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Traditional notions of second-harmonic generation rely on phase matching or quasi phase matching to achieve
good conversion efficiencies. We present an entirely new concept for efficient second-harmonic generation that
is based on the interference of counterpropagating waves in multilayer structures. Conversion efficiencies
are an order of magnitude larger than with phase-matched second-harmonic generation in similar multilayer
structures. © 2004 Optical Society of America
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Phase matching (PM) or quasi phase matching has
always been central to any method of generating an
efficient second harmonic (SH).1 Developments in the
field have shown that it is possible to achieve PM in
infinite2 and finite3 multilayer stacks, also called one-
dimensional photonic crystals (1D-PCs). Finite
structures may also provide reduced group velocities,
resulting in large f ield enhancements of the fundamen-
tal f ield (FF) and the SH fields. Recent experiments
on PM AlGaAs�AlOx multilayers have confirmed that
the conversion efficiency scales as L6, where L is the
length of the 1D-PC.4 Dumeige et al.4 predicted that
a 55-period, L � 15 mm, AlGaAs�AlOx structure will
have a 10% conversion efficiency for a fundamental
peak power of 1 kW. The spectral bandwidth of the
enhancement is 0.25 nm and is comparable with pulse
durations of 15 ps or longer. Bandwidths can be
expanded by cascading several 1D-PCs in series.5

In Ref. 3 it was shown that PM could be achieved
with alternating layers of optical thickness l�2 and
l�4 with the nonlinearity in the high-refractive-index,
half-wave layers. Optimum PM occurs for the FF
tuned to the f irst transmission resonance near the
lowest energy stop band and the SH field at the second
transmission resonance next to the second-order stop
band (solid arrows in Fig. 1). The PM conditions for
a 1D-PC force the SH to be at the second transmission
resonance, where the mode density is not at its highest
value. As was shown earlier,3 detuning from the PM
condition degrades the conversion eff iciency. How-
ever, we show here that non-phase-matched 1D-PC
designs can yield a further order of magnitude of im-
provement in the conversion eff iciency. In analyzing
these new designs we find that the enhancement is
due to a combination of high photon-mode density and
a contribution to fast-varying interference terms that
average to near zero if the thickness of the nonlinear
layer is a half-wave or greater. This enhancement
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is unique to a 1D-PC, since neither bulk material
nor the smallest cavity, i.e., l�2, will display this
type of contribution to nonlinear dynamics from the
interference of counterpropagating waves.

In the study reported in Ref. 6 a multiple-scale ap-
proach was used to derive an analytical expression for
the conversion eff iciency for a generic layered struc-
ture of f inite length composed of nonabsorbing media.
It was found that the conversion efficiency in the un-
depleted pump approximation is proportional to the
square modulus of an effective coupling coeff icient, de-
fined as

d̃eff �
1
L

Z L

0
x�2��z�Fv

2�z�F2v
��z�dz . (1)

Here L is the length of the structure, and Fv�z� and
F2v�z� are the complex, linear f ield profiles normalized

Fig. 1. Transmission spectrum and density of states
(thick curve) versus wavelength at normal incidence for a
20-period mixed half-wave–quarter-wave stack. FF and
SH tuning are indicated by the arrows.
© 2004 Optical Society of America
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with respect to a unitary input field, so that the elec-
tric field inside the structure can be written as
Eiv�z� � Eiv

0�Fiv�z� 1 c.c.�, where i � 1, 2 and Eiv
0

is the amplitude of the input f ield. We emphasize
that, unlike deff defined for studying nonlinear propa-
gation in waveguides,7,8 our d̃eff is a complex quantity
that contains information regarding field distri-
bution and localization, as well as contributions
to the conversion efficiency coming from the PM
conditions. In particular, it is easy to show that
for a simple case of SH generation in an infinite
periodic structure the expression of the coupling
coeff icient becomes d̃eff � Iu.c.

P
m d�Dkb 2 2p/Lm

¥
,

m � 0, 1, 2, . . . , where L is the thickness of the unit
cell, Dkb � kb�2v� 2 2kb�v� is the Bloch wave vector
mismatch and Iu.c. is the overlap integral calculated
over the unit cell by the formula

Iu.c. �
1
L

Z L

0
x �2��z�fv

2�z�f2v
��z�exp�iDkbz�dz , (2)

which is obtained by writing the fields as Fiv�z� �
fiv�z�exp�ikb�iv�z�, where i � 1, 2 and fiv�z 1 L� �

fiv�z
¥
. Iu.c. is a form factor and contains all the in-

formation about the geometry such as layer thickness,
refractive-index contrast, amount and position of non-
linear material inside the unit cell, and overlap of the
fields. In the case of f inite structures the break of the
translational symmetry is responsible for field local-
ization effects; fiv�z� are no longer periodic over unit
cell thickness L. For a finite structure the correct ex-
pression that replaces Eq. (1) becomes

d̃eff �
1
N

N21X
j�0

∑
1
L

Z L

0
x �2��z�fv

2� jL 1 z�f2v
�� jL 1 z�

3 exp�iDkbz�dz
∏
exp�i�DkbL�j�

�
1
N

N21X
j�0

Iju.c. exp�i�DkbL�j � . (3)

Thus every unit cell gives a different contribution
to the overlap integral. These results suggest that
we have N summation terms of different ampli-
tudes and phases. In other words, standard theories
of PM commonly used to find the optimum con-
ditions may fail in a wide range of cases. As an
example we choose a structure with a mixed quarter-
wave–half-wave geometry and 20 periods. The
nonlinear material (l�4 optical thickness) has a re-
fractive index n2�vFF � � 1.428 at the FF frequency; for
simplicity, the linear material (l�2 optical thickness)
is assumed to be air, with n1 � 1. The reference
wavelength used to calculate the optical paths of the
layers is 1 mm, corresponding to angular frequency
v0 � 1.88 3 1015 s21. Assuming normal incidence,
this simple geometrical arrangement allows us to
rather easily tune the FF and SH fields to the two
resonance peaks, each of which is located near two
consecutive bandgaps of the transmission spectrum,
where field localization effects are maximized. We
tune the FF at the first-order band-edge resonance
(lFF � 1.69 mm, which corresponds to vFF � 0.592v0,
as labeled by the arrow labeled FF in Fig. 1). Once
the layer thicknesses have been chosen, one may add
dispersion by varying the index of refraction at the
SH frequency �vSH � 1.184v0� to tune the f ield to any
desired resonance near the band edge. By increasing
the value of n2�vSH�, it is possible to tune the SH closer
to the band edge. In Fig. 2(a) we depict the polar
plots containing the modulus and the angular phase of
the N terms of Eq. (3) when the high-index material
is given suitable dispersion (asterisks). In particular,
we have chosen n2�vSH� � 1.676, which tunes the
SH to the f irst band-edge resonance (see the dashed
arrow in Fig. 1). Then we compare these results
with those obtained when effective PM conditions are
achieved [n2�vSH� � 1.616; SH is tuned at the second
resonance peak]. We note that in this case (circles in
Fig. 2) the amplitude of the sources is smaller because
the density of modes for the SH field is smaller;
i.e., localization of the f ields is weaker. Moreover,
the phases of the summation terms are spread over
a wider angular range and the overall sum is not
maximized. Indeed, the square modulus of the sum

Fig. 2. Polar plots of the N summation terms of Eq. (3)
when PM conditions are achieved (circles) and when both
the FF and the SH fields are tuned at the band-edge reso-
nance (asterisks). The optical thickness of the nonlinear
material layers is (a) l0�4, (b) l0�2, with l0 � 1 mm.
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is one order of magnitude smaller than that calculated
for the previous case. Therefore, according to our
model the expected conversion efficiency when PM
conditions are achieved is one order of magnitude
lower than in the non-phase-matched case.

For completeness, we performed the same calcula-
tion for a structure designed so that PM conditions
dominate. It is enough to invert the geometry, i.e.,
take the nonlinear layer to have optical thickness l�2
and the linear layer to have l�4. Once again the as-
terisks in Fig. 2(b) represent the case in which the SH
field is tuned at the f irst resonance and the circles
represent the phase-matched case. We note that for
this structure fulf illment of PM conditions leads to op-
timum conversion eff iciency, although the efficiency
is one order of magnitude lower than that obtained
with the previous structure in the non-phase-matched
regime. Thus we switched from a regime in which PM
conditions rule the nonlinear dynamics to a regime
where the overlap of the fields dominates by simply
changing the f illing ratio of the nonlinear layer inside
the unit cell.

To provide a qualitative interpretation of this phe-
nomenon we decompose the complex linear f ield pro-
files as a superposition of forward and backward waves
in each layer:

Fv
j ,m�z� � �Aj ,m exp�ik0nm

v�z 2 zj ,m��

1Bj ,m exp�2ik0nm
v�z 2 zj ,m��� , (4a)

F2v
j ,m�z� � �Cj ,m exp�i2k0nm

2v�z 2 zj ,m��

1Dj ,m exp�2i2k0nm
2v�z 2 zj ,m��� , (4b)

where j � 1, 2, . . . N ; m � 1, 2; and A, B, C, and
D, are constants that can be calculated by imposing
boundary conditions at every interface. Substituting
Eqs. (4) into the expression for the coupling coeff i-
cient, taking x�2��z� � 0 everywhere except within the
nonlinear layers, and performing the integral in each
layer, we obtain

d̃eff �
x �2�dh

L

√√√
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, (5)
where Dn2 � n2
2v 2 n2

v. We note that the relevance
of the three terms on the right-hand side of Eq. (5)
depends on the nonlinear layer thickness dh because
of the sinc functions. Since there is no local PM
because of the natural material dispersion of the high-
index layers, the overlap of the f ields cannot be maxi-
mized over an arbitrary nonlinear layer of length dh.
In particular, the f irst term is related to the material
index mismatch, and the second and third terms give
almost zero contributions if the optical thicknesses
of the nonlinear layer are longer than approximately
l�2 and l�4, respectively. Those fast-varying terms
arise from interference of counterpropagating waves
inside the structure generated by multiple ref lections
at the interfaces and are generally neglected in bulk
or microcavity theories. Nevertheless, in the case
that we showed, the terms in Eq. (5) cannot generally
be neglected.

In conclusion, it is possible to take full advantage of
field localization effects in such a way as to weaken
the role played by effective PM conditions in the
nonlinear dynamics. We have shown that higher SH
generation conversion efficiency is achieved when
the fast-varying terms in the nonlinear polarization
related to the presence of counterpropagating waves
are not negligible and by properly tailoring the size
and distribution of the nonlinear layers in spite of
fulfilling PM conditions.
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