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Chapter 55
Extreme Precipitation in the Himalayan
Landslide Hotspot

Thomas Stanley, Dalia B. Kirschbaum, Salvatore Pascale,
and Sarah Kapnick

Abstract Extreme precipitation from the South-Asian monsoon season combines
with significant topographic relief within the Himalayan region to cause landslides
that result in hundreds to thousands of fatalities each year. While there are few
consistent and publicly available in-situ estimates of rainfall across this region,
satellite products and global climate models provide insight into the extreme pre-
cipitation patterns that may impact the frequency of landsliding. In this work, we
analyzed several extreme precipitation indices using data from a global climate
model and the satellite-based Tropical Rainfall Measuring Mission Multi-satellite
Precipitation Analysis product to represent extreme precipitation over High Moun-
tain Asia. We then compared the temporal distribution of extreme precipitation to a
global database of landslides to better understand the spatiotemporal distribution of
potential landslide triggering factors. We found that these indices successfully model
the seasonality of landslide activity across the region, but other aspects of spatio-
temporal variability require additional information and analysis before they can be
applied more broadly.
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55.1 Introduction

The Himalayan region is known as a landslide hotspot, with hundreds to thousands
of associated fatalities each year (Nadim et al. 2006; Petley 2012). The pervasive
distribution of landslides across this region is due to the combination of the world’s
greatest relief with heavy monsoon rainfall and occasional major earthquakes. While
widespread landsliding can be triggered by a single earthquake or an earthquake with
subsequent aftershocks (e.g., the 2014 Gorkha earthquake in Nepal), a large majority
of landslides within this region, and around the world, are triggered by rainfall.
Landslides within this region, which range from shallow debris flows to larger and
more deep-seated failures, are typically triggered by short-duration, high-intensity
monsoon rainfall (hours to days). One challenge in characterizing the spatiotemporal
patterns in landslide activity within this region is the dearth of both landslide
catalogs and in situ precipitation data that can be used to establish the
co-occurrence, potential triggers, and even long-term trends in landslide activity.
This work considers how satellite and modeled precipitation products can provide
additional insight into the region’s patterns of landslide activity, which are crucial
when considering the global distribution of landslide risk.

Petley et al. (2007) observed an upward trend in the incidence of landslides that
cause fatalities throughout Nepal from 1978 to 2005 and attributed this to develop-
ment within rural development. However, the database from which this conclusion
was drawn represents only a small portion of the total number of landslides. It is
possible that trends in fatalities are more closely linked to changes in human
exposure or vulnerability than trends in the occurrence of landslides in general.
Given the difficulty of retrospectively reconstructing a multi-decadal record of
landslide activity, gridded precipitation data offers an alternative view of the poten-
tial triggering mechanisms of landslide hazard with more consistency across time
and space than hazard databases currently allow.

The investigation of extreme precipitation indices, and climate research in gen-
eral, is justified in part by the belief that it provides information about the future of
rainfall-triggered natural hazards, including landslides. The most commonly used
extreme precipitation indices were formalized by an Expert Team on Climate
Change Detection and Indices (ETCCDI) “to address the need for the objective
measurement and characterization of climate variability and change” (World Cli-
mate Research Programme 2018). Unfortunately, the linkage between climate indi-
ces and landslide activity remains more of an assumption than comprehensively
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illustrated. Cepeda et al. (2010) used R20mm (which records the number of days
with very heavy precipitation) and other indices to corroborate trends from a
susceptibility-based rainfall threshold. Chen et al. (2012) noted that 24-hour rainfall
greater than 20 mm triggered numerous debris flows in the 5 years after the Chi-Chi
earthquake. Statistically significant correlations have been observed between the
indices Rx1day and Rx5day (maximum 1- or 5-day rainfall annually) and the annual
number of landslides and flash floods reported in Rio de Janeiro, Brazil (Ávila et al.
2016). Similarly, Yang et al. (2016) correlated maximum streamflow with ETCCDI
precipitation indices by month in the Huaihe Basin, China. Although the connection
between extreme precipitation indices and landslide activity seems obvious, addi-
tional research is needed to establish a firm empirical relationship and examine the
potential for generalization to other regions.

Warming trends in High Mountain Asia (HMA) climate are more clearly
established than observed changes to extreme precipitation. A study of extreme
precipitation in Nepal for the years 1970–2012 (overlapping Petley’s landslide
database, but longer by 15 years) revealed some trends, but the results were mixed
(Karki et al. 2017). Likewise, observations of extreme precipitation in eastern and
western zones of the Hindu Kush-Himalaya region showed contradictory and statis-
tically insignificant trends from 1960 to 2000 (Panday et al. 2015). However, major
increases in extreme precipitation, including 5-day precipitation, have been
projected for both the eastern and western Himalayan zones by the end of the
twenty-first century in multiple climate scenarios (Panday et al. 2015). The strong
probability of increasing precipitation intensity over the next 80 years highlights the
need to better understand how changes in extreme precipitation may impact land-
slide activity.

We have analyzed these indices with data from a global climate model (GCM)
that was designed to better represent extreme precipitation in regional climates. For
confirmation, we also prepared extreme precipitation indices from satellite observa-
tions. Next, we compared the temporal distribution of extreme precipitation to a
global database of landslides. The results broadly confirmed the findings of previous
research, but a large element of uncertainty regarding future patterns of natural
hazards within the region remains.

55.2 Rainfall and Landslide Data

We derived the extreme precipitation indices from both GCM and satellite sources
(Table 55.1). Numerical simulations were performed with the Geophysical Fluid
Dynamics Laboratory Forecast-oriented Low Ocean Resolution version of CM2.5
(FLOR) (Vecchi et al. 2014). We also generated indices from the Tropical Rainfall
Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA;
Huffman et al. 2010). In order to compare the changes in extreme precipitation to
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a record of landslide activity, we selected a portion of the Global Landslide Catalog
(GLC), which provides information on rainfall-triggered landslides from 2007 to
2016 (Kirschbaum et al. 2015). The short time period for which the GLC was
available limited a longer-term analysis of all three products (Table 55.1), so we
performed other analyses for the joint time period of FLOR and TMPA.

55.2.1 GFDL FLOR

Numerical simulations are performed with the Geophysical Fluid Dynamics Labo-
ratory Forecast-oriented Low Ocean Resolution version of CM2.5 (FLOR; Vecchi
et al. 2014). FLOR has been derived from the GFDL Climate Model, version 2.5
(CM2.5; Delworth et al. 2011), which has been successfully used for studies of
regional hydroclimatic variability and change (e.g., Delworth and Zeng 2014;
Kapnick et al. 2014; Zhang et al. 2015; Delworth et al. 2016; Pascale et al. 2017).
FLOR and CM2.5 are identical but differ in horizontal resolution in the ocean-sea ice
components (~1 � 1�, with meridional resolution of 1/3� near the equator in FLOR,
vs ~0.25� � 0.25�, with gridbox sizes ranging from 28 km at the equator to 8 km in
polar regions in CM2.5).

In order to compare the FLOR output with observations over the period
2000–2016, simulated sea surface temperatures (SST) are nudged to the sea surface
temperature monthly means observed during 2000–2016 by using the following SST
tendency equation:

∂SST x, y, tð Þ=∂t ¼ K x, y, tð Þ þ 1
τ

SST x, y, tð ÞT � SST x, y, tÞð �� ð55:1Þ

where ∂SST/∂t is the time-tendency of sea surface temperature, K is the coupled
model’s tendency term worked out based on the model governing equations, and
the last term on the right-hand side of the equation is the nudging (or restoring)
term. This forces the modelled sea surface temperatures to relax, in timescale τ (the
nudging timescale, 5 days) toward the target sea surface temperature SSTT, which
in this case is the observed temperature. Because the ocean and the atmosphere are
not initialized, the model’s sea surface temperature would deviate from the

Table 55.1 Data sources

Name
Temporal
Coverage

Spatial
Coverage

Grid Resolution
(Degrees) References

FLOR 2000–2016 Asia 0.625 � 0.5 Vecchi et al. (2014)

TMPA 1998-2019 50�N-50�S 0.25 Huffman et al. (2010)

GLC 2007–2016 World Not applicable Kirschbaum et al.
(2015)
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observed sea surface temperature without the last term in Eq. 55.1. Therefore,
nudging allows the model to run forced by observed sea surface temperatures while
still retaining atmosphere-ocean coupling at timescales shorter than 5 days. Sim-
ilarly, surface pressure and three-dimensional temperature and horizontal winds
are nudged every 6 hours towards reanalysis data. Full details are provided in Yang
et al. (2018).

55.2.2 TMPA

The TMPA precipitation product provides estimated precipitation from 50�N-S from
1998 to the present. In this work, we used the research version of TMPA Version
7, which is available approximately 3 months after acquisition and is calibrated with
the Global Precipitation Climatology Project (GPCP) gridded gauge dataset (Adler
et al. 2003). TMPA was developed to utilize an international constellation of
microwave and infrared satellite-borne instruments to produce 3-hourly estimates
of total precipitation. There are known issues with satellite retrievals over complex
terrain due to orographic uplift (Barros et al. 2000, 2004; Bharti and Singh 2015).
However, in this study we considered the precipitation retrievals collectively across
the entire study domain as well as at the pixel scale to represent potential bias that
may occur when evaluating within smaller spatial domains influenced by orographic
rainfall processes.

55.2.3 Landslide Data

The Global Landslide Catalog (GLC) provides a global picture of rainfall-triggered
landslides based primarily on media reports. The database has over 11,000 entries
and includes information on the location (geographic and nominal) and date,
impacts, trigger, confidence in the location, qualitative estimate of the size, source
of the report, etc. The catalog is known to have biases resulting from reporting
sources that are primarily in English, uncertainty about the location and date, as well
as issues differentiating landslides from other triggering hazards such as flooding
and severe storms or tropical cyclones. The methodology for compiling this inven-
tory and the characterization of the biases is available in Kirschbaum et al.
(Kirschbaum et al. 2010, 2015). For this analysis we selected 1076 landslides within
an analysis area that includes Nepal, northern India, and small portions of Pakistan
and China where the largest proportion of the landslides have been reported
(Fig. 55.1).
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55.3 Methods

Landslides can be triggered by high-intensity, short-duration rainfall, as well as
prolonged rain at lower intensities. We selected several of the extreme rainfall
precipitation indices from the ETCCDI that are most likely to be relevant to landslide
activity. We calculated Rx1day, Rx5day, R10mm, R20mm, CWD, R95pTOT, and
R99pTOT (Table 55.2) from both FLOR (https://doi.org/10.5067/W8DR3VBR27PX,
last accessed 5 Apr. 2019) and TMPA (https://doi.org/10.5067/5VPZ8AZ9LAKP, last
accessed 5 Apr. 2019) products. Rx1day represents the most extreme daily precipita-
tion, a level which is likely to generate landslides. Similarly, Rx5day represents the
most extreme precipitation over a 5-day period, which is relevant to the landslides that
may be caused by a gradual buildup of groundwater. R10mm and R20mm show the
frequency of heavy precipitation, which represents the number of times that landslides
are possible, if not guaranteed. Some landslides, especially deep-seated landslides,
may be driven more by the duration than the intensity of rainfall. CWD addresses this
possibility by showing the length of precipitation events. R95pTOT and R99pTOT
represent the annual total amount of extreme precipitation. Because extreme

Fig. 55.1 The Global Landslide Catalog reveals a band of terrain with a high number of landslides
(black dots indicate landslides from 2007–2016). The Himalayan Mountains and Foothills experi-
ence intense monsoon precipitation and occasional seismicity, while comprising some of the Earth’s
steepest terrain. We focused our analysis on this region by identifying the sites with the greatest
elevation difference from neighboring pixels at the half-degree scale (black box). Unless otherwise
noted, results are presented for this region
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precipitation is defined against local historical conditions, these indices might be more
closely associated with landslide activity than single, global thresholds. Althoughmost
of these indices can be calculated on a monthly basis, we focused on annual relation-
ships. Monthly means were calculated for Rx1day and Rx5day in order to observe the
seasonality of extreme precipitation. The geographic distribution of extreme precipi-
tation was summarized for each index by taking the mean of annual values for the
years 2000–2016. All indices were computed in R with the climdex.pcic library
(R Core Team 2013; Bronaugh 2015; Hijmans 2015; Revolution Analytics and
Weston 2015; Pohlert 2017).

We characterized the trend lines at each location for the precipitation indices
based on the computed annual values using the Theil-Sen method for slope estima-
tion (Sen 1968; Theil 1992), with statistical significance from the Mann-Kendall test
(Mann 1945; Kendall 1948). These are commonly used in hydrology because
nonparametric methods do not require an assumption of Gaussian residuals. The
slope is defined as the median of the slopes derived from all possible pairs of data
points. Thus, for (1 � i < j � n),

slope ¼ median
xj � xi
j� i

� �
ð55:2Þ

For this application, i and j represent years in the study period, and x represents the
extreme precipitation index at a point. The Mann-Kendall test statistic is defined as:

S ¼
Xn�1

k

Xn
j¼kþ1

sgn xj � xk
� � ð55:3Þ

Table 55.2 Extreme precipitation indices selected for relevance to landslides

Index Definition

Rx1day The highest 1-day precipitation.

Rx5day The highest sum of precipitation from 5 consecutive days.

R10mm The number of days on which 10 mm or more of precipitation occurred.

R20mm The number of days on which 20 mm or more of precipitation occurred.

CWD The longest number of consecutive days with precipitation greater than 1 mm.

R95pTOT The sum of precipitation on days that exceeded the 95th percentile precipitation,
which is typically based on a historical period of 1961–1990. In this case, the base
period was set to the 1999–2017 period for the TMPA data, because the earlier
period is not available for this dataset.

R99pTOT The sum of precipitation on days that exceeded the 99th percentile precipitation,
which is typically based on a historical period of 1961–1990. In this case, the base
period was set to the 1999–2017 period for the TMPA data, because the earlier
period is not available for this dataset.

55 Extreme Precipitation in the Himalayan Landslide Hotspot 1093



where j and k represent years in this dataset, and x represents the precipitation index
at those times. These methods ensured that the volatility over the short time period
represented by TMPA would be accounted for when identifying trends.

In order to understand the climate trends most relevant to landsliding, we focused
on the region of High Mountain Asia with the highest concentration of landslides:
the Himalayan foothills and mountains (Fig. 55.1). The analysis of precipitation
extremes in FLOR is therefore restricted to only those grid-points with a slope
threshold of 0.6 or larger. While somewhat arbitrary, this choice effectively selects
a band of grid points along the zone of rapid elevation increase where most
landslides take place. The area was used as a mask, which was then converted
with the nearest-neighbor method to match the spatial resolution of TMPA. We
applied the mask to all of the precipitation indices before comparing extreme
precipitation to landslides. In order to evaluate differences between the eastern and
western Himalaya, we divided the study area at 80�E (close to Nepal’s westernmost
point) into roughly equal parts. The number of landslides reported was also roughly
equal (516 in the west and 560 in the east).

55.4 Results

55.4.1 Regional Patterns in Extreme Precipitation

We found very similar geographic distributions of extreme precipitation from FLOR
and TMPA and broad similarities between the ETCCDI indices (Fig. 55.2). Indices
that represent rainfall frequency more than intensity (CWD and R10) are highest at
higher elevations, while indices that solely represent rainfall intensity (Rx1day and
Rx5day) are generally higher at lower elevations near the boundary between moun-
tains and plains. R20mm, R95pTOT, and R99pTOT are determined by both the
frequency of intense precipitation and while generally related to the elevation have a
less clear geographic relationship. In general, FLOR shows the heaviest precipitation
at higher elevations than TMPA. The biggest difference between datasets is the high
number of consecutive wet days observed in FLOR, more than double the number
from TMPA (firm empirical connection 2a). This may be due to the well-known
GCM “drizzle-bias”, which is often handled using a minimum threshold (e.g., >
1 mm) so that the total number of wet days in the model and observations are
equivalent (e.g., Ines and Hansen 2006). There may also be a bias in the opposite
direction for TMPA since the passive microwave frequencies onboard TRMM’s
Microwave Imager (TMI) are not sensitive to light rain. Despite this sharp difference
in magnitude, the spatial distribution of CWD is quite similar across datasets. In a
few grid cells, mean annual Rx1day exceeds 144 mm, a landslide-triggering rainfall
threshold derived empirically from rainfall gauge data across Nepal (Dahal and
Hasegawa 2008).

The extreme precipitation indices calculated from TMPA precipitation show
decreasing frequency and intensity of extreme precipitation in Nepal, but increases
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in Kashmir, Rajasthan, and a section of Tibet (Fig. 55.3). CWD is the exception to
the general trend in some places; it shows some decreases in Kashmir and some
increases in southern Nepal. The indices derived from FLOR data show rough

Fig. 55.2 Mean annual values of extreme precipitation indices: (a) CWD, (b) R10mm, (c) R20mm,
(d) R95pTOT, (e) R99pTOT, (f) Rx1day, (g) Rx5day for GFDL FLOR (left) and TMPA (right).
The data products show similar values and geographic distributions for all indices except CWD
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geographic similarities to those from TMPA, but exhibit strong similarities with each
other. In general, FLOR-based indices also show increases in Kashmir, but the trends
in Nepal are less consistently negative. For both datasets, trends are not statistically
significant in most locations, and the statistically significant trends are not consis-
tently located in the same grid cells across indices and data products.

Fig. 55.3 Trends in extreme precipitation indices from 2000–2016: (a) CWD, (b) R10mm, (c)
R20mm, (d) R95pTOT, (e) R99pTOT, (f) Rx1day, (g) Rx5day for FLOR (left) and TMPA (right)
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Although a gauge-based dataset for Nepal covers a much longer time period
(Karki et al. 2017), similar trends were observed here. Analysis of R95pTOT,
Rx1day, and Rx5day showed mixed but primarily decreasing trends for Central
and Eastern Nepal at both meteorological stations and in the gridded products.
Similarly, most of Nepal’s precipitation gauges showed primarily decreasing trends
in R10mm and R20mm, except in the high mountain region. Again, this largely
matches the current results from the gridded datasets. CWD presented a mixed
record across Nepal, and it is hard to summarize concisely the relationship between
the datasets, but Karki et al. (2017) found that CWD was generally decreasing in
southern Nepal and increasing in northern Nepal, while Fig. 55.3 shows the opposite
pattern. Overall, the trends in extreme precipitation observed at Nepal’s meteoro-
logical stations mirror the current results, despite the differences in methodology and
time period.

55.4.2 Annual Variability

At the annual level, extreme precipitation indices appear to be poorly correlated with
landslide activity (Fig. 55.4). In particular, 2007, 2008, 2009, and 2014 have very

Fig. 55.4 Mean annual Rx1day (x-axis) from FLOR is not highly correlated with landslide activity
from the GLC (y-axis). However, the first 3 years of the GLC (2007–2009) may have been
underreported. If so, the relationship between extreme precipitation and landslide frequency
might be strongly positive
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few landslides compared to years with similar Rx1day values. However, the rela-
tionship between landslides and extreme precipitation would be fairly strong if
evaluated after 2009. The other extreme precipitation indices show a similar pattern.

55.4.3 Seasonal Variability

The seasonal distribution of extreme precipitation in High Mountain Asia is domi-
nated by the monsoon (June–September), although tropical cyclones may occasion-
ally bring heavy rain or snow after the monsoon. As a result, rainfall-triggered
landslides are also most abundant in South Asia at this time (Froude and Petley
2018). Landslide activity peaks in July, but is relatively high throughout the mon-
soon (Fig. 55.5). From October to May, fewer than 5 landslides per month are
typically recorded in the GLC. This matches the cycle observed for both Rx1day and
Rx5day. FLOR shows a peak of extreme precipitation in February, but this is not
matched by a corresponding peak in landslide activity. TMPA also exhibits a peak
but it is much less prominent. At the monthly scale, mean Rx5day derived from
FLOR roughly doubles Rx1day, with relatively little variation (Fig. 55.6). The eight
months with the highest mean value of Rx5day all coincide with the summer
monsoon. Thus, both Rx1day and Rx5day encapsulate the seasonality of landslide
activity.

Seasonality across the study region was also examined east and west of 80�E
(Fig. 55.7). Although the monsoon dominates the seasonal climate cycle of both

Fig. 55.5 The monthly pattern of landslide activity mirrors the extreme precipitation indices
Rx1day (light colors) and Rx5day (dark colors). Landslide activity is represented by the total
number of events recorded within the study area for each month from 2007 to 2016 in the GLC
(orange). Daily precipitation was obtained from FLOR (green) and TMPA (blue)
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halves of the study area, the western region also experiences a smaller peak in
landslide activity in March. Both regions experience high levels of landslide activity
from June to September, with a peak in July. In general, this corresponds to the peak

Fig. 55.6 The monthly means for Rx1day and Rx5day derived from FLOR are highly correlated.
Precipitation is typically most intense during the monsoon, but February 2013 and March 2007 are
exceptions

Fig. 55.7 The study area was divided into roughly equal halves at the 80th meridian, which left
516 (560) landslides in the western (eastern) section. The monthly distribution of landslides is
similar, but the western portion of the study area experiences a secondary peak of landslide activity
in March. Both FLOR and TMPA show a lesser peak in extreme precipitation during February,
especially west of 80�
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in extreme precipitation. The exception is the western zone as estimated by FLOR,
where the February peak in Rx1day slightly exceeds the monsoonal peak in August.
In each region, less than 1 landslide is typically reported for the months of
November, December, and January. Both FLOR and TMPA show a low in precip-
itation during November—nearly zero in the eastern half. This is followed by rising
precipitation throughout the winter. This pattern of low landslide activity continues
until June in the eastern portion of the study area (Fig. 55.7). On average, a few
landslides are reported in the western zone during the months of February, March,
and April. However, the mean value reflects a high level of inter-annual variability.
52% of the landslides reported in February occurred in 2011, and 46% of March
landslides occurred in 2015 (Fig. 55.8). Rx1day also peaks in February (FLOR) and
March (TMPA) over the western zone (Fig. 55.7). Although variable across the
decade 2007–2016, the seasonality of extreme precipitation and landslide behavior
was well reflected by Rx1day, whether averaged across the entire region or its
eastern and western halves.

The total number of landslides reported in the GLC varies substantially, both by
year and by month. As of this writing, the GLC has not been completed for 2017, so
we have not included it in other analyses. Overall, annual variation is quite strong,
with more than 3 times as many landslides in 2010 than in 2012. However, the
number of reports is consistently low during the first three years of the GLC. July is
the most active month on average, but fewer landslides are reported for July than for
August or September 2007–2009, or for most years in the database. The wide range
of landslide behavior can be explained, at least in part, by extreme precipitation.

The abnormally high number of landslides recorded in 2010 is explained by the
63 landslides that occurred across the region in September, more than the total
number recorded for the years 2008, 2009, and 2012. In contrast, 2015 is notable
for the total lack of landslides recorded in September and the record number of
landslides in March. Landslides that occurred in 2017 had not been completely

Fig. 55.8 Distribution of the GLC by month and year. June, July, August, and September dominate
the record, but some years show little landslide activity in one or more of these months
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catalogued at the time of writing, but the record thus far indicated a relatively active
year, especially during the month of April.

55.4.4 Monthly Variability

We analyzed extreme precipitation by individual month to better understand the
annual fluctuations in landslide activity. Mean Rx1day appears to have a nonlinear
positive relationship with the monthly landslide total (Fig. 55.9). Monthly mean
values below 15 mm are associated with very low levels of landslide activity. Above
15 mm, increasing Rx1day appears to generate increasing numbers of landslides,
albeit with a high amount of variation. This is consistent with the existence of an
intensity threshold below which landslides will rarely be triggered by rainfall (Gabet
et al. 2004). More than 30 landslides occurred in nine months, all during the
monsoon period. While the precipitation intensity was usually in proportion to
number of landslides, the three months with more than 60 landslides (September
2010, July 2011, and July 2013) actually had mean Rx1day less than 40 mm. This is
a high number, but not relative to many other months. Another group of outliers can

Fig. 55.9 FLOR monthly mean values of Rx1day are weakly correlated to the monthly number of
landslides reported in the GLC. Some months that combine extreme precipitation with relatively
few landslides (March 2007, July 2007, and February 2013) might be explained by underreporting
during the first year of the GLC (March 2007 and July 2007) or the dominance of frozen
precipitation (March 2007 and February 2013), which has less of an influence on landslide hazard
than rainfall. It is harder to explain the outliers for which more than 60 landslides were reported but
mean values of Rx1day were less than 40 mm (September 2010, July 2011, and July 2013). It is
possible that pre-conditioning of the soil in previous months that had above average rainfall may
have contributed to the clustering of landslides during the following months. The nine months with
more than 30 reported landslides are all associated with the summer monsoon, as well as above-
average daily precipitation intensity
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be seen at the bottom right of Fig. 55.9. These three data points represent months in
which intense precipitation failed to trigger landslides; or at least, no landslides were
reported for these months. Although these six outliers do not fit the relationship,
landslides appear to be associated with increases in Rx1day at the monthly scale,
assuming a minimal level of precipitation has occurred.

In general, the mean monthly Rx1day values estimated by FLOR across the study
area show a clear linkage between the number of landslides and increasing rainfall
estimates. However, there are approximately six months that do not seem to fit this
relationship, which we examine in Fig. 55.10. In the three cases where more than
60 landslides were reported, the monthly mean value obscured the existence of local
high-intensity precipitation associated with rainfall-triggered landslides. In the three
cases where few landslides were reported, we consider how the rainfall distributions
may have impacted this result.

Most landslides recorded in September 2010 are clustered near an area of intense
precipitation in Himachal Pradesh and Uttarakhand, where Rx1day reaches a max-
imum of 138 mm. Elsewhere Rx1day only reached 7 mm; the mean value across the

Fig. 55.10 Map of Rx1day monthly estimates (mm) from FLOR and reported landslides across the
study region for (a) September 2010 (63 landslides), (b) July 2011 (62 landslides), (c) July 2013
(65 landslides), (d) March 2007 (5 landslides), (e) July 2007 (11 landslides), and (f) February 2013
(0 landslides)
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study area was 37 mm. Rx1day for July 2011 ranged from 2 to 166 mm, with a mean
of 37. Landslides appear to be clustered in 3 areas: the hills north of Bharatpur and
Butwal, Nepal, the hills west of Dhankuta, Nepal, and the mountains of Uttarakhand.
A band of extreme precipitation covered the Indian Himalaya and western Nepal in
July 2013, with a maximum Rx1day of 167 mm. This appears to be the cause of a
loose grouping of reported landslides that occurred from 23–28 July. A second
cluster of landslides occurred north of Butwal, Nepal on the 22 July. The timing
suggests that both groups of landslides could have been caused by a single meteo-
rological event, but it does not appear to have been modeled by FLOR in the eastern
group.

There were also three months that had very few reported landslides but for which
Rx1day values were extremely high. Only five landslides were recorded for the
month of March 2007, despite the presence of two areas of intense precipitation.
Most of the landslides are located along a line between Islamabad, Pakistan, and
Srinagar, India. The zones of intense precipitation are located to the southeast, where
Rx1day reached a maximum of 187 mm. In this case, the high monthly mean value
of Rx1day can be attributed to precipitation in the western half of the study area, but
the geographic distribution of landslides leaves the connection between extreme
precipitation and slope failure unclear. July 2007 exhibited intense precipitation to
much of the study area (peak of 198 mm). In contrast, the western end of the study
area experienced no more than 2 mm of precipitation per day, according to FLOR.
Despite the clear spatial distribution of extreme precipitation, landslide reporting did
not follow this pattern. No landslides were reported for February 2013 despite
intense precipitation at multiple locations. Rx1day ranged from 14 to 134 mm.
These examples point to the fact that the landslide inventory is highly variable
between years and months owing to the availability of reports, time spent by the
cataloger, and uncertainty in the timing and location of the GLC reports within this
region. The variability may also occur because landslide triggering is a stochastic
process with complex failure mechanisms; high rainfall intensity does not guarantee
subsequent slope failures.

55.5 Discussion

The extreme precipitation observed within the study area across multiple indices and
datasets (Fig. 55.2) suggests that it can be a factor in determining the concentration
of landslides at a seasonal scale. Results also show that TMPA and FLOR behave
similarly when estimating extreme precipitation indices for both geographic
(Fig. 55.2) and seasonal (Figs. 55.5 and 55.7) distributions over the study area.
Comparing TMPA and FLOR seasonally highlights several discrepancies, particu-
larly during winter when there is a much more pronounced peak in FLOR relative to
TMPA (Fig. 55.5). This may be explained by the presence of frozen precipitation
within the winter westerlies that FLOR is able to resolve but is below the sensitivity
threshold for TMI’s microwave channels onboard the TRMM. Dividing the study
area at 80�E reveals that the pre-monsoon landslides were limited to the western side
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of the study area (Fig. 55.7). This regional variation was mostly reflected by the
monthly distribution of Rx1day calculated from both TMPA and FLOR, which
showed higher precipitation intensity in spring and lower precipitation intensity in
summer for the western zone. However, the distribution of precipitation is much
more equally spread between the two zones than the distribution of landslides. We
do not assume a linear response to increases in heavy precipitation; rather, landslides
might become much more common after local precipitation exceeds historical
maximum accumulations. This pattern also appears in the disaggregated monthly
means (Fig. 55.9). Overall, extreme precipitation indices derived from both FLOR
and TMPA reflect the seasonal cycle of landslides well.

Trends in extreme precipitation indices across the study region are more variable
and less statistically significant (Fig. 55.3), largely due to the short time period for
which satellite precipitation data is available. The trends for some frequency-based
extreme precipitation indices relate to more common events and may reflect medium-
term climate cycles rather than the long-term patterns that could be attributed to
global climate change. This points to the opportunity to leverage the longer simula-
tions provided by FLOR to provide a more statistically robust representation of
extremes. Work is ongoing to evaluate and apply the longer retrospective record
provided by FLOR for improved characterizations of regional precipitation extremes.

The co-occurrence of landslide distribution and extreme indices such as Rx1day
suggest that some of the ETCCDI indices (specifically Rx1day and Rx5day) are
valuable for characterizing seasonal patterns of landslides regionally. However, the
presence of similarly high values just south of the study area suggests that rainfall
triggering is not the only factor that modulates this relationship (Fig. 55.11). Land-
slides tend to be broadly distributed and associated with roads or other

Fig. 55.11 Landslides appear to be slightly more common in grid cells with higher mean values of
Rx1day (TMPA shown) and other ETCCDI indices, but the relationship does not appear to be very
strong
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anthropogenic features, rather than clustered within the rainiest grid cells. Geologic,
geometric, and other controls on slope stability must be considered to fully explain
the geographic distribution of landslides. Coupling landslide susceptibility maps
with the precipitation thresholds or indices can provide both the spatial and temporal
characterization of potential landslide activity in near real time (e.g., Kirschbaum
and Stanley 2018).

Although the GLC is known to be incomplete (Kirschbaum et al. 2015), no
seasonal bias in landslide reporting has been identified. The GLC does not rely on
remote sensing, which might be affected by cloud cover or vegetative growth.
Although events are entered into the database primarily during the months of June
and July, this is unlikely to bias the GLC because the compilation methodology relies
onmedia alerts saved consistently throughout the year. Thus, the monthly distribution
is likely to be accurate, even if the annual number of landslides is a gross underesti-
mate. Additionally, we believe the effectiveness of the GLC collection effort has
improved over the last decade. In particular, the earliest years are probably
underreported relative to later years (Fig. 55.8). If so, the relationship between
extreme precipitation indices and annual landslide activity may be much stronger
than it appears in Fig. 55.4. Petley (2016) has produced an independent inventory of
fatal landslides in Nepal from 1980 to the present with methods similar to the GLC.
The year 2008 was the third most active, and a high number of landslides occurred in
the years 2007 and 2009 (Petley 2016). The year 2010 has previously been identified
as a peak in landslide activity, both in the region (Kirschbaum et al. 2012) and
worldwide (Petley 2011; Kirschbaum et al. 2012). The extreme precipitation indices
largely corroborate that assessment (Fig. 55.4). Petley (2016) also identified a spike in
fatal landslides in 2016, the year after theGorkha earthquake. However, theGLC does
not show a similar increase over the broader study area, and the number of landslides
for 2016 appears to be in line with the intensity of extreme precipitation (Fig. 55.4).

The GLC does show a high level of interannual variability, both in annual and
monthly totals (Fig. 55.8). Although the first three years of the GLC might not have
benefited from advances in Google Alerts and other enhancements of the GLC
methodology, we suggest that the variation in subsequent years might be due to a
different issue: the nonlinear response of marginally stable slopes to rainfall inten-
sity. Figure 55.9 shows a large number of months with little to no landslide activity.
In general, the mean value of Rx1day across the study area is below 15 mm for these
months. The remaining months show a positive, but highly variable relationship
between increases in extreme precipitation and the number of landslides reported.

We evaluated each of the six months that appeared to defy this relationship. In the
three cases where more than 60 landslides were reported, the monthly mean value
obscured the existence of regional high-intensity precipitation associated with
rainfall-triggered landslides. According to rain-gauge records, heavy precipitation
was spread across the state of Uttarakhand, but concentrated on the 18 and
19 September 2010 (Sharma 2012). On the 18th, daily rainfall intensity reached
130, 164, and 458 mm at the Dwarahat, Katarmal, and Nainital meteorological
stations, respectively.While the first two are very similar to themodeled precipitation,
FLOR did not even approach the latter total. There has been some debate as to whether
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natural or anthropogenic factors were more important in preparing the ground for a
catastrophe (Sati et al. 2011; Haigh and Rawat 2011), but it is almost certain that
extreme rainfall over a large area triggered the disaster. Numerous landslides were
reported in locations where FLOR precipitation estimates did not show extreme
rainfall, which may be a function of the nudging scheme used to represent rainfall
for the individual months (Fig. 55.10) or limitations in GCM performance when
representing sub-daily variability (Covey et al. 2018). In addition, anthropogenic
impacts, landslides preceding peak rainfall intensities, or incorrectly dated events
add uncertainty and further complexity to what event(s) accurately triggered the
landslides. The relatively low number of landslides in the months of March and July
2007 could be attributed to subsequent improvements in the GLC methodology, but
the absence of rainfall-triggered landslides in February 2013 cannot be as clearly
explained. In fact, landslides have been reported for this month, but these are
associated with falling snow, not rain. Heavy snowfall usually has a less immediate
and profound effect on slope stability than rainfall—unless rain is occurring on top of
the snowpack, which may increase potential for runoff and infiltration.

Results here suggest that extreme precipitation indices may serve as a useful
proxy for future landslide hazard, but the current comparison provides strong
evidence only for the long-term seasonality. Given the nearly global availability of
satellite-derived precipitation data, the ETCCDI indices can be calculated globally to
determine the spatial distribution of extremes at an annual or decadal scale
(Fig. 55.12). The potential applicability as well as the limitations of applying these

Fig. 55.12 The mean value of R10mm (TMPA) (top) exhibits a smooth spatial distribution due to
its emphasis on less extreme precipitation events. In contrast, R99pTOT (TMPA) (bottom) exhibits
a noisy spatial pattern, which suggests that the record is too short to contain the most extreme events
at every location
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indices as a proxy for landslide activity globally are shown in Fig. 55.12, which
highlights R10mm and R99pTOT using the full TMPA record. The relative effects
of rare and episodic events such as those represented by R99pTOT are clear, while
R10mm highlights more consistent patterns globally.

While the focus of this study was on extreme precipitation indices, extreme
temperature indices such as number of frost days (FD) and daily minimum temper-
ature (TNx) might also be linked to landslide activity in HMA. Temperature could
affect the phase of the precipitation, which affects landslide triggering: falling snow
is less likely to immediately trigger a landslide than falling rain. Melting snow can
trigger landslides, especially when combined with simultaneous rainfall. Rising
temperatures could affect antecedent conditions even more strongly by melting
permafrost that currently enhances rock mass strength, altering the distribution of
vegetation and settlement, opening glacial valleys to new mass wasting processes,
and forming new lakes in glacier beds (Haeberli et al. 2017). Given that future
increases in temperature are more certain than future increases in extreme precipi-
tation (NCVST 2009), modeling the effects of temperature changes to soil moisture,
permafrost, snowfields, vegetation, and glaciers on landslide hazard in HMA is a
logical direction for future research.

55.6 Conclusions

This work highlights the utility of satellite and GCM precipitation estimates to
establish the co-occurrence of extreme precipitation and landslides over the HMA
region. While several of the ETCCDI indices demonstrate value in identifying
extreme rainfall that could result in landslide activity, incorporation of terrain
characteristics is also fundamental to understanding landslide triggering. Further-
more, the distribution of rainfall-triggered landslides within the study area does not
appear to be controlled solely by extreme precipitation as measured by mean
ETCCDI indices. Antecedent soil moisture and local relief, which may amplify
local precipitation maxima through orographic processes, are both critical and
were not analyzed in the current work.

Satellite and GCM data agree that the seasonal cycle of rainfall-triggered land-
slide activity in HMA is captured by the ETCCDI extreme precipitation indices.
Even though winter precipitation plays a greater role in the western half of the study
area, the landslide cycle is still dominated by the monsoon. This cycle is well known,
but it is remarkable that a single number – mean maximum daily precipitation – so
thoroughly represents landslide behavior in the study area. The same is unlikely to be
true of other regions; in some places, antecedent conditions such as snow cover,
vegetative cover, and rainfall may obfuscate the relationship. In cool climates, it will
be necessary to treat frozen and liquid precipitation separately, as the effects of snow
upon slope stability may be delayed by months. Nevertheless, extreme precipitation
indices may be valuable in detecting changes to landslide seasonality in forecasts
from global or regional climate models.
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The relationship between the annual means of the indices and the annual number
of landslides appears to be weak. However, the GLC is not a complete and unbiased
record of landslides, nor are alternative datasets, such as remotely sensed inventories
or other global landslide inventories (e.g., Froude and Petley 2018). We remain
optimistic about the practice of using extreme precipitation indices as a shorthand for
landslide hazard under various climate scenarios, but quantification of the relation-
ship will rely on improvements to both the size and comprehensiveness of landslide
inventories. Direct modeling of landslides under varying rainfall, soil moisture, and
temperature conditions could better explain the historic patterns of landslide activity.
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