all layers simultaneously, the signal

representing the distance between two embedding samples in layer N is diluted with

the inflated norm caused by preceding dropout in layers 1 to N�1. This is confirmed

by simulation on a two-layer neural network with dropout in Table A.5, where the

variance of the final embedding norms (4526.2) is much higher than it would be if

dropout were only applied on that embedding layer (3124.0). This can explain why

the Euclidean distance measure fails to perform for OOD detection.

Table A.5: Mean and (variance) of the embedding norms in a simulated context.

Dropout only layer 1 Dropout only layer 2 Dropout both layers

Layer 1 embedding norm 96.0 (58.6) 118.6 (0.0) 96.0 (58.6)
Layer 2 embedding norm 599.7 (3328.0) 606.1 (3124.0) 501.0 (4526.2)

A.3.3 Correlation Analysis Between Measures of Uncertainty

To examine the relationships between the uncertainty features, we ran correla-

tion analysis between all measures on the final embedding layer of a neural network,

averaged over 1000 random matrix iterations. The embeddings form a D⇥B matrix,

where D is the embedding dimension and B are the number of dropout samples,

and we enforce a decaying correlation structure over the embedding dimensions. In

Table A.6, we summarize the correlations between all predictive features.

This result indicates that the previously used features have higher inter-correlation

than the max cosine pairwise distance, suggesting that our new feature adds an or-

thogonal measure of information that is not previously captured. This helps explain

our improvement in OOD detection.

100

Table A.6: Correlation analysis between measures of uncertainty in a simulated
setting.

mutual info. pred entr. max softmax max cos pdist max euclid pdist mean embed. norm

mutual info. 1.00 -0.31 0.23 0.08 0.32 0.51
pred entr. -0.31 1.00 -0.64 0.01 -0.09 -0.26
max softmax 0.23 -0.64 1.00 0.01 0.06 0.13
max cos pdist 0.08 0.01 0.01 1.00 0.15 -0.14
max euclid pdist 0.32 -0.09 0.06 0.15 1.00 0.32
mean embed. norm 0.51 -0.26 0.13 -0.14 0.32 1.00

A.4 Additional Experiments on MNIST Variants

A.4.1 Is Some OOD Training Data Needed?

To compare with methods that do not require any OOD training data at all, we

attempted the following where a linear kernel one class SVM and an Isolation Forest

are used as outlier detectors that would hopefully capture OOD data. Results are

shown in Table A.7. Generally, the best AUC is achieved using an Isolation Forest

but the accuracy remains low. This is consistent with our conclusions that the

relationship contains non-linear information and that some form of OOD data is

needed to choose the appropriate threshold, and that as few as n = 10 OOD points

can estimate that threshold with significantly greater accuracy and AUC.

A.4.2 Results when using Euclidean Randomized Embedding Maxi-

mum Spread Features

To compare Euclidean distance features with cosine distance features, we ran

experiments and found that cosine does empirically does better, as expected. In

Table A.8 are the results for the MNIST experiments where the Spread features use

101

Table A.7: To compare with methods that do not require any OOD training data at
all, we attempted the following where a linear kernel one class SVM and an Isolation
Forest (IF) are used as outlier detectors.

Metric AUC Acc
OOD Test OOD Model Features

Kuzushiji SVM Last 0.555574 0.539760
Last+Spread 0.190757 0.253412

IF Last 0.876447 0.804457
Last+Spread 0.858214 0.617729

notMNIST SVM Last 0.532724 0.523312
Last+Spread 0.307177 0.335988

IF Last 0.842468 0.766183
Last+Spread 0.869251 0.631671

Fashion SVM Last 0.526127 0.514582
Last+Spread 0.212349 0.262806

IF Last 0.860657 0.791121
Last+Spread 0.883436 0.649500

Euclidean distance.

A.4.3 Classifier Feature Importances

To further understand the contribution of our cosine distance measure, we

compute the mean and standard deviation of feature Gini importances for the ran-

dom forest classifiers fit across our MNIST variant experiments. Results are shown

in Figure A.2 and show that our spread based features are important with layer 3’s

spread having a Gini importance comparable to traditional features such as predic-

tive entropy.

102

Table A.8: MNIST variant results when using Euclidean randomized embedding
maximum spread features.

Num/Class n=1000 n=100 n=10
Metric AUC Acc AUC Acc AUC Acc

OOD Train OOD Test OOD Model Features

Fashion Kuzushiji LR Last 0.970909 0.915305 0.968269 0.910754 0.967937 0.891701
Last+Spread 0.959380 0.906095 0.953365 0.897221 0.941887 0.864347

RF Last 0.961252 0.916221 0.949761 0.899854 0.946880 0.880030
Last+Spread 0.958593 0.896063 0.945695 0.892397 0.943430 0.879735

notMNIST LR Last 0.966394 0.910832 0.965956 0.910824 0.961222 0.882841
Last+Spread 0.966064 0.914921 0.955173 0.901126 0.922676 0.839990

RF Last 0.958357 0.916837 0.947242 0.898442 0.939856 0.876058
Last+Spread 0.966978 0.927221 0.953618 0.910864 0.945218 0.882916

Kuzushiji Fashion LR Last 0.972502 0.919816 0.971007 0.917156 0.968018 0.900125
Last+Spread 0.968836 0.923116 0.962746 0.916281 0.961164 0.898184

RF Last 0.963407 0.920547 0.953377 0.903246 0.938179 0.885983
Last+Spread 0.964453 0.919921 0.955725 0.908291 0.941819 0.894097

notMNIST LR Last 0.967112 0.914289 0.965904 0.911111 0.960355 0.885173
Last+Spread 0.975508 0.925026 0.966202 0.917970 0.938949 0.869555

RF Last 0.959856 0.920416 0.948595 0.903442 0.928044 0.876868
Last+Spread 0.968210 0.925442 0.958487 0.912819 0.934295 0.887989

notMNIST Fashion LR Last 0.964710 0.911000 0.947280 0.902452 0.968372 0.894182
Last+Spread 0.963373 0.918600 0.949651 0.909618 0.962364 0.887704

RF Last 0.960297 0.909847 0.955611 0.903392 0.946035 0.888309
Last+Spread 0.968320 0.920963 0.963052 0.906211 0.954943 0.906248

Kuzushiji LR Last 0.960289 0.899979 0.938433 0.888839 0.967569 0.887464
Last+Spread 0.956063 0.901247 0.938300 0.890312 0.950506 0.865883

RF Last 0.958770 0.905458 0.953364 0.902915 0.940991 0.884212
Last+Spread 0.959689 0.892047 0.957301 0.895558 0.946487 0.895423

softm
ax
m
ax

m
utual info.

predictive
entropy

spread
layer 1

spread
layer 2

spread
layer 3

spread
layer 4

spread
layer 5

0

0.1

0.2

G
in
i
Im

p
or
ta
n
ce

Figure A.2: Random Forest Gini feature importances for MNIST variant experi-
ments. Means and standard deviations are shown.

103

A.5 Embedding Component Variance

In the context of a linear layer with input x indexed by i, output y indexed

by j, weight matrix W , bias b, dropout with probability p of not being dropped,

the layer can be written as

yj =

X

i

Di ·Wij · xi

!
+ bj

whereDi ⇠ Bern(p) are i.i.d. Bernoulli random variables with probability parameter

p. The variance of an embedding component can be written as follows:

Var(yj) = Var

"
X

i

Di ·Wij · xi

!
+ bj

#

Variance is invariant to changes in a location parameter, and the Di are i.i.d.

allowing us to write:

Var(yj) =
X

i

(Wij · xi)
2 Var(Di) =

X

i

(Wij · xi)
2
p (1� p)

A.6 Dataset Links

Data used in the image classification experiments can be found here:

• http://yann.lecun.com/exdb/mnist/

• https://github.com/davidflanagan/notMNIST-to-MNIST

• https://github.com/rois-codh/kmnist

104

http://yann.lecun.com/exdb/mnist/
https://github.com/davidflanagan/notMNIST-to-MNIST
https://github.com/rois-codh/kmnist

• https://github.com/zalandoresearch/fashion-mnist

Data used in the language classification experiments can be found here: https:

//zenodo.org/record/841984#.YK0r8S1h1pQ

Part of the data used in the malware detection experiments can be found here:

• https://github.com/elastic/ember

• https://github.com/fabriciojoc/brazilian-malware-dataset

The 1.1TB of raw PE files are not available as part of EMBER2018, but they

can be downloaded via VirusTotal: https://www.virustotal.com/gui/

105

https://github.com/zalandoresearch/fashion-mnist
https://zenodo.org/record/841984#.YK0r8S1h1pQ
https://zenodo.org/record/841984#.YK0r8S1h1pQ
https://github.com/elastic/ember
https://github.com/fabriciojoc/brazilian-malware-dataset
https://www.virustotal.com/gui/

Bibliography

[1] John Aldrich. “R. A. Fisher on Bayes and Bayes’ Theorem”. In: Bayesian
Analysis 3.1 (2008), pp. 161–170. issn: 19360975. doi: 10.1214/08-BA306.

[2] Joost van Amersfoort et al. “On Feature Collapse and Deep Kernel Learning
for Single Forward Pass Uncertainty”. In: (Feb. 2021). url: http://arxiv.
org/abs/2102.11409.

[3] Joost van Amersfoort et al. “Uncertainty Estimation Using a Single Deep
Deterministic Neural Network”. In: (Mar. 2020). url: http://arxiv.org/
abs/2003.02037.

[4] Brandon Amos. “Di↵erentiable optimization-based modeling for machine learn-
ing”. PhD thesis. Carnegie Mellon University, 2019.

[5] Blake Anderson, David Mcgrew, and Subharthi Paul. “Discovering Human
and Machine Readable Descriptions of Malware Families”. In: The AAAI-
16 workshop on Artificial Intelligence for Cyber Sercurity (AICS) (2016),
pp. 150–156.

[6] Hyrum S. Anderson and Phil Roth. “EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models”. In: (2018). url: http://
arxiv.org/abs/1804.04637.

[7] Hyrum S. Anderson et al. “Learning to Evade Static PE Machine Learning
Malware Models via Reinforcement Learning”. In: (2018). url: http://
arxiv.org/abs/1801.08917.

[8] Ross Anderson et al. “Measuring the Changing Cost of Cybercrime”. In:
Workshop on the Economics of Information Security (WEIS) (2019). url:
https://weis2019.econinfosec.org/wp-content/uploads/sites/6/
2019/05/WEIS_2019_paper_25.pdf.

[9] Ross Anderson et al. “Measuring the Cost of Cybercrime”. In: Workshop on
the Economics of Information Security (WEIS) (2012).

[10] Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-
Lobato. “Depth Uncertainty in Neural Networks”. In: (2020). url: http:
//arxiv.org/abs/2006.08437.

[11] Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-
Lobato. “Variational Depth Search in ResNets”. In: (2020), pp. 1–13. url:
http://arxiv.org/abs/2002.02797.

[12] Daniel Arp et al. “Technical Report IFI-TB-2013-02 D REBIN : E�cient and
Explainable Detection of Android Malware in Your Pocket”. In: (2013).

[13] Arsenii Ashukha et al. “Pitfalls of In-Domain Uncertainty Estimation and
Ensembling in Deep Learning”. In: International Conference on Learning
Representations (ICLR). 2020.

106

https://doi.org/10.1214/08-BA306
http://arxiv.org/abs/2102.11409
http://arxiv.org/abs/2102.11409
http://arxiv.org/abs/2003.02037
http://arxiv.org/abs/2003.02037
http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1804.04637
http://arxiv.org/abs/1801.08917
http://arxiv.org/abs/1801.08917
https://weis2019.econinfosec.org/wp-content/uploads/sites/6/2019/05/WEIS_2019_paper_25.pdf
https://weis2019.econinfosec.org/wp-content/uploads/sites/6/2019/05/WEIS_2019_paper_25.pdf
http://arxiv.org/abs/2006.08437
http://arxiv.org/abs/2006.08437
http://arxiv.org/abs/2002.02797

[14] Amir Atapour-Abarghouei, Stephen Bonner, and Andrew Stephen McGough.
“A King’s Ransom for Encryption: Ransomware Classification using Aug-
mented One-Shot Learning and Bayesian Approximation”. In: Proceedings -
2019 IEEE International Conference on Big Data, Big Data 2019 (2019),
pp. 1601–1606. doi: 10.1109/BigData47090.2019.9005540.

[15] Josh Attenberg, Panagiotis Ipeirotis, and Foster Provost. “Beat the Machine:
Challenging Workers to Find the Unknown Unknowns”. In: AAAI (2011).

[16] Michael Backes and Mohammad Nauman. “LUNA: Quantifying and Lever-
aging Uncertainty in Android Malware Analysis through Bayesian Machine
Learning”. In: Proceedings - 2nd IEEE European Symposium on Security
and Privacy, EuroS and P 2017 (2017), pp. 204–217. doi: 10.1109/EuroSP.
2017.24.

[17] Peter L. Bartlett, Steven N. Evans, and Philip M. Long. “Representing
smooth functions as compositions of near-identity functions with implica-
tions for deep network optimization”. In: (Apr. 2018). url: http://arxiv.
org/abs/1804.05012.

[18] Thomas Bayes. “An Essay towards solving a Problem in the Doctrine of
Chances”. In: Transactions of the Royal Society (1763).

[19] Timothy E.J. Behrens et al. “Learning the value of information in an un-
certain world”. In: Nature Neuroscience 10.9 (2007), pp. 1214–1221. issn:
10976256. doi: 10.1038/nn1954.

[20] José M. Bernardo and Adrian F.M. Smith. Bayesian Theory. 2008. isbn:
9780470316870. doi: 10.1002/9780470316870.

[21] Michael Betancourt. “A Conceptual Introduction to Hamiltonian Monte Carlo”.
In: (2017). url: http://arxiv.org/abs/1701.02434.

[22] Battista Biggio and Fabio Roli. “Wild patterns: Ten years after the rise of
adversarial machine learning”. In: Pattern Recognition 84 (2018), pp. 317–
331. issn: 00313203. doi: 10.1016/j.patcog.2018.07.023.

[23] David M. Blei, Alp Kucukelbir, and Jon D. McAuli↵e. “Variational Inference:
A Review for Statisticians”. In: Journal of the American Statistical Associa-
tion 112.518 (2017), pp. 859–877. issn: 1537274X. doi: 10.1080/01621459.
2017.1285773.

[24] Charles Blundell et al. “Weight uncertainty in neural networks”. In: 32nd In-
ternational Conference on Machine Learning, ICML 2015 2 (2015), pp. 1613–
1622.

[25] John Bradshaw, Alexander G. de G. Matthews, and Zoubin Ghahramani.
“Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
Gaussian Process Hybrid Deep Networks”. In: (2017), pp. 1–33. url: http:
//arxiv.org/abs/1707.02476.

[26] Leo Breiman. “Bagging predictors”. In:Machine Learning 24.2 (1996), pp. 123–
140. doi: 10.1007/BF00058655.

107

https://doi.org/10.1109/BigData47090.2019.9005540
https://doi.org/10.1109/EuroSP.2017.24
https://doi.org/10.1109/EuroSP.2017.24
http://arxiv.org/abs/1804.05012
http://arxiv.org/abs/1804.05012
https://doi.org/10.1038/nn1954
https://doi.org/10.1002/9780470316870
http://arxiv.org/abs/1701.02434
https://doi.org/10.1016/j.patcog.2018.07.023
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
http://arxiv.org/abs/1707.02476
http://arxiv.org/abs/1707.02476
https://doi.org/10.1007/BF00058655

[27] Richard P Brent. Algorithms for Minimization Without Derivatives. 1972.

[28] Yaroslav Bulatov. notMNIST dataset. 2011. url: http : / / yaroslavvb .
blogspot.com/2011/09/notmnist-dataset.html.

[29] Trevor Campbell and Boyan Beronov. “Sparse Variational Inference : Bayesian
Coresets from Scratch”. In: NeurIPS (2019).

[30] Trevor Campbell and Tamara Broderick. “Automated Scalable Bayesian In-
ference via Hilbert Coresets”. In: 20 (2019), pp. 1–38.

[31] Trevor Campbell and Tamara Broderick. “Bayesian Coreset Construction via
Greedy Iterative Geodesic Ascent”. In: (2018).

[32] Fabricio Ceschin et al. “The Need for Speed: An Analysis of Brazilian Mal-
ware Classifers”. In: IEEE Security and Privacy 16.6 (Nov. 2019), pp. 31–41.
issn: 15584046. doi: 10.1109/MSEC.2018.2875369.

[33] Jie Chang et al. Data Uncertainty Learning in Face Recognition. Tech. rep.
2020.

[34] Suming Chen, Arthur Choi, and Adnan Darwiche. “Value of information
based on decision robustness”. In: Proceedings of the National Conference on
Artificial Intelligence 5 (2015), pp. 3503–3510.

[35] Tianqi Chen, Emily B. Fox, and Carlos Guestrin. “Stochastic gradient Hamil-
tonian Monte Carlo”. In: 31st International Conference on Machine Learn-
ing, ICML 2014 5 (2014), pp. 3663–3676.

[36] C. K. Chow. On optimum recognition error and reject tradeo↵. 1969.

[37] C.K. Chow. “An Optimum Character Recognition System Using Decision
Functions”. In: IRE Transactions on Electronic Computers EC-7.2 (1958),
p. 180. issn: 03679950. doi: 10.1109/TEC.1958.5222530.

[38] Sanghyuk Chun et al. “Probabilistic Embeddings for Cross-Modal Retrieval”.
In: (Jan. 2021). url: http://arxiv.org/abs/2101.05068.

[39] Tarin Clanuwat et al. “Deep Learning for Classical Japanese Literature”. In:
(Dec. 2018). doi: 10.20676/00000341. url: http://arxiv.org/abs/1812.
01718%20http://dx.doi.org/10.20676/00000341.

[40] Adam D. Cobb et al. “Introducing an Explicit Symplectic Integration Scheme
for Riemannian Manifold Hamiltonian Monte Carlo”. In: 3 (2019), pp. 1–15.
url: http://arxiv.org/abs/1910.06243.

[41] Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. “Learning with rejec-
tion”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9925
LNAI (2016), pp. 67–82. issn: 16113349. doi: 10.1007/978-3-319-46379-
7{_}5.

[42] Andreas C Damianou and Neil D Lawrence. “Deep Gaussian Processes”. In:
31 (2013).

108

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
https://doi.org/10.1109/MSEC.2018.2875369
https://doi.org/10.1109/TEC.1958.5222530
http://arxiv.org/abs/2101.05068
https://doi.org/10.20676/00000341
http://arxiv.org/abs/1812.01718%20http://dx.doi.org/10.20676/00000341
http://arxiv.org/abs/1812.01718%20http://dx.doi.org/10.20676/00000341
http://arxiv.org/abs/1910.06243

[43] Erik Daxberger et al. “Laplace Redux – E↵ortless Bayesian Deep Learning”.
In: (June 2021). url: http://arxiv.org/abs/2106.14806.

[44] Luca Demetrio et al. “Explaining vulnerabilities of deep learning to adver-
sarial malware binaries”. In: CEUR Workshop Proceedings 2315 (2019). issn:
16130073.

[45] Stefan Depeweg et al. “Decomposition of Uncertainty in Bayesian Deep
Learning for E�cient and Risk-sensitive Learning”. In: 35th International
Conference on Machine Learning, ICML 2018 3 (2018), pp. 1920–1934.

[46] Stefan Depeweg et al. “Learning and Policy Search in Stochastic Dynamical
Systems with Bayesian Neural Networks”. In: (2016), pp. 1–14. url: http:
//arxiv.org/abs/1605.07127.

[47] Marie Des Jardins, James MacGlashan, and Kiri L. Wagsta↵. “Confidence-
based feature acquisition to minimize training and test costs”. In: Proceed-
ings of the 10th SIAM International Conference on Data Mining, SDM 2010
(2010), pp. 514–524. doi: 10.1137/1.9781611972801.45.

[48] Gabriel Dulac-Arnold et al. “Datum-Wise classification: A sequential ap-
proach to sparsity”. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) 6911 LNAI (2011), pp. 375–390. issn: 16113349. doi: 10.1007/978-
3-642-23780-5{_}34.

[49] David Duvenaud and Ryan P Adams. “Black-Box Stochastic Variational In-
ference in Five Lines of Python”. In: (2014), pp. 1–4.

[50] Elad Eban et al. “Scalable Learning of Non-Decomposable Objectives”. In:
AISTATS. Vol. 54. Proceedings of Machine Learning Research. 2017, pp. 832–
840. url: http://proceedings.mlr.press/v54/eban17a.html.

[51] Melissa Eddy and Nicole Perlroth. Cyber Attack Suspected in German Woman’s
Death. Sept. 2021.

[52] Bradley Efron and Robert Tibshirani. “Bootstrap Methods for Standard Er-
rors, Confidence Intervals, and Other Measures of Statistical Accuracy”. In:
Statistical Science (1986).

[53] Manuel Egele et al. “A survey on automated dynamic malware-analysis tech-
niques and tools”. In: ACM Computing Surveys 44.2 (2012). issn: 03600300.
doi: 10.1145/2089125.2089126.

[54] Gerald A. Feltham. “The value of information”. In: The Accounting Review
(1968).

[55] Angelos Filos et al. “A Systematic Comparison of Bayesian Deep Learning
Robustness in Diabetic Retinopathy Tasks”. In: NeurIPS (2019), pp. 1–12.
url: http://arxiv.org/abs/1912.10481.

[56] William Fleshman et al. “Non-Negative Networks Against Adversarial At-
tacks”. In: (2018). url: http://arxiv.org/abs/1806.06108.

109

http://arxiv.org/abs/2106.14806
http://arxiv.org/abs/1605.07127
http://arxiv.org/abs/1605.07127
https://doi.org/10.1137/1.9781611972801.45
http://proceedings.mlr.press/v54/eban17a.html
https://doi.org/10.1145/2089125.2089126
http://arxiv.org/abs/1912.10481
http://arxiv.org/abs/1806.06108

[57] William Fleshman et al. “Static Malware Detection & Subterfuge: Quan-
tifying the Robustness of Machine Learning and Current Anti-Virus”. In:
MALWARE 2018 - Proceedings of the 2018 13th International Conference on
Malicious and Unwanted Software (2019), pp. 3–12. doi: 10.1109/MALWARE.
2018.8659360.

[58] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. “Deep ensembles:
A loss landscape perspective”. In: arXiv (2019), pp. 1–15.

[59] Yoshiro Fukushima et al. “A behavior based malware detection scheme for
avoiding false positive”. In: IEEE Workshop on Secure Network Protocols.
2010, pp. 79–84. doi: 10.1109/NPSEC.2010.5634444.

[60] Yarin Gal. “Uncertainty in Deep Learning”. PhD thesis. University of Cam-
bridge, 2016.

[61] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation:
Appendix”. In: 33rd International Conference on Machine Learning, ICML
2016 3 (2016), pp. 1661–1680.

[62] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning”. In: 33rd International
Conference on Machine Learning, ICML 2016 3 (2016), pp. 1651–1660.

[63] Yarin Gal, Jiri Hron, and Alex Kendall. “Concrete dropout”. In: Advances in
Neural Information Processing Systems 2017-Decem (2017), pp. 3582–3591.
issn: 10495258.

[64] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. “Deep Bayesian active
learning with image data”. In: 34th International Conference on Machine
Learning, ICML 2017 3 (2017), pp. 1923–1932.

[65] Yarin Gal and Lewis Smith. “Su�cient Conditions for Idealised Models to
Have No Adversarial Examples: a Theoretical and Empirical Study with
Bayesian Neural Networks”. In: (2018), pp. 1–16. url: http://arxiv.org/
abs/1806.00667.

[66] Tianshi Gao and Daphne Koller. “Active classification based on value of
classifier”. In: Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011, NIPS
2011 (2011), pp. 1–9.

[67] Marta Garnelo et al. “Neural Processes”. In: (2018). url: http://arxiv.
org/abs/1807.01622.

[68] Dragos Gavrilut, Razvan Benchea, and Cristina Vatamanu. “Optimized Zero
False Positives Perceptron Training for Malware Detection”. In: 2012 14th
International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing. 2012, pp. 247–253. doi: 10.1109/SYNASC.2012.34.

110

https://doi.org/10.1109/MALWARE.2018.8659360
https://doi.org/10.1109/MALWARE.2018.8659360
https://doi.org/10.1109/NPSEC.2010.5634444
http://arxiv.org/abs/1806.00667
http://arxiv.org/abs/1806.00667
http://arxiv.org/abs/1807.01622
http://arxiv.org/abs/1807.01622
https://doi.org/10.1109/SYNASC.2012.34

[69] Daniel Gibert, Carles Mateu, and Jordi Planes. “The rise of machine learn-
ing for detection and classification of malware: Research developments, trends
and challenges”. In: Journal of Network and Computer Applications 153.Jan-
uary (2020), p. 102526. issn: 10958592. doi: 10.1016/j.jnca.2019.102526.
url: https://doi.org/10.1016/j.jnca.2019.102526.

[70] Ryan Giordano, Tamara Broderick, and Michael Jordan. “Linear response
methods for accurate covariance estimates from mean field variational bayes”.
In: Advances in Neural Information Processing Systems 2015-Janua (2015),
pp. 1441–1449. issn: 10495258.

[71] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and Harnessing Adversarial Examples”. In: (2014), pp. 1–11. url: http:
//arxiv.org/abs/1412.6572.

[72] Alex Graves. “Practical variational inference for neural networks”. In: Ad-
vances in Neural Information Processing Systems 24: 25th Annual Confer-
ence on Neural Information Processing Systems 2011, NIPS 2011 (2011),
pp. 1–9.

[73] Nikolaus Hansen and Andreas Ostermeier. Completely Derandomized Self-
Adaptation in Evolution Strategies. Tech. rep.

[74] Richard Harang and Ethan M. Rudd. “SOREL-20M: A Large Scale Bench-
mark Dataset for Malicious PE Detection”. In: (2020). url: http://arxiv.
org/abs/2012.07634.

[75] Dan Hendrycks and Kevin Gimpel. “A Baseline for Detecting Misclassified
and Out-of-Distribution Examples in Neural Networks”. In: (2016), pp. 1–12.
url: http://arxiv.org/abs/1610.02136.

[76] José Miguel Hernández-Lobato and Ryan P. Adams. “Probabilistic backprop-
agation for scalable learning of Bayesian neural networks”. In: 32nd Inter-
national Conference on Machine Learning, ICML 2015 3 (2015), pp. 1861–
1869.

[77] José Miguel Hernández-Lobato et al. “Black-Box alpha-Divergence Minimiza-
tion”. In: 48 (2018).

[78] Geo↵rey E. Hinton and Drew van Camp. “Keeping neural networks simple
by minimizing the description length of the weights”. In: (1993), pp. 5–13.
doi: 10.1145/168304.168306.

[79] Geo↵rey E. Hinton et al. “Improving neural networks by preventing co-
adaptation of feature detectors”. In: (2012), pp. 1–18. url: http://arxiv.
org/abs/1207.0580.

[80] Jennifer A Hoeting et al. “Bayesian Averaging Models”. In: Statistical Science
14.4 (1999), pp. 382–417.

[81] Matthew D. Ho↵man and Andrew Gelman. “The no-U-turn sampler: Adap-
tively setting path lengths in Hamiltonian Monte Carlo”. In: Journal of Ma-
chine Learning Research 15.2008 (2014), pp. 1593–1623. issn: 15337928.

111

https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.1016/j.jnca.2019.102526
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2012.07634
http://arxiv.org/abs/2012.07634
http://arxiv.org/abs/1610.02136
https://doi.org/10.1145/168304.168306
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580

[82] Matthew D. Ho↵man et al. “Stochastic variational inference”. In: Journal of
Machine Learning Research 14 (2013), pp. 1303–1347. issn: 15324435.

[83] Giles Hooker. “Diagnosing extrapolation: Tree-based density estimation”. In:
KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (2004), pp. 569–574.

[84] David John Henry Howie. “Interpretations of probability, 1919-1939: Harold
Je↵reys, R. A. Fisher, and the Bayesian controversy”. PhD thesis. Uni-
versity of Pennsylvania, 1999. url: https : / / repository . upenn . edu /
dissertations/AAI9937734/.

[85] Gao Huang et al. Snapshot Ensembles: Train 1, get M for free. Tech. rep.
2017. url: www.kaggle.com.

[86] Jonathan H Huggins, Trevor Campbell, and Tamara Broderick. “Coresets for
Scalable Bayesian Logistic Regression”. In: Nips (2016).

[87] Paul Hyman. “Cybercrime: it’s serious, but exactly how serious?” In: Com-
munications of the ACM 56.3 (2013), pp. 18–20. issn: 0001-0782. doi: 10.
1145/2428556.2428563.

[88] Pavel Izmailov et al. “Averaging weights leads to wider optima and better
generalization”. In: 34th Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018 2 (2018), pp. 876–885.

[89] Robert A. Jacobs et al. “Adaptive Mixtures of Local Experts”. In: Neural
Computation 3.1 (1991), pp. 79–87.

[90] Harold Je↵reys. Theory of Probability. 1939.

[91] Michael I. Jordan et al. “Introduction to variational methods for graphical
models”. In: Machine Learning 37.2 (1999), pp. 183–233. issn: 08856125.
doi: 10.1023/A:1007665907178.

[92] Chanhyun Kang et al. “Ensemble Models for Data-driven Prediction of Mal-
ware Infections”. In: Proceedings of the Ninth ACM International Conference
on Web Search and Data Mining. 2016, pp. 583–592. doi: 10.1145/2835776.
2835834.

[93] Guolin Ke et al. LightGBM: A Highly E�cient Gradient Boosting Decision
Tree. Tech. rep. url: https://github.com/Microsoft/LightGBM..

[94] Alex Kendall and Yarin Gal. “What uncertainties do we need in Bayesian
deep learning for computer vision?” In: Advances in Neural Information Pro-
cessing Systems 2017-Decem.Nips (2017), pp. 5575–5585. issn: 10495258.

[95] Je↵rey O Kephart et al. “Biologically Inspired Defenses Against Computer
Viruses”. In: IJCAI. 1995, pp. 985–996.

[96] Mohammad Emtiyaz Khan et al. “Fast and Scalable Bayesian Deep Learning
by Weight-Perturbation in Adam”. In: (2018).

112

https://repository.upenn.edu/dissertations/AAI9937734/
https://repository.upenn.edu/dissertations/AAI9937734/
www.kaggle.com
https://doi.org/10.1145/2428556.2428563
https://doi.org/10.1145/2428556.2428563
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1145/2835776.2835834
https://doi.org/10.1145/2835776.2835834
https://github.com/Microsoft/LightGBM.

[97] Khaled N. Khasawneh et al. “Ensemble Learning for Low-Level Hardware-
Supported Malware Detection”. In: Research in Attacks, Intrusions, and De-
fenses. 2015.

[98] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization”. In: (2014), pp. 1–15. issn: 09252312. doi: http://doi.acm.
org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503. url: http:
//arxiv.org/abs/1412.6980.

[99] Clemens Kolbitsch et al. “E↵ective and E�cient Malware Detection at the
End Host”. In: USENIX Security Symposium. USENIX Association, 2009.

[100] Bojan Kolosnjaji et al. “Adversarial malware binaries: Evading deep learn-
ing for malware detection in executables”. In: European Signal Processing
Conference 2018-Septe (2018), pp. 533–537. issn: 22195491. doi: 10.23919/
EUSIPCO.2018.8553214.

[101] Marek Krčál et al. “Deep convolutional malware classifiers can learn from
raw executables and labels only”. In: 6th International Conference on Learn-
ing Representations, ICLR 2018 - Workshop Track Proceedings 2016 (2018),
pp. 2016–2019.

[102] Felix Kreuk et al. “Deceiving End-to-End Deep Learning Malware Detectors
using Adversarial Examples”. In: (2018). url: http://arxiv.org/abs/
1802.04528.

[103] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. “Learnable Uncer-
tainty under Laplace Approximations”. In: (Oct. 2020). url: http://arxiv.
org/abs/2010.02720.

[104] Alp Kucukelbir and Andrew Gelman. “Automatic Di↵erentiation Variational
Inference”. In: 18 (2017), pp. 1–45.

[105] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple
and scalable predictive uncertainty estimation using deep ensembles”. In:
Advances in Neural Information Processing Systems. 2017.

[106] Pierre-Simon Laplace. Théorie analytique des probabilitiés. 1812.

[107] Bo Li et al. “Large-Scale Identification of Malicious Singleton Files”. In: 7TH
ACM Conference on Data and Application Security and Privacy. 2017.

[108] Guanjun Lin et al. “Software Vulnerability Detection Using Deep Neural
Networks: A Survey”. In: Proceedings of the IEEE (2020), pp. 1–24. issn:
15582256. doi: 10.1109/JPROC.2020.2993293.

[109] Che Hsun Liu, Zhi Jie Zhang, and Sheng De Wang. “An android malware
detection approach using Bayesian inference”. In: Proceedings - 2016 16th
IEEE International Conference on Computer and Information Technology
(2017), pp. 476–483. doi: 10.1109/CIT.2016.76.

[110] Han Liu and Larry Wasserman. “Bayesian Inference”. In: Statistical Machine
Learning. In Preparation., 2014. Chap. 12, pp. 299–351.

113

https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.23919/EUSIPCO.2018.8553214
http://arxiv.org/abs/1802.04528
http://arxiv.org/abs/1802.04528
http://arxiv.org/abs/2010.02720
http://arxiv.org/abs/2010.02720
https://doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1109/CIT.2016.76

[111] Jeremiah Zhe Liu et al. “Simple and principled uncertainty estimation with
deterministic deep learning via distance awareness”. In: arXiv NeurIPS (2020).

[112] Li Ping Liu et al. “TEFE: A time-e�cient approach to feature extraction”.
In: Proceedings - IEEE International Conference on Data Mining, ICDM
(2008), pp. 423–432. issn: 15504786. doi: 10.1109/ICDM.2008.48.

[113] Liu Liu and Baosheng Wang. “Malware classification using gray-scale im-
ages and ensemble learning”. In: International Conference on Systems and
Informatics. 2016.

[114] Yi An Ma, Tianqi Chen, and Emily B. Fox. “A complete recipe for stochastic
gradient MCMC”. In: Advances in Neural Information Processing Systems
2015-Janua (2015), pp. 2917–2925. issn: 10495258.

[115] David J. C. MacKay. “A Practical Bayesian Framework for Backpropagation
Networks”. In: Neural Computation 472.1 (1992), pp. 448–472.

[116] David J. C. MacKay. “Information-Based Objective Functions for Active
Data Selection”. In: Neural Computation 4.4 (1992), pp. 590–604. issn: 0899-
7667. doi: 10.1162/neco.1992.4.4.590.

[117] David J.C. MacKay. Information Theory, Inference, and Learning Algo-
rithms. 7.2. Vol. 13. Cambridge University Press, 2005.

[118] David John Cameron MacKay. “Bayesian Methods for Adaptive Models”.
In: CIT theses (1991).

[119] Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. “Early Stopping
is Nonparametric Variational Inference”. In: 51 (2015), pp. 1070–1077. url:
http://arxiv.org/abs/1504.01344.

[120] Wesley Maddox et al. “A Simple Baseline for Bayesian Uncertainty in Deep
Learning”. In: NeurIPS (2019), pp. 1–25. url: http://arxiv.org/abs/
1902.02476.

[121] David Madras, Toniann Pitassi, and Richard Zemel. “Predict responsibly:
Improving fairness and accuracy by learning to defer”. In: Advances in Neural
Information Processing Systems 2018-Decem (2018), pp. 6147–6157. issn:
10495258.

[122] Amit Mandelbaum and Daphna Weinshall. Distance-based Confidence Score
for Neural Network Classifiers. Tech. rep. 2017.

[123] Gael M. Martin, David T. Frazier, and Christian P. Robert. “Computing
bayes: Bayesian computation from 1763 to the 21st century”. In: arXiv (2020),
pp. 1–47.

[124] J. McCarthy. “Measures of the Value of Information”. In: Proceedings of the
National Academy of Sciences 42.9 (1956), pp. 654–655. issn: 0027-8424.
doi: 10.1073/pnas.42.9.654.

[125] Eitan Menahem et al. “Improving Malware Detection by Applying Multi-
inducer Ensemble”. In: Comput. Stat. Data Anal. 53.4 (2009), pp. 1483–
1494. doi: 10.1016/j.csda.2008.10.015.

114

https://doi.org/10.1109/ICDM.2008.48
https://doi.org/10.1162/neco.1992.4.4.590
http://arxiv.org/abs/1504.01344
http://arxiv.org/abs/1902.02476
http://arxiv.org/abs/1902.02476
https://doi.org/10.1073/pnas.42.9.654
https://doi.org/10.1016/j.csda.2008.10.015

[126] Thomas P. Minka. “Expectation Propagation for approximate Bayesian in-
ference”. In: (2013). url: http://arxiv.org/abs/1301.2294.

[127] Takeru Miyato et al. “Spectral Normalization for Generative Adversarial Net-
works”. In: (Feb. 2018). url: http://arxiv.org/abs/1802.05957.

[128] Abedelaziz Mohaisen and Omar Alrawi. “Unveiling zeus automated classi-
fication of malware samples”. In: WWW 2013 Companion - Proceedings of
the 22nd International Conference on World Wide Web (2013), pp. 829–832.
doi: 10.1145/2487788.2488056.

[129] Hussein Mozannar and David Sontag. “Consistent Estimators for Learning to
Defer to an Expert”. In: (2020). url: http://arxiv.org/abs/2006.01862.

[130] Jishnu Mukhoti et al. “Deterministic Neural Networks with Appropriate
Inductive Biases Capture Epistemic and Aleatoric Uncertainty”. In: (Feb.
2021). url: http://arxiv.org/abs/2102.11582.

[131] M Arthur Munson and W Philip Kegelmeyer. “Builtin vs . Auxiliary Detec-
tion of Extrapolation Risk”. In: February (2013).

[132] Kevin P Murphy.Machine learning: a probabilistic perspective (adaptive com-
putation and machine learning series). The MIT Press, 2012. isbn: 0262018020.

[133] Radford M. Neal. “Bayesian Learning for Neural Networks”. PhD thesis.
University of Toronto, 1995.

[134] Andre T. Nguyen et al. “Leveraging Uncertainty for Improved Static Mal-
ware Detection Under Extreme False Positive Constraints”. In: IJCAI-21
1st International Workshop on Adaptive Cyber Defense (2021). url: http:
//arxiv.org/abs/2108.04081.

[135] NISC. NISC Survey Results. Tech. rep. Neustar International Security Coun-
cil, 2020. url: https://www.nisc.neustar/nisc-survey-results/.

[136] Alejandro Noriega-Campero et al. “Active fairness in algorithmic decision
making”. In: AIES 2019 - Proceedings of the 2019 AAAI/ACM Conference on
AI, Ethics, and Society (2019), pp. 77–83. doi: 10.1145/3306618.3314277.

[137] Seong Joon Oh et al. “Modeling Uncertainty with Hedged Instance Embed-
ding”. In: (Sept. 2018). url: http://arxiv.org/abs/1810.00319.

[138] Yaniv Ovadia et al. “Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty Under Dataset Shift”. In: NeurIPS (2019). url: http:
//arxiv.org/abs/1906.02530.

[139] Nicolas Papernot. “Characterizing the Limits and Defenses of Machine Learn-
ing in Adversarial Settings”. In: ProQuest Dissertations and Theses May
(2018), p. 178.

[140] Adam Paszke et al. “PyTorch: An imperative style, high-performance deep
learning library”. In: Advances in Neural Information Processing Systems
32.NeurIPS (2019). issn: 10495258.

115

http://arxiv.org/abs/1301.2294
http://arxiv.org/abs/1802.05957
https://doi.org/10.1145/2487788.2488056
http://arxiv.org/abs/2006.01862
http://arxiv.org/abs/2102.11582
http://arxiv.org/abs/2108.04081
http://arxiv.org/abs/2108.04081
https://www.nisc.neustar/nisc-survey-results/
https://doi.org/10.1145/3306618.3314277
http://arxiv.org/abs/1810.00319
http://arxiv.org/abs/1906.02530
http://arxiv.org/abs/1906.02530

[141] Tim Pearce et al. “Uncertainty in Neural Networks: Approximately Bayesian
Ensembling”. In: (2018). url: http://arxiv.org/abs/1810.05546.

[142] Roberto Perdisci, Andrea Lanzi, and Wenke Lee. “McBoost: Boosting Scal-
ability in Malware Collection and Analysis Using Statistical Classification of
Executables”. In: Annual Computer Security Applications Conference (AC-
SAC). 2008.

[143] Andreas Pitsillidis et al. “Botnet judo: Fighting spam with itself”. In: Sym-
posium on Network and Distributed System Security (NDSS). 2010.

[144] Ponemon Institute. “2017 Cost of Data Breach Study: Global Overview”. In:
IBM Security June (2018), p. 47.

[145] Remus Pop and Patric Fulop. “Deep Ensemble Bayesian Active Learning :
Addressing the Mode Collapse issue in Monte Carlo dropout via Ensembles”.
In: (2018), pp. 1–15. url: http://arxiv.org/abs/1811.03897.

[146] Janis Postels et al. “The Hidden Uncertainty in a Neural Networks Activa-
tions”. In: (Dec. 2020). url: http://arxiv.org/abs/2012.03082.

[147] Edward Ra↵ and Charles Nicholas. “A Survey of Machine Learning Methods
and Challenges for Windows Malware Classification”. In: (2020), pp. 1–48.
url: http://arxiv.org/abs/2006.09271.

[148] Edward Ra↵ et al. “An investigation of byte n-gram features for malware
classification”. In: Journal of Computer Virology and Hacking Techniques
14.1 (2018). issn: 22638733. doi: 10.1007/s11416-016-0283-1.

[149] Edward Ra↵ et al. “Classifying Sequences of Extreme Length with Constant
Memory Applied to Malware Detection”. In: AAAI. 2021.

[150] Edward Ra↵ et al. “KiloGrams: Very Large N-Grams for Malware Classifica-
tion”. In: Proceedings of KDD 2019 Workshop on Learning and Mining for
Cybersecurity (LEMINCS’19). 2019. url: https://arxiv.org/abs/1908.
00200.

[151] Edward Ra↵ et al. “Malware Detection by Eating a Whole EXE”. In: (2017).
url: http://arxiv.org/abs/1710.09435.

[152] M Zubair Rafique and Juan Caballero. “FIRMA: Malware Clustering and
Network Signature Generation with Mixed Network Behaviors”. In: Proceed-
ings of the 16th International Symposium on Research in Attacks, Intrusions,
and Defenses - Volume 8145. RAID 2013. New York, NY, USA: Springer-
Verlag New York, Inc., 2013, pp. 144–163. doi: 10.1007/978-3-642-41284-
4_8.

[153] Rajesh Ranganath, Sean Gerrish, and David M. Blei. “Black box variational
inference”. In: Journal of Machine Learning Research 33 (2014), pp. 814–822.
issn: 15337928.

[154] C E Rasmussen and C K I Williams. Gaussian Processes for Machine Learn-
ing. MIT Press, 2006.

116

http://arxiv.org/abs/1810.05546
http://arxiv.org/abs/1811.03897
http://arxiv.org/abs/2012.03082
http://arxiv.org/abs/2006.09271
https://doi.org/10.1007/s11416-016-0283-1
https://arxiv.org/abs/1908.00200
https://arxiv.org/abs/1908.00200
http://arxiv.org/abs/1710.09435
https://doi.org/10.1007/978-3-642-41284-4_8
https://doi.org/10.1007/978-3-642-41284-4_8

[155] Jie Ren et al. “Likelihood Ratios for Out-of-Distribution Detection”. In:
(June 2019). url: http://arxiv.org/abs/1906.02845.

[156] Hippolyt Ritter, Aleksandar Botev, and David Barber. “A Scalable Laplace
Approximation for Neural Networks”. In: ICLR. 2018.

[157] Christian Rossow et al. “Prudent practices for designing malware experi-
ments: Status quo and outlook”. In: Proceedings - IEEE Symposium on Se-
curity and Privacy (2012), pp. 65–79. issn: 10816011. doi: 10.1109/SP.
2012.14.

[158] Thomas Rückstieß, Christian Osendorfer, and Patrick Van Der Smagt. “Se-
quential feature selection for classification”. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 7106 LNAI (2011), pp. 132–141. issn: 03029743.
doi: 10.1007/978-3-642-25832-9{_}14.

[159] Ethan M Rudd et al. ALOHA: Auxiliary Loss Optimization for Hypothe-
sis Augmentation. isbn: 9781939133069. url: https://www.usenix.org/
conference/usenixsecurity19/presentation/rudd.

[160] Tim G. J. Rudner et al. “On the Connection between Neural Processes and
Gaussian Processes with Deep Kernels”. In: NeurIPS (2018), pp. 1–6.

[161] Maytal Saar-tsechansky, Prem Melville, and Foster Provost. “Active Feature-
Value Acquisition”. In: (), pp. 1–32. url: papers://5e3e5e59-48a2-47c1-
b6b1-a778137d3ec1/Paper/p1779.

[162] Riccardo Sartea, Alessandro Farinelli, and Matteo Murari. “Bayesian Active
Malware Analysis”. In: Aamas (2020), pp. 1206–1214.

[163] Joshua Saxe and Konstantin Berlin. “Deep neural network based malware
detection using two dimensional binary program features”. In: 2015 10th In-
ternational Conference on Malicious and Unwanted Software (MALWARE).
2015. doi: 10.1109/MALWARE.2015.7413680.

[164] Rens van de Schoot et al. “Bayesian statistics and modelling”. In: 0123456789
(2021). doi: 10.1038/s43586-020-00001-2.

[165] Peter Schulam and Suchi Saria. “Can you trust this prediction? Auditing
pointwise reliability after learning”. In: AISTATS 2019 - 22nd International
Conference on Artificial Intelligence and Statistics 89 (2020).

[166] Marcos Sebastián et al. AVCLASS: A Tool for Massive Malware Labeling.
Tech. rep. 2016. url: https://github.com/malicialab/avclass.

[167] Yichun Shi and Anil K Jain. Probabilistic Face Embeddings. Tech. rep. 2019.
url: https://github.com/seasonSH/.

[168] Hajin Shim, Sung Ju Hwang, and Eunho Yang. “Joint active feature acquisi-
tion and classification with variable-size set encoding”. In: Advances in Neu-
ral Information Processing Systems 2018-Decem.NeurIPS (2018), pp. 1368–
1378. issn: 10495258.

117

http://arxiv.org/abs/1906.02845
https://doi.org/10.1109/SP.2012.14
https://doi.org/10.1109/SP.2012.14
https://www.usenix.org/conference/usenixsecurity19/presentation/rudd
https://www.usenix.org/conference/usenixsecurity19/presentation/rudd
papers://5e3e5e59-48a2-47c1-b6b1-a778137d3ec1/Paper/p1779
papers://5e3e5e59-48a2-47c1-b6b1-a778137d3ec1/Paper/p1779
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1038/s43586-020-00001-2
https://github.com/malicialab/avclass
https://github.com/seasonSH/

[169] Lewis Smith and Yarin Gal. “Understanding measures of uncertainty for ad-
versarial example detection”. In: 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018 2 (2018), pp. 560–569.

[170] Michael R. Smith et al. “Mind the Gap: On Bridging the Semantic Gap
between MachineLearning and Malware Analysis”. In: arXiv (2020), pp. 49–
60.

[171] Charles Smutz and Angelos Stavrou. “Malicious PDF detection using meta-
data and structural features”. In: Proceedings of the 28th Annual Computer
Security Applications Conference. 2012, pp. 239–248.

[172] Eugene C. Spa↵ord. “Is Anti-virus Really Dead?” In: Computers & Security
44 (2014), p. iv. doi: 10.1016/S0167-4048(14)00082-0.

[173] Michael Spreitzenbarth et al. “Mobile-sandbox: Having a deeper look into
Android applications”. In: Proceedings of the ACM Symposium on Applied
Computing (2013), pp. 1808–1815. doi: 10.1145/2480362.2480701.

[174] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15 (2014),
pp. 1929–1958.

[175] Philipp Terhörst et al. “SER-FIQ: Unsupervised Estimation of Face Image
Quality Based on Stochastic Embedding Robustness”. In: CVPR. 2020.

[176] Martin Thoma. “The WiLI benchmark dataset for written language identifi-
cation”. In: (Jan. 2018). url: http://arxiv.org/abs/1801.07779.

[177] Michalis K. Titsias and Miguel Lázaro-Gredilla. “Doubly stochastic varia-
tional bayes for non-conjugate inference”. In: 31st International Conference
on Machine Learning, ICML 2014 5 (2014), pp. 4056–4069.

[178] Richard Eric Turner and Maneesh Sahani. “Two problems with variational
expectation maximisation for time series models”. In: Bayesian Time Series
Models 9780521196 (2011), pp. 104–124. doi: 10.1017/CBO9780511984679.
006.

[179] Meet P. Vadera et al. “URSABench: Comprehensive Benchmarking of Ap-
proximate Bayesian Inference Methods for Deep Neural Networks”. In: (July
2020). url: http://arxiv.org/abs/2007.04466.

[180] Pascal Vincent et al. “Extracting and Composing Robust Features with De-
noising Autoencoders”. In: ICML. 2008.

[181] Pascal Vincent et al. “Stacked Denoising Autoencoders: Learning Useful Rep-
resentations in a Deep Network with a Local Denoising Criterion”. In: Journal
of Machine Learning Research 11 (2010), pp. 3371–3408.

[182] Xin Wang et al. “IDK Cascades: Fast deep learning by learning not to Over-
think”. In: 34th Conference on Uncertainty in Artificial Intelligence 2018,
UAI 2018 2 (2018), pp. 580–590.

118

https://doi.org/10.1016/S0167-4048(14)00082-0
https://doi.org/10.1145/2480362.2480701
http://arxiv.org/abs/1801.07779
https://doi.org/10.1017/CBO9780511984679.006
https://doi.org/10.1017/CBO9780511984679.006
http://arxiv.org/abs/2007.04466

[183] David Weiss and Ben Taskar. “Structured prediction cascades”. In: Journal
of Machine Learning Research 9 (2010), pp. 916–923. issn: 15324435.

[184] Max Welling and Yee Whye Teh. “Bayesian Learning via Stochastic Gradient
Langevin Dynamics”. In: Proceedings of the 28th International Conference on
Machine Learning. 2011.

[185] Yeming Wen, Dustin Tran, and Jimmy Ba. “Batchensemble: An alternative
approach to e�cient ensemble and lifelong learning”. In: arXiv:2002.06715
(2020), pp. 1–20.

[186] Florian Wenzel et al. “Hyperparameter Ensembles for Robustness and Un-
certainty Quantification”. In: arXiv NeurIPS (2020).

[187] Bryan Wilder, Eric Horvitz, and Ece Kamar. “Learning to Complement Hu-
mans”. In: (2020), pp. 1526–1533. doi: 10.24963/ijcai.2020/212.

[188] Christopher K.I. Williams. “Computing with infinite networks”. In: Advances
in Neural Information Processing Systems (1997), pp. 295–301. issn: 10495258.

[189] Andrew Gordon Wilson and Pavel Izmailov. “Bayesian Deep Learning and
a Probabilistic Perspective of Generalization”. In: 3 (2020). url: http://
arxiv.org/abs/2002.08791.

[190] Andrew Gordon Wilson et al. “Stochastic variational deep kernel learning”.
In: Advances in Neural Information Processing Systems Nips (2016), pp. 2594–
2602. issn: 10495258.

[191] David H. Wolpert. “Stacked generalization”. In: Neural networks 5 (1992),
pp. 241–259.

[192] David H. Wolpert and William G. Macready. “No free lunch theorems for op-
timization”. In: IEEE Transactions on Evolutionary Computation 1.1 (1997),
pp. 67–82. issn: 1089778X. doi: 10.1109/4235.585893.

[193] Christian Wressnegger et al. “Automatically inferring malware signatures for
anti-virus assisted attacks”. In: ASIA CCS 2017 - Proceedings of the 2017
ACM Asia Conference on Computer and Communications Security (2017),
pp. 587–598. doi: 10.1145/3052973.3053002.

[194] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms”. In: (Aug.
2017). url: http://arxiv.org/abs/1708.07747.

[195] Tim Z. Xiao, Aidan N. Gomez, and Yarin Gal. “Wat zei je? Detecting Out-
of-Distribution Translations with Variational Transformers”. In: NeurIPS
(2020), pp. 4–7. url: http://arxiv.org/abs/2006.08344.

[196] Zhixiang Xu, Kilian Q. Weinberger, and Olivier Chapelle. “The Greedy
Miser: Learning under test-time budgets”. In: Proceedings of the 29th Inter-
national Conference on Machine Learning, ICML 2012 2 (2012), pp. 1175–
1182.

119

https://doi.org/10.24963/ijcai.2020/212
http://arxiv.org/abs/2002.08791
http://arxiv.org/abs/2002.08791
https://doi.org/10.1109/4235.585893
https://doi.org/10.1145/3052973.3053002
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/2006.08344

[197] Zhixiang Xu et al. “Cost-sensitive tree of classifiers”. In: 30th International
Conference on Machine Learning, ICML 2013 28.PART 1 (2013), pp. 133–
141.

[198] Zhixiang E. Xu et al. “Classifier cascades and trees for minimizing fea-
ture evaluation cost”. In: Journal of Machine Learning Research 15 (2014),
pp. 2113–2144. issn: 15337928.

[199] Jinpei Yan, Yong Qi, and Qifan Rao. “Detecting Malware with an Ensemble
Method Based on Deep Neural Network”. In: Security and Communication
Networks 2018 (2018). issn: 19390122. doi: 10.1155/2018/7247095.

[200] Yann LeCun et al. “Gradient-Based Learning Applied to Document Recog-
nition”. In: IEEE (1998).

[201] Jiayu Yao et al. “Quality of Uncertainty Quantification for Bayesian Neural
Network Inference”. In: (2019). url: http://arxiv.org/abs/1906.09686.

[202] Yanfang Ye et al. “Automatic Malware Categorization Using Cluster Ensem-
ble”. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2010, pp. 95–104. doi: 10.1145/
1835804.1835820.

[203] Suleiman Y. Yerima, Sakir Sezer, and Gavin McWilliams. “Analysis of Bayesian
classification-based approaches for Android malware detection”. In: IET In-
formation Security 8.1 (2014), pp. 25–36. issn: 17518709. doi: 10.1049/iet-
ifs.2013.0095.

[204] Scott Wen-tau Yih, Joshua Goodman, and Geo↵ Hulten. “Learning at Low
False Positive Rates”. In: Proceedings of the 3rd Conference on Email and
Anti-Spam. CEAS, 2006.

[205] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level Convolutional
Networks for Text Classification”. In: (Feb. 2016). url: http://arxiv.org/
abs/1502.01710.

[206] Kenan Zhu and Baolin Yin. “Malware behavior classification approach based
on Naive Bayes”. In: Journal of Convergence Information Technology 7.5
(2012), pp. 203–210. issn: 19759320. doi: 10.4156/jcit.vol7.issue5.25.

120

https://doi.org/10.1155/2018/7247095
http://arxiv.org/abs/1906.09686
https://doi.org/10.1145/1835804.1835820
https://doi.org/10.1145/1835804.1835820
https://doi.org/10.1049/iet-ifs.2013.0095
https://doi.org/10.1049/iet-ifs.2013.0095
http://arxiv.org/abs/1502.01710
http://arxiv.org/abs/1502.01710
https://doi.org/10.4156/jcit.vol7.issue5.25

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction and Related Work
	The Malware Threat
	Machine Learning Methods for Malware
	What's Missing?
	Goals, Chapters, and Publications

	The Quantification of Uncertainty
	Bayesian Machine Learning
	Bayesian Inference For Deep Learning
	Uncertainty Metrics

	Leveraging Uncertainty for Improved Static Malware Detection Under Extreme False Positive Constraints
	Introduction
	Related Work
	Methods
	Data
	Models
	Uncertainty Estimation
	Classification Metrics

	Experiments and Discussion
	Misleading Evaluation
	Ensembles
	Uncertainty Based Threshold Adjustments
	Uncertainty on Errors and New AV Classes

	Conclusions

	Out of Distribution Data Detection Using Dropout Bayesian Neural Networks
	Introduction
	Related Work
	Methods
	Randomized Embeddings
	Baseline Features
	How to Measure Embedding Dispersion

	Experiments and Results
	Image Classification
	Language Classification
	Malware Detection

	Conclusions

	When should we run more expensive analysis?
	Introduction
	Related Work
	Learning to Reject/Defer
	Active Feature Acquisition

	Data and Models
	Dynamic Analysis Features and Model

	Predicting Capabilities in Executable Files
	Deferring to More Expensive Models
	Conclusions

	Conclusions and Future Work
	Out of Distribution Data Detection Using Dropout Bayesian Neural Networks Appendix
	Experimental Result Standard Deviations
	Additional Spectral Normalization Results
	Cosine Distance vs. Euclidean Distance for Unsupervised Embeddings
	Simulations
	Mean and Variance of the Embedding Norms
	Correlation Analysis Between Measures of Uncertainty

	Additional Experiments on MNIST Variants
	Is Some OOD Training Data Needed?
	Results when using Euclidean Randomized Embedding Maximum Spread Features
	Classifier Feature Importances

	Embedding Component Variance
	Dataset Links

