
 

 

This work was written as part of one of the author's official duties as an Employee of the United States 
Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 
105, no copyright protection is available for such works under U.S. Law. 
 
 
 
Public Domain Mark 1.0 
https://creativecommons.org/publicdomain/mark/1.0/ 
 

 

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.  

 

Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and 
telling us what having access to this work means to you and why it’s important to you. Thank you.  

 

https://creativecommons.org/publicdomain/mark/1.0/
mailto:scholarworks-group@umbc.edu


Characterization and estimation of high dimensional sparse

regression parameters under linear inequality constraints

Neha Agarwala1, Arkaprava Roy 2 and Anindya Roy3

1 Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer

Institute, NIH, Bethesda, Maryland
2 Department of Biostatistics, University of Florida

3 Department of Mathematics and Statistics, University of Maryland Baltimore

County, Baltimore, USA

Abstract

Modern statistical problems often involve such linear inequality constraints on model

parameters. Ignoring natural parameter constraints usually results in less efficient statis-

tical procedures. To this end, we define a notion of ‘sparsity’ for such restricted sets using

lower-dimensional features. We allow our framework to be flexible so that the number of

restrictions may be higher than the number of parameters. One such situation arise in esti-

mation of monotone curve using a non parametric approach e.g. splines. We show that the

proposed notion of sparsity agrees with the usual notion of sparsity in the unrestricted case

and proves the validity of the proposed definition as a measure of sparsity. The proposed

sparsity measure also allows us to generalize popular priors for sparse vector estimation to

the constrained case.

Key words: sparsity, convex polyhedral cone, high dimension, adjacency graph, spike-and-

slab prior, continuous shrinkage prior.

1 Introduction

In this chapter, we consider Bayesian estimation of possibly high dimensional parameter that

are known to be restricted to a pointed closed convex polyhedral cone. We develop everything
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in the backdrop of normal mean estimation problem where the mean vector is constrained to a

convex polyhedral cone but the concepts and the prior probability distributions developed here

generalize easily to other models. Often, in constrained problems, the restricted models have

to be embedded in higher dimensional models where the parameter space is unrestricted or at

least more amenable to standard estimation methods. Thus, model complexity can be high

in constrained problems even if the dimension of observations is not. In such situation some

form of low dimensional formulation of the problem is required for making statistical inference

possible without demanding a large sample size. The embedding to a higher dimensional space

provides a parameterization of the model. For successful inference over a ‘low dimensional’ set

of parameters the embedding needs to be an identifiable parameterization over that set. This

property of the embedding is not guaranteed. We look at the restriction of parameters to a

pointed full-dimensional closed convex cone defined by a set of linear inequalities

C = {µ ∈ Rn : Aµ ≥ 0} (1)

where A is some fixed m × n matrix. Since the cone is the intersection of finitely many

half-spaces, it is a polyhedral cone. We consider the natural embedding of the cone using its

minimal set of generators and consider its restriction to lower dimensional faces of the cone.

We show that ascribing sparsity on the parameters of the embedding is not sufficient to have

identifiable representation of the lower dimensional parameter vectors.

The main contribution of this chapter is an identifiable parameterization of vectors lying

in lower dimensional subsets of the cone described in terms of the minimal generators represen-

tations. We define such vectors lying on the lower dimensional faces as ‘sparse’ vector because

the notion of sparsity agrees with the usual notion of sparsity when the cone is an orthant.

Then using the proposed definition of sparsity we defined flexible prior distributions that are

either fully or nearly fully supported on the set of ‘sparse’ vectors and allows one to carry on

Bayesian inference under sparsity and conic constraints.

There are many motivating applications where ‘sparse’ signals for constrained parameters

arise and thus estimation of these parameters with these restrictions is desired. Some exam-

ples of that are popular in economics are estimation of cumulative distribution function (CDF),
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demand curve estimation, portfolio optimization and trend detection in econometrics. How-

ever, constrained parameter inference are not limited to business and economics, for example,

dose-determination in treatments, signal detection in radar processing, and shape-constrained

inference in non-parametric statistics.

Let y = (y1, . . . , yn)′ ∼ N(µ, σ2I) where the parameter of interest µ = (µ1, . . . , µn)′ ∈ C.

We assume that C has non-zero interior volume with respect to the n dimensional Lebesgue

measure. We consider a general framework where µ is constrained to a proper polyhedral

cone Aµ ≥ 0. A proper polyhedral cone is a closed convex full polyhedral cone that is

pointed. A pointed cone is one that does not contain any non-trivial subspace and it is full

or full-dimensional if the dual cone is pointed. We assume the cone is pointed (acute) and

irreducible, i.e. the m× n (m ≥ n) matrix describing the linear inequalities, A, is full column

rank, and the rows are conically independent in the sense that there are no non-negative linear

combinations, other than the trivial combination, of the rows that gives the zero vector.

The importance of linear inequality constraints in the practice of statistics is two fold.

First, linear constraints arise extensively in shape restricted inference including, but not limited

to, monotonicity, concavity or convexity. Such restrictions can be imposed directly on the mean

function parameter or they can be modelled non-parametrically to obtain a flexible and smooth

estimate. For example, if our goal is to fit a function, f to the data (x1, y1), . . . , (xn, yn), so

that

yi = f(xi) + εi

where f is assumed to have some restrictions and E(ε) = 0 and cov(ε) = σ2I then assuming

a parametric approach, the mean function f is the parameter µ with Aµ ≥ 0.

Second, the linear inequalities constraint framework can be used to extend estimation of

µ in the non-negative orthant when the covariance matrix is a general positive definite matrix

Σ. Consider the model y|µ ∼ N(µ, σ2Σ) where Σ is completely known. A standard approach

to dealing with general Σ matrix is to transform the observations to z = Σ−1/2y so that

z|θ ∼ N(θ, σ2I) where θ = Σ−1/2µ. However, the transformed mean Σ−1/2µ need not remain

in the positive orthant unless Σ is such that the square root Σ−1/2 is a positive operator, i.e.

a matrix that leaves the cone unchanged. In the case of the positive orthant that would mean

3



Σ−1/2 is a non-negative matrix. e.g. Σ is an M-matrix with an inverse that admits a positive

square-root. Hence one could reduce the problem of estimating µ where µ ≥ 0 to estimating

θ where Σ1/2θ ≥ 0.

Of course, one could combine these two problems and consider the bigger problem of

linear inequality constraints for a general Σ. For y|µ ∼ N(µ, σ2Σ) withAµ ≥ 0. The problem

can be transformed by taking z = Σ−1/2y so that z|θ ∼ N(θ, σ2I) where θ = Σ−1/2µ. Hence,

the estimation of µ where Aµ ≥ 0 is condensed to estimating θ where AΣ1/2θ ≥ 0.

One way of estimating such a parameter is to first obtain an unrestricted estimate of the

parameter and then truncate it so that the estimate lies in the constrained parameter space.

Intuitively, the performance of the estimator is expected to be much better if such constraint

conditions are incorporated in the estimation process. Hence the idea here is to incorporate

the linear inequality restrictions into the model and in the inferential procedures.

From a frequentist estimation point of view this is a standard ‘cone projection’ problem

of finding µ ∈ C such that it minimizes ||y − µ||2. The cone projection problem is a special

case of quadratic programming which involves finding θ such that it minimizes θTQθ − 2cTθ

over C. When Q is positive definite, the objective function has a unique minimum and the

solution reduces to finding the projection of a general Euclidean vector to the convex cone

[16, 18]. Several algorithms have been studied in the literature to address the cone projection

problem by Dykstra (1983), Karmarkar (1984), Fraser and Massam (1989) among others [7,

8, 9, 10, 13, 14, 15, 20]. A detailed account of the numerical stability and computational cost

of the projection algorithms has been studied by Dimiccoli (2016) [6]. Constrained estimation

of normal mean restricted to convex cones has been discussed in detail in Sen and Silvapulle

(2001) [21]. Polyhedral cone constraints or equivalently linear inequalities arise extensively in

shape restricted inference. There are many papers on estimation of regression function under

shape restrictions which are special cases of the conic restriction problem. In the Bayesian set

up, Danaher et al. (2012) provided an example of Bayesian estimation of normal mean when

the mean is constrained to a convex polytope [4].

As mentioned, one of the most interesting question that naturally arises in the context of

closed convex polyhedral cone restrictions is how to specify sparsity in constrained spaces such

as C. We provide a novel characterization of “sparse” parameters restricted to a polyhedral
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cone in Section 2. The notion of ‘sparsity’ defined here conforms with the general definition

in the unrestricted case or in the case of the orthant. In Section 3 we define priors where bulk

of the support is on the sparse vectors. Such priors would facilitate sparse signal extraction

under general convex polyhedral cone restrictions. Finally, results from some of the examples

are discussed in section 5.

2 Sparsity on Closed Convex Polyhedral Cones

To begin with, we provide some background on the geometry of cone and produce examples

of three dimensional cone to understand and set the ideas. For any cone C, let us denote its

dimension by dim(C). A polyhedral cone is formed by the intersection of finitely many half

spaces that contain the origin, i.e. for a matrix A ∈ Rm×n, we define

C = {µ ∈ Rn : Aµ ≥ 0} (2)

to be a polyhedral cone with dim(C) = n. The halfspace representation of the cone containing

the origin is called the facet representation or H-representation and the matrix A forming the

set of linear inequalities is called the representation matrix. The face of a cone is a lower

dimensional feature formed by the intersection of the cone with a supporting hyperplane. In

particular, we focus on vertex, extreme ray and facet that are faces of a cone, each lying in

different dimension. A vertex is a face of dimension 0, an extreme ray is a face of dimension 1

and a facet is a face of dimension dim(C)− 1.

We use the primal-dual representation of the cone to define ‘sparsity’. Using Minkowski’s

theorem, a polyhedral cone (2) can also be represented using a finite set of vectors called

generators or extreme rays. That is, for any Am×n, there exists a generating matrix ∆n×d

such that

C = {µ ∈ Rn : µ = ∆b =
d∑
j=1

bjδj , bj ≥ 0} (3)

where the columns δj are the generators of the cone. This representation of a polyhedral cone is

called the vertex representation or V-representation. The converse of the Minkowski’s theorem
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is the Weyl’s theorem for a polyhedral cone which states the existence of a representation

matrix given a generating matrix. The generators are called minimal if they are conically

independent, i.e. there is no positive linear combination of the generators that equals the

origin vector. For the rest of this chapter, we assume A to be a irreducible matrix meaning

that rows of A are conically independent. If A is full row rank, then it is irreducible. We

also assume that the rank(A) = n. The resulting cone is called an acute cone and the set

of extreme rays is its minimal generating system. In that case, d is the minimal number of

extreme rays forming the skeleton of the cone.

Remark 1. The parameterization of a cone C in terms of b in its vertex representation is not

a proper parameterization in the sense for each vector µ ∈ C there could be multiple b such

that ∆b = µ even when the cone is irreducible and acute. Thus, the vector b is not generally

identifiable from the vector µ. Only when m = n = d and the cone is irreducible and acute, in

which case ∆ = A−1 is non-singular and the parameterization is a bijection between the cone

and the non-negative orthant.

Figure 1: An example of polyhedral cone in R3 with m = 6 homogeneous linear
inequalities and 6 extreme rays.

Figure (1) shows an example of a polyhedral cone in R3 i.e. n = 3 formed by m = 6

homogeneous linear inequalities. There are m = 6 hyperplanes intersecting with the cone and

6



hence the number of facets is 6. Also, it turns out the number of extreme rays in R3 is equal

to the number of facets. However, it is not true in general and d can be substantially larger

than m which leads us to the next part.

Since there are two descriptions of a polyhedral cone, the pair (A,∆) is said be the

Double description (DD) pair [19]. Switching between the two descriptions is called the repre-

sentation conversion problem. Given the facet representation, the problem of finding the set

of minimal extreme rays is called the extreme ray enumeration problem. Similarly, finding the

irreducible representation from the vertex representation is called facet enumeration problem.

When A is full row rank, the extreme rays δj ’s are given by the columns of ∆ = AT (AAT )−1

and d = m [18]. When A is not full row rank, the number of extreme rays may be substantially

larger than m. In that case, the extreme rays of the cone can be obtained using proposition 1

from Meyer (1999) [17].

There have been many variations and modifications of the Double Description (DD)

method to move back and forth between the two representations, right from the primitive DD

method to standard DD method [3, 12, 19, 23]. We use the R package “rcdd” by K. Fakuda, a

R interface for cddlib which is a C-implementation of the DD method of Motzkin et al. [11, 12].

Figure 2: An illustration of the H-representation (left) and V-representation (cen-
ter) for a irreducible polyhedral cone (right) in R3 with n = 3,m = 8, d = 8.

The methodology proposed here depends on the idea of describing points on the boundary

of the cone or describing a points with proximity to the boundary of the cone when the point

is in the interior. To this end, we need to use the adjacency graph with the list of adjacent
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extreme rays of the cone.

Definition 1. For an acute cone C = {µ : µ = ∆b}, two extreme rays δi and δj are adjacent

if the minimal face containing both rays does not contain any other extreme rays of the cone.

Two well-known tests for verifying the adjacency of extreme rays of a cone are the

algebraic test and combinatorial test [19]. Given the adjacency relation one can define the

adjacency graph of the cone. Let {δ1, . . . , δd} correspond to a set of nodes in V = {1, . . . , d}.

Then the edge set E is defined through adjacency. i.e. each pair of adjacent extreme rays,

i and j correspond to a edge in the graph network. The edge set E can be written as the

union of the edge set for each node. Suppose E = {E1, E2, . . . , Ed} where Ei denote the set of

adjacent extreme rays corresponding to the δi. Then G = (V,E) forms an undirected graph.

The degree of a node of a graph is the number of edges that are incident to the node. We

denote the degree of the ith node by deg(δi). Then |Ei| = deg(δi) + 1.

To illustrate the geometry of polyhedral cones in 3D, consider the following example

with n = 3,m = 8, d = 8 from Figure 2. The corresponding adjacency graph is shown in

Figure 3. For instance, δ1 is an extreme ray, which is is adjacent to δ2 and δ8. Hence in the

corresponding adjacency graph, node 1 is connected to node 2 and node 8. In this case, each

extreme ray is connected to two other extreme rays. So deg(δi) = 2 and |Ei| = 3 ∀i.

Figure 3: The graph network for the cone from Figure 2.

For high dimension with n > 3, the adjacency graph can become quite complicated with

varying degree. A simple example for a polyhedral cone in R4 with m = 7, d = 8 is illustrated

below with degree varying between 3 and 4.

When m = n, is the number of minimal generators is the same as the dimension, and
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Figure 4: An illustration of the H-representation (left) and V-representation (cen-
ter) for a irreducible polyhedral cone in R4 with its adjacency graph (right).

the adjacency graph is a complete graph. We will use the adjacency network to describe the

notion of sparsity as well as the proposed priors.

When there are no restrictions, a sparse vector is a vector that has a large number of

zeros (or for a weaker notion of sparsity the vector has a large number of entries that are

negligible). For non-negative orthant, the same definition applies, except the non-zero entries

are required to be positive. Thus, the sparse vectors are the one which lie on (or close to)

one of the lower dimensional faces of the orthant. Following the description of sparsity in the

orthant, we define a sparse vector to be any vector lying on or near a lower dimensional face.

Since any x ∈ K can be represented as x = ∆b, extrinsic ‘sparsity’ can be defined as x being

specified by smaller number of lower dimensional features. In other words, x is sparse when

b is a sparse vector. The idea is to map the vector x in Rn to a non-negative orthant in Rd,

use the definition of sparsity in the orthant and then use the inverse map to lift the notion of

sparsity back to the polyhedral cone. The dimension d in which the vector x is being embedded

is either equal to or larger than the original dimension n.

For a non-negative orthant, the canonical vectors are the minimal generators and the

usual definition of sparsity is that the vector can be written as a conic combination of a few

of the full set of generators. Such vectors will lie on the boundary of the orthant, on a lower

dimensional face of the orthant to be precise. It seems natural to use a similar definition

of sparsity in the general case, i.e. vectors that lie on lower dimensional faces of the cone.

The minimal two dimensional faces are the conic hull of pair of adjacent generator. Thus,
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to restrict the vector to the lower dimensional faces one can work with adjacent generator.

However, simply generating a vector as a conic combination of a set of adjacent rays is not

enough to guarantee that the vector lies on a lower dimensional face. It seems that the notion

sparsity is more nuanced. For the vector to occupy a lower dimensional face, the sets of

generators must form a clique or in other words the sub-adjacency graph corresponding to

the set of generators used to define a sparse vector must be complete. This will ensure that

the notion of sparsity is an identifiable notion in the sense that a sparse vector cannot have a

non-sparse representation.

Recall that a clique, W , of an undirected graph G = (V,E) is a subset of vertices, W ⊆ V

such that every two distinct nodes are connected by an edge. That is, a clique of a graph is an

induced subgraph that is complete. A maximum clique of a graph, G, is a clique w such that

w
⋃
{v} in not a clique for any v ∈ V \w. Then we have the following definition of a ’sparse’

vector in a closed convex polyhedral cone.

Definition 2. Let C = {µ ∈ Rn : ∆b} be the vertex representation of a closed convex poly-

hedral cone C where the columns of ∆ is a set of d minimal generators of C. Let G = (V,E)

be the adjacency graph of C where V = {1, . . . , d} and E = {E1, . . . , Ed}. Then µ = ∆∈C is

sparse iff the subgraph corresponding to i : bi > 0 is a clique.

The following result proves that the above definition is ‘proper’ in the sense for a sparse

vector there cannot be a non-sparse representation.

Theorem 1. Suppose µ ∈ C has a vertex representation µ = ∆b such that the set of nodes

I = {i : bi > 0} forms a clique. Then in any vertex representation of µ = ∆β we have βi = 0

for all i ∈ {1, . . . , d}\I.

Proof. We will use method of induction to prove the result. From the definition of adjacency,

the result is obvious true when the size of the clique is k = 2. Now suppose it is true a positive

integer k > 2. Let µ =
∑k+1
i=1 biδi be a vertex representation of a vector µ where without loss

of generality we assume that the nodes {1, . . . , k + 1} form a clique. Suppose there is another

representation of µ as

µ =
k+1∑
i=1

βiδi +
d∑

i=k+2
biδi.
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Then 0 =
∑k+1
i=1 (βi − bi)δi +

∑d
i=k+2 βiδi. Consider three cases.

case1: (βi − bi) ≥ 0,∀i In this case a nonnegative linear combination of the columns of ∆ is

zero which contradicts minimality of the generators.

case2: (βi − bi) < 0, for some i. Let J = {i : (βi − bi) < 0}. Then

x =
∑
i∈J

(bi − βi)δi =
∑

i∈{1,...,k+1}\J
(βi − bi)δi +

d∑
i=k+2

biδi.

Thus, the vector x has two representations one of which is based on a clique since any sub-

clique of a clique is also a clique. Since |J | ≤ k, this contradicts the assumption unless βi = bi

for i = 1, . . . , k + 1 and βi = 0 for i = (k + 1), . . . , d. This completes the proof.

3 Sparse Priors for Closed Convex Polyhedral cone

To define probability measures on the cone that is supported mostly on lower dimensional sets,

one could simply specify any sparse prior that are used in the unrestricted case as a prior on

b in the vertex represetntaiton and invoke a prior on µ. Such a prior indeed works as a sparse

prior on the cone provided the adjacency graph is a complete graph, as in the case of the

positive orthant.

Thus, for the case when d = n, and hence the adjacency graph is a complete graph one

could use popular sparse priors such as the continuous shrinkage priors like Horseshoe priors

[2] or spike-and-slab priors like the Strawderman-Berger prior [1], where the continuous part

is taken to be a density on the first orthant such as product of normal densities truncated to

the positive half. Specifically, one could define priors on b as the Horseshoe prior

bi|τ, λi ∼ N(0, τ2λ2
i )+,

λi ∼ C(0, 1)+,

τ |σ ∼ C(0, σ)+,

π(σ) ∝ 1
σ (4)
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or as the Strawderman-Berger prior

π(bi) = (pδo + (1− p) N(0, τ2λ2
i )+)

π(λi) ∝ λi(1 + λ2
i )

3
2 ,

p ∼ Unif(0, 1),

τ |σ ∼ C(σ, σ) 1(τ ≥ σ),

π(σ) ∝ 1
σ

(5)

One could also specify other priors such as Bayesian lasso [22] like prior on b. However, when

the adjacency graph is not complete, simply demanding that the vector b is sparse does not

ensure that the resulting µ vector is near a lower dimensional face. To guarantee sparsity,

it is important to specify which of the components of b are zero. For instance, consider the

above example of the 3D cone with eight extreme rays and suppose only b4 and b8 are the only

positive entries in b. The resulting vector will lie on the 2D cone generated by the vectors δ4

and δ8. Points on this set can be far away from any of the faces and can have many equivalent

dense representation (Remark 1) where none of the entries in b is zero or small. Hence, the

vector will not be sparse according to the notion described above. Thus, general sparse prior

on b may still put substantial mass in the dense interior of the cone.

It is evident from the definition of sparsity that one could simply restrict to the clique-

lattice of the adjacency graph and work with the maximal cliques to define priors that will

be supported only on sparse vectors. To define a probability measure that is supported on

the sparse vectors and hence on the maximal cliques corresponding to the adjacency graph,

an obvious choice would be to define a Markov Random Field (MRF), specifically the Gibbs

distribution describing the clique probabilities and then conditional on the clique defining a

prior on the entries of b within the clique. We briefly review the Markov-Gibbs equivalence in

the context of an undirected graph. Suppose {Xv : v ∈ V } be a stochastic process with Xv

taking values in Sv. Suppose further the joint distribution of the variables is Q{x} = P{Xv =

xv for v ∈ V } where x = (x1, . . . , xd) and xi ∈ Si.
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Definition 3. The probability distribution Q is called a Gibbs distribution for the graph if it

can be written in the form

Q{x} =
∏
S∈W

φS(x)

where W is the set of cliques for G and φS is a positive function (also referred to as clique

potential function) that depends on x only through {xv : v ∈ S}. The definition is equivalent

if maximal cliques are used instead of just cliques.

An MRF is characterized by its local property (the Markovianity) whereas a Gibbs

Random Field (GRF) is characterized by its global property (the Gibbs distribution). The

Hammersley-Clifford theorem establishes the equivalence of these two types of properties. The

theorem asserts that the process {Xv : v ∈ V } is a Markov Random field if and only if the

corresponding Q is a Gibbs distribution. The practical value of the theorem is that it provides

a simple way to parametrize the joint probability by specifying the clique potential functions.

In other words, the theorem tells us it suffices to search over Gibbs distribution.

Given a particular maximal clique, then define the sparsity of a vector in the usual sense

by generating the vector using possibly sparse coefficients on the generators belonging to the

clique. This procedure agrees with the usual method of selecting sparse vectors on the orthant

or Rn where the generators are the canonical vectors and all the extreme rays together for the

unique maximal clique.

Thus, specifically we recommend the following class of sparse prior on C. Let W be the

set of maximal cliques of the adjacency graph of C.

b|w ∼ π(bw)

w ∼ πW(w) (6)

where given a clique w ∈ W, bw is the subvector of b constructed with the entries of b where the

indices belong to w, π(bw) is a ‘sparse’ prior, such as the Horseshoe prior or the Strawderman-

Berger prior, on bw in appropriate dimension, and πW(w) is an MRF on W. The priors π(·)

and πW(·) an have their own hyper-parameters and hyperpriors can be specified accordingly.

In order to have a prior that is fully supported but has most of the support on the sparse
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vectors one could add a mixture component including the full set of extreme rays

b|δ, w ∼ δπ0(b) + (1− δ)π(bw)

w|δ ∼ δI(w = V ) + (1− δ)πW(w)

δ ∼ Bernoulli(φ) (7)

where π0(·) is a sparse prior on the interior of the positive orthant, Rn+, and the Bernoulli

parameter φ is either a pre-specified small probability or a prior can be specified on φ.

3.1 Prior with adjacency on b

A ‘weaker’ notion of sparsity will be to allow for mass to be spread along the boundary of the

cone instead of being only supported on the boundary. In high dimension, the probability for

most fully supported measures on the entire cone will concentrate on or near the boundary

and hence so will the posterior. However, how the prior is specified will have impact on the

recovery rate of the sparse sets.

Instead of restricting to cliques, one could choose priors that are supported on a cone

generated by a single adjacency set. While not guaranteed, such priors would emphasize

vectors where most of the coefficients in b are small in any representation of the vector. Of

course the idea of small or negligible coefficients has to be formalized but in general this would

mean bj < ε, j /∈ Ei fora given adjacency set Ei and for some pre-specified small value ε > 0.

Unfortunately, even when only a few coefficients within an adjacency are set to positive values,

the resulting vector may still have equivalent representations that are very dense. If the prior

specified on the elements of b within an adjacency set is sufficiently sparse, with high prior

probability the generated vectors would be near one of the boundary sets, i.e. the minimum

distance of the point to the boundary will be small.

To this end we define ‘weakly sparse’ priors that are fully supported on a closed convex

polyhedral cone C and with most or all of its mass supported on or near the boundary. To

formally define this, let

S(µ) = {b ∈ Rd : µ = ∆b, b ≥ 0}. (8)
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Then we have the following definition for a weakly sparse vector.

Definition 4. Let µ ∈ C where C is a closed convex polyhedral cone with vertex representation

given by C = {x ∈ Rn : x = ∆b for some b ∈ Rd+}. Then µ is weakly sparse if ∃b ∈ S(µ) such

that {i : bi > 0} corresponds to an adjacent set of an extreme ray in the adjacency graph of C

where S(µ) is defined in (8).

We propose adjacency prior based generalization of the Horseshoe or Strawderman-

Berger priors as

π1, . . . , πd ∼ Dirichlet(α1, . . . , αd)

u ∼ Multinomial(1, π1, . . . , πd)

b|u ∼ π(bEu)

(9)

where π(bEu) can be πHS(bEu) or πSB(bEu). This is different from using a prior like modified

lasso such as fused lasso (Tibshirani and Saunders, 2005) type selection, since we select only 1

adjacency set to stay on the surface whereas in fused lasso several clusters maybe selected and

hence the results vectors may have dense representations.

4 Numerical Results

4.1 Distribution of points in a 3D cone

Figure 5 shows the distribution on 10000 points drawn from the Horseshoe kind prior on

polyhedral cone. While most points lie near the face of the cone including the vertex, there are

still many points in the interior of the cone. The 2D contour has been plotted by considering

equal volume of circular cones inside the polyhedral cone and then calculating the relative

frequency of 10000 points. The points very close to the vertex are included in the outermost

region since they are anyway sparse for being close to the vertex. From the 2D contour, it is

clearer that there is a heavy positive mass in the interior most circle.

Figure 6 and 7 presents the points inside the 3D polyhedral cone and the reciprocal 2D
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Figure 5: Plot showing points inside a 3D polyhedral cone by invoking a Horseshoe
prior on b (left) and 2D contour of the cone showing the concentration of 10000
such points (right).

contour for Horseshoe prior on adjacent set and on maximal clique, respectively. The figures

either show some positive mass and no positive mass in the interior of the cone for the two

cases. All points are either closer to or lie exactly on the lower dimension features be it vertex,

extreme rays or facet.

Figure 6: Plot showing points inside a 3D polyhedral cone by incorporating adja-
cency of extreme rays (left) and 2D contour of the cone showing the concentration
of 10000 such points (right).

4.2 Max-min distance of points from facet

In this numerical study, we consider polyhedral cone in different dimensions and simulate

R = 100000 points using the three different priors discussed in the previous section. For

a fair comparison, for each of the adjacent set Ej chosen, we select randomly |Ej | rays so

that π(u) ∼ 1
( d

|Ej |)
and the rest of the prior specifications are same as in horseshoe prior with
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Figure 7: Plot showing points inside a 3D polyhedral cone by incorporating maxi-
mal cliques of extreme rays (left) and 2D contour of the cone showing the concen-
tration of 10000 such points (right).

n m d dij drij daij dcij

3 6 6 3.081 3.081 0.891 0

8 11 16 1.096 0.924 0.309 0

10 13 20 0.818 0.376 0.159 0

Table 1: Max-min distance of points from different priors

adjacency(9). We report the scaled max-min distance where the maximum is over R number of

repetitions and minimum is considered with respect to the point’s distance from the m facets.

That is, we see which hyperplane of the cone it is closest to.

Let dij = max
i=1:R

min
j=1:m

distanceij . Table 1 reports the max-min distance for Horseshoe

prior dij , Horseshoe prior on a randomly selected set drij , Horseshoe prior with adjacency daij

and Horseshoe prior on cliques dcij .

5 Application

We discuss two examples in details. For the positive isotonic function estimation, we explain

both the parametric and non-parametric approach. For the bell-shaped function, we show

results for the parametric approach and additionally discuss how the non-parametric fit can

be obtained.
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5.1 Positive Isotonic Function

We consider the mean function f(x) = exp(x) over the interval [−2, 2], a positive isotonic

function so that A is n × n matrix with A1,1 = 1, Ai,i = −1, Ai,i+1 = 1 for i = 2, . . . , n.

Hence the Bayes estimator µ̂ is obtained using MCMC by invoking a Horseshoe kind prior and

Strawderman-Berger kind prior on b based on the model

µ = ∆b.

Figure 8 shows the plot of the estimators for the priors along with the MLE.

Figure 8: Bayes estimates for Horseshoe prior (HS), Strawderman-Berger prior
(SB) and MLE for n = 50 points from f(x) = exp(x).

In the non-parametric approach, we model f(x) = Ψ(x)β where Ψ(x) is the p dimen-

sional basis function at x. This will produce a flexible and smooth estimate depending on

the choice of p. To enforce the monotonicity of f(x), we consider a set of fine grid points

t1 < · · · < tm over the range of x and construct A such that the ith row of A is the derivative

of the basis functions Ψ′(x) evaluated at ti. These constraints are then applied on the coeffi-

cients parameter such that Aβ ≥ 0 where A is a m× p matrix. Specifically, we consider cubic

B-splines with no intercept and k = 3 equidistant internal knots so that p = 6 [5]. We consider
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Figure 9: Bayes estimates using cubic B-spline with 3 internal knots for n = 50
points from f(x) = exp(x). Horseshoe prior (HS) and Strawderman-Berger prior
(SB) (left) and Horseshoe prior (HS adjacency) and Strawderman-Berger prior
with adjacency (SB adjacency) (right).

m = 8 equidistant grid points and since the number of constraints is greater than the number

of parameters, the number of extreme rays d = 18 is greater than p. Similar to the parametric

approach, f̂ is obtained using MCMC by invoking priors on b through the model

f = Ψβ = Ψ∆b = ∆̃b.

Figure 9 presents the results from all four priors, the Horseshoe kind estimator and Straw-

derman Berger kind estimator as well as the priors incorporating adjacency. As expected, all

four the estimators are smoother compared to ones obtained by parametric approach. For

the priors incorporating adjacency, Figure 10 demonstrates the d estimates based solely on

one of the d adjacency sets for Horseshoe kind prior (left) and for Strawderman-Berger kind

prior (right). The final estimates for the priors invoking adjacency are an average of these d

estimators presented in the right panel of Figure 9 since all these adjacent sets appear with

almost equal frequency in the mcmc chains.
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Figure 10: 18 estimates from the each of the d = 18 adjacency set for Horseshoe
prior with adjacency (left) and Strawderman-Berger prior with adjacency (right)
for n = 50 points from f(x) = exp(x).

5.2 Bell-shaped Function

In this example, we consider estimation of a symmetric bell-shaped curve. Given the inflection

points k1 and k2, A is a (n + 2) × n matrix based on the constraints that the function is

positive, increasing on the left, convex, concave, convex and then decreasing at the right. We

consider the true mean function f(x) to be a normal density scaled to have large values i.e.

f(x) = 50 1
σφ
(
x
σ

)
for n = 40 points over x in [−2, 2]. The estimated mean functions are

obtained by invoking priors on b using the model f = ∆b where the number of extreme rays

d becomes super large and is equal to 2551 for n = 40. The results are shown in Figure 11.

Similar to the MLE, both simple Strawderman-Berger prior and the simple Horseshoe prior

are piece-wise functions. Figure 12 provides 18 estimates out of d = 2551 estimates one for

each of the d extreme sets for the priors incorporating adjacency. Since, each of these sets

appear almost equally in the mcmc, we take an average of the 2551 estimates to obtain the

final estimate for both the priors using adjacency.
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Figure 11: Bayes estimates for Horseshoe prior and Strawderman-Berger prior
with adjacency for n = 40 points from f(x) = 50 1

σφ
(
x
σ

)
.

6 Discussion

In this chapter, we have have introduced new priors on high-dimensional closed convex cone

where most of the mass is on lower dimensional sets on the boundary. The priors facilitate

Bayesian estimation of constrained priors. While the motivating example is estimation of a con-

strained normal mean vector, the application of non-parametric estimation of shape-restricted

functions show that the priors can easily applied to a regression model. In fact, it can be used

for inference for any parameter vector with linear inequality constraints. For now, we have

shown applications with inequality restrictions on the parameters but the notion of sparsity

is related to having several of the inequalities reducing to equality in the true value of the

parameter. While in the present set up these equality constraints are not necessarily binding,

many examples where equality constraints are present as hard constraints in addition to in-

equality constraints can be also be incorporated in the proposed method. Another interesting

application of our work is testing for H0 : Aµ = 0 versus H1 : Aµ ≥ 0 using Bayesian model

comparison. When A = I, the problem reduces to testing origin against non-negative orthant

and the Likelihood Ratio Test is much easier to compute than for a general A. The projection

of the data vector to the cone will also lie on one of the lower dimensional faces and is the max-
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Figure 12: 18 out of d = 2551 estimates from the each of the 18 adjacency
set for Horseshoe prior with adjacency (left) and Strawderman-Berger prior with
adjacency (right) for n = 40 points from f(x) = 50 1

σφ
(
x
σ

)
.

imum likelihood estimator. In general the projection maybe hard to compute, but in principle

the Bayesian posterior should concentrate around the Euclidean projection. Bayesian recovery

results for the true clique and posterior concentration results need to be investigated.
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