
Received October 6, 2020, accepted November 10, 2020, date of publication November 19, 2020, date of current version December 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3039234

Creating Cybersecurity Knowledge Graphs From
Malware After Action Reports
ARITRAN PIPLAI 1, SUDIP MITTAL 2, (Member, IEEE), ANUPAM JOSHI1, (Fellow, IEEE),
TIM FININ 1, JAMES HOLT3, AND RICHARD ZAK3,4
1Department of Computer Science and Electrical Engineering, University of Maryland at Baltimore County, Baltimore, MD 21201, USA
2Department of Computer Science, University of North Carolina at Wilmington, Wilmington, NC 28403, USA
3Laboratory of Physical Sciences, Maryland, MD 20740, USA
4Booz Allen Hamilton, McLean, VA 22102, USA

Corresponding author: Aritran Piplai (apiplai1@umbc.edu)

This work was supported in part by a United States Department of Defense grant, in part by a gift from IBM research, and in part by a
National Science Foundation (NSF) grant, award number 2025685.

ABSTRACT After Action Reports (AARs) provide incisive analysis of cyber-incidents. Extracting
cyber-knowledge from these sources would provide security analysts with credible information, which
they can use to detect or find patterns indicative of a cyber-attack. In this paper, we describe a system to
extract information from AARs, aggregate the extracted information by fusing similar entities together, and
represent that extracted information in a Cybersecurity Knowledge Graph (CKG). We extract entities by
building a customized named entity recognizer called ‘Malware Entity Extractor’ (MEE). We then build a
neural network to predict how pairs of ‘malware entities’ are related to each other. When we have predicted
entity pairs and the relationship between them, we assert the ‘entity-relationship set’ in a CKG. Our next
step in the process is to fuse similar entities, to improve our CKG. This fusion helps represent intelligence
extracted from multiple documents and reports. The fused CKG has knowledge from multiple AARs, with
relationships between entities extracted from separate reports. As a result of this fusion, a security analyst
can execute queries and retrieve better answers on the fused CKG, than a knowledge graph with no fusion.
We also showcase various reasoning capabilities that can be leveraged by a security analyst using our fused
CKG.

INDEX TERMS Artificial intelligence, computer security, cyber threat intelligence, after action reports,
knowledge graphs, semantic web.

I. INTRODUCTION
Every year thousands of malware are created and subse-
quently used to attack different organizations. InMarch 2018,
Nuance Technologies announced that it lost 92 million US
dollars to an attack caused by the Notpetya malware [6].
Around the same time, a group of hackers launched a series
of cyber-attacks on multiple universities [48]. The attackers
stole 31 terabytes of data and the total estimated financial loss
stood at about three billion US dollars. Spear-phishing emails
were used to steal login credentials and ex-filtrate sensitive
data [48]. To combat these malware-based attacks, secu-
rity researchers retrieve malware samples from the ‘wild’.
These samples are then ‘detonated’ in a controlled envi-
ronment and its behavior ‘logged’ [26], [27]. Using this
behavioral data, security analysts map various malware to

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilsun You .

known indicators and means of attacks. Analysts and foren-
sic experts from companies like Mandiant are also involved
in the aftermath of attacks, where they analyze what mal-
ware was used, the means and indicators of attack, and the
results of the attack. As a result of these studies , these
security analysts produce ‘After Action Reports’ (AARs),
which describe in great detail a particular malware sample,
its means and consequences. These technical AARs are vital
source of Cyber Threat Intelligence (CTI) and can augment
other Open Source Intelligence (OSINT) sources to create
a holistic picture of an attack. Subsequently, these AARs
are used to create and or modify the defensive approaches
deployed to protect the infrastructure, and identify and pre-
vent future attacks. They are also sometimes used to iden-
tify perpetrators and attribute these attacks to known hacker
groups. AARs contain data that is found after an exhaustive
investigation of an attack. If security analysts base their pri-
mary source of knowledge on AARs, they will be able to

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 211691

https://orcid.org/0000-0002-6437-1324
https://orcid.org/0000-0001-9151-8347
https://orcid.org/0000-0002-6593-1792
https://orcid.org/0000-0002-0604-3445

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

access a lot of relevant information about attacks which will
not only help them to correctly identify the various aspects
of an unknown attack, but also draw similarities between
new attacks and previously known attacks. This ability to
draw similarities between previously encountered attacks is
greatly amplified if we have the knowledge from a number
of AARs dealing with similar malware, or malware variants.
In addition, the extracted knowledge can be used to automate
defenses [35].

In this paper, we aim to mine knowledge from these AARs
produced by security analysts. Going through a large number
of cybersecurity blogs and AARs is not only cumbersome but
also infeasible for a time constrained security professional.
We extract cybersecurity knowledge from these reports, and
populate it in a knowledge graph. This can be then used
to assist the defensive systems and is queryable by analysts
[35]. The cybersecurity domain is a niche area in terms of
terms/language used. As such, compared to general natural
language processing tasks, there is not a lot of data available
for creating data-driven knowledge extraction approaches.
Moreover, approaches trained on generally available corpus
do not work well for cybersecurity related text. Thus, one
significant contributon of our work is a cybersecurity textual
corpus which helps build machine learning algorithms to
extract information from textual data about cybersecurity.
The cybersecurity corpus that we create contains processed
AARs, along with other blogs and technical reports. (See
Section III-A). We created a novel annotated dataset for
cyber-knowledge mining. We curated 474 AARs and APT
(Advanced Persistent Threat) Reports, 550 security blogs
from Microsoft [28] and Adobe [1] , numerous descriptors
from Common Vulnerabilities Enumerations (CVE) [30].

Our second major contribution is the creation of a set of
tools, used in a pipeline, to extract cybersecurity knowledge
from text sources. Our cybersecurity knowledge extraction
and processing pipeline has 3 components, a Malware Entity
Extractor (MEE), a Relationship Extractor (RelExt), and the
final Cybersecurity Knowledge Graph (CKG). MEE has been
trained over annotated pieces of cybersecurity text, to predict
cybersecurity entities in an AAR. MEE is a cybersecurity
Named Entity Recognizer (NER) (See Section III-B1). It has
been built using Conditional Random Fields, Gibbs’ sam-
pling, and regular expressions. RelExt (See Section III-B2)
is a novel deep learning based relationship extractor that has
been trained over cybersecurity data, to predict a relationship
between pairs of entities extracted by MEE. Once we have
extracted the named entities we filter out pairs of entities
that cannot have a relationship between them according to
the schema of our CKG. We then pass the remaining pairs of
entities to the relationship extractor. The relationship extrac-
tor takes two named entities (‘A’ and ‘B’) as input and tries to
predict a particular relationship as output. We then populate
our CKG (See Section III-C) with the entity relationship sets
from the extracted data. The CKG represents the unstructured
data present in the AAR into a structured ontology. Once we
have an entity-relationship set from RelExt, we can populate

the CKG with the triple (‘Entity A’–has relationship ‘R’–
‘Entity B’).

To improve the quality of the CKG, we also fuse knowl-
edge from different AARs that describe the same entity.
This fusion greatly helps security analysts aggregate different
pieces of cybersecurity knowledge frommultiple sources and
understand how those pieces are related. A security analyst
can then use this fused knowledge to make better-informed
cybersecurity decisions. This helps her to query a single
fused knowledge graph, and retrieve entities from different
sources. This also helps her to discover previously unknown
relationships. This fusion of knowledge from different AARs
is one of the main contributions of this work. We demonstrate
this capability in Section III-D.

Our reasoning and search capabilities are further improved
because of our CKG fusion. Fusion of knowledge from differ-
ent AARs helps a security analyst to retrieve better results for
her queries. This emphasises the need for our fusion step to
improve the underlying CKG.We demonstrate this capability
by executing the same query on the fused CKG, and also on
the knowledge graph before fusion. Some example queries
can be found in Section IV-D.

Our system can be used by security analysts to look-up
cyber intelligence data, and also ascertain similarities
between a new cyber-incident and some previously encoun-
tered cyber-incidents already asserted in our CKG. A security
analyst can use a SPARQL [46] endpoint to query over the
graph and ask the system to compute answers to complex
queries and scenarios (See Section IV-D).

We organize the paper as follows - Section II, talks in
detail about AARs and similar research conducted by other
researchers. Section III, talks in detail about the architecture
of our system and howwe form the pipeline. Section IV, talks
about our findings from our experiment and the overall qual-
ity of the individual components of our pipeline. Section V,
talks about the scope of further research in this area.

II. BACKGROUND AND RELATED WORK
In this section we describe AARs and talk about similar
research conducted in this area.

A. AFTER ACTION REPORTS (AAR) AND OPEN SOURCE
INTELLIGENCE (OSINT)
AnAARs contain details about a particular exercise presented
in a fixed format as mandated by the United States Depart-
ment of Homeland Security [44]. The format to share exer-
cises and evaluations has been standardized by the Homeland
Security Exercise and Evaluation Program, to make intel-
ligence information sharing consistent across jurisdictions.
In the domain of cybersecurity, an AAR contains various
details about an exercise to detect a cyber-attack, and infor-
mation about the means to mitigate the cyber-attack. Apart
from government agencies, security companies also publish
AARs. Some examples of such companies are ‘Kaspersky’
[20] and ‘FireEye’ [9]. These AARs include detailed anal-
ysis of various cyber-attacks. An AAR about a particular

211692 VOLUME 8, 2020

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

FIGURE 1. An excerpt from an after action report describing Naikon and Hellsing malware attacks.

‘malware’,‘threat-actor’, or a ‘campaign’ includes the means
to identify the attack from ‘indicators’ which are nothing but
‘fingerprints’ left at the attack site by the agent carrying out
the attack. It may also talk about what ‘vulnerabilities’ were
targeted by the attacker agent, and also what a user, or a
potential victim, can do to prevent the attack.

An AAR about a cyber-attack provides security analysts
with knowledge, extracted and captured in a mandated for-
mat, so that they are able to use this information to analyze
future attacks. AARs, also make a reliable source of infor-
mation to mine intelligence, because they are published on
official security agency websites. This makes these reports
a credible source of intelligence, as opposed to mining data
from dark web logs, or social media as demonstrated by
Mittal et al. [32]–[34], where the authenticity of the infor-
mation, cannot be verified. Another reason why we choose
AAR to be a source of our knowledge is that these are open
source. Security companies release full length reports on their
websites, available for users to download and read.

After Action Reports (AARs) are different from techni-
cal blogs and include more technical details about malware
behaviour. An AAR gives security analysts technical details
and knowledge about a cyber incident. Cybersecurity blogs,
differ from AARs and do not capture ample technical infor-
mation. Many of these blogs are intended for a general audi-
ence, and only have superficial information about an attack.
Another factor that is important, in the context of our source
of knowledge, is that there might be blogs coming from indi-
viduals who may be unknown and do not possess the required
technical skills. Compared to those reports and blogs, AARs
are released by known cyber-security researchers and organi-
zations. They also have in depth technical details whichmight
be a useful source of knowledge for security analysts.

B. CYBERSECURITY KNOWLEDGE GRAPHS
A knowledge graph is a set of semantic triples, which are
pairs of ‘entities’ with ‘relationships’ between them. Cyber-
security Knowledge Graphs (CKGs) have long been used
to represent Cyber Threat Intelligence (CTI). To represent

CTI in a CKG, the first step is to identify what entities and
relationships need to be asserted. We also use an ontology
called ‘Unified Cybersecurity Ontology’ (UCO) [45] to pro-
vide our system with cybersecurity domain knowledge. UCO
is based on Structured Threat Intelligence Language (STIX
2.0) [12] which provides a schema to represent cyber-threat
intelligence. CKGs have also been developed from other
open-source information by Mittal et al. [32], [33]. CKGs
and knowledge graphs have also been used to create various
analyst augmentation systems [18], [19], [21], [36], [40],
[42]. Next, we discuss the 3 main components of our system-
a named entity recognizer, a relationship extractor, and a
system to compare the various malware nodes in the CKG.

1) NAMED ENTITY RECOGNITION
Named Entity Recognition (NER) for cyber-threat informa-
tion extraction have been built using Conditional Random
Fields (CRF), Support Vector Machines [7], and neural net-
works [5]. Ekbal et al. in their paper [7] have proposed a
language independent algorithm for detecting named entities.
Recently, Bi-directional LSTMs are being used to recognize
named entities. Even in the field of CTI, entity extraction has
been done with the help of deep learning [4], [11]. Some of
the approaches, in the field of CTI, have also demonstrated
the use of neural networks on hand-picked features which
yielded better results [24], [41]. Despite thewidespread appli-
cations of Long Short Term Memory (LSTM), the use of
CRF-based classifiers for entity extraction have continued to
remain state of the art [43]. Using BiDirectional LSTMs, aids
in the process of capturing (or forgetting) long term context,
which is necessary to predict an entity class. However, some
of the entities that we are interested in, like ‘filenames’,
‘IPAddresses’, or ‘hashes’, do not need contextual informa-
tion to be predicted into the correct class. Capturing diverse
context for these classes may even be detrimental for the
task of entity classification. Moreover, BiLSTMs overfit with
limited data. Thus, we build our own entity extractor for
cybersecurity text based on CRFs and regular expressions
(See Section III-B1).

VOLUME 8, 2020 211693

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

2) RELATIONSHIP EXTRACTOR
Relationship extraction predicts the links or the relationships
existing between pairs of entities extracted by our system.
There has been significant work done in the field of relation
extraction between entities. Relationship mapping can be
many-to-many, many-to-one, or one-to-one. TransH models
[47] have worked on extracting many-to-many mapping by
shifting vector spaces in hyperplanes. TransEmodels [3] have
used head and tail entities to predict one-to-one mapping.
Sparse vectors have also been used [15] to predict relation-
ship mapping, which was an improvement over TransH and
TransE models. We use the Relationship Extraction method
proposed by Pingle et al. [39], which is our previous work in
this area. The Relationship Extraction algorithm uses vector
encodings of individual entities created using word2vec [29].
These vector representations help capture the context of the
cybersecurity entities in text, which aids in the task of rela-
tionship prediction.

3) UTILIZING CKG FOR MALWARE COMPARISON
There has been significant research done in the area of
comparing malwares. Some of these approaches use machine
learning after extracting features about these malwares [22].
One interesting approach generates graphs on instruction
traces of target executables [2]. The authors subsequently
used machine learning algorithms to classify various soft-
wares as benign or malicious. Other graph-based approaches
include building behavioral graphs of malwares, based on
system calls as demonstrated by Park et al. [38]. After
constructing these graphs, the authors propose a method of
subgraph matching to calculate similarity between malwares.
However, this approach would encapsulate only the system
behaviour at the site of attack. It does not necessarily capture
broader details like, what is the target software, or if this
malware is a part of a bigger campaign. It will not capture,
the attack pattern of the malware in natural language. The
CKG that we are building has technical details, as well
as broader details about campaigns launched, tools used,
softwares targeted, etc. Thus we can use the CKG, extract
triples about a malware, and compare it with the triples about
another malware and simply compare them, to cluster similar
malwares. Jiang et al. in their paper [16], have proposed a
method of recreating the semantic view of the host machine
in a virtual machine and running malware analysis in the
VM to tackle the problem of malware hiding from detection
software. The paper demonstrates how, by recreating the
semantic view of the host machine in the VM, it is possible
to identify ‘self-hiding’ malware by using file comparisons.
Although it is possible to detect newer varieties of malware
using the semantic view, it does not give us higher level
details about the malware. The semantic view that has been
recreated in the paper is focused on system specific metrics.
Some examples of these metrics are processes, memory,
files. Our CKG based on STIX, captures not only system
specific information, like filenames and hashes, it is also

able to capture a wide range of details which aids secu-
rity researchers. For example, by performing analysis in an
infected machine, we may be able to gather the information
that a file is suspiciously trying to connect to a remote IP
Address and is trying to transmit some information. AARs,
having already analyzed this may be able to assert that this
is due to the ‘command and control infrastructure’ that the
malware is using. Since we gather our information from
AARs, we identify these keywords and populate the CKG.
So a security researcher can easily search for all malwares
using ‘command and control’ infrastructure in our CKG and
will be presented with appropriate results.

III. METHODOLOGY
Our proposed pipeline takes as input, an AAR as shown
in Figure 2. The trained Malware Entity Extractor (MEE),
extracts entities from the AAR, and sends the extracted set
of entities to the Relationship Extractor (RelExt). The trained
relationship extractor then predicts the best relationship that
should exist between a pair of entities. The output of the
relationship extractor is the entity-relationship set which is
then used by the CKG module to assert it into a knowledge
graph.

If two AARs talk about the same malware, the entity-
relationship sets are fused together. The fused output of the
system is then asserted in the CKG. The main components of
our system are:

• MEE: A Malware Entity Extractor which has been
trained over annotated pieces of cybersecurity text,
to predict cybersecurity entities in an AAR.

• RelExt: A relationship extractor which has been
trained over cybersecurity data, to predict a relationship
between pairs of entities extracted by MEE.

• CKG: Cybersecurity Knowledge Graphs which are pop-
ulated with the entity relationship sets of the extracted
data. The CKG represents the unstructured data present
in the AAR into a structured ontology.

A. AFTER ACTION REPORT CORPUS
The dataset for our system includes AARs from various
sources, including cybersecurity companies mentioned in
Section II-A. We have curated a total of 474 reports, each
of which contains details about a cyber-attack. The total size
of our dataset is about 1 GB. All of our curated reports
used in our pipeline, are in English. Since, our MEE and
the vector embeddings for the entities used in RelExt, were
trained in a corpus of cybersecurity text in English, we only
curated reports which were consistent with the language
of training those components. Our corpus contains detailed
analysis reports from cybersecurity companies mentioned in
Section II-A. We also have notes on ‘Advanced Persistent
Threats’ which include reports from government agencies,
like ‘Intelligence Research Team’. The reports were in PDF
format and were converted to raw text for processing. Some
of the information embedded in the PDF files are in the form

211694 VOLUME 8, 2020

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

FIGURE 2. System Architecture including MEE, RelExt, and CKG.

of images. Detecting the information present in those images
is out of scope for our pipeline. We extract the raw text from
the Portable Document Format (PDF) files, using industry
standard tools and assert into a CKG.

B. CYBERSECURITY KNOWLEDGE EXTRACTION FROM
AFTER ACTION REPORTS
Syed et al. in their paper about the Unified Cybersecurity
Ontology [45] proposed a schema to represent cyber-threat
intelligence. UCO 1.0 was based on STIX 1.2 [13], which is
a standard to share cyber-threat information. UCO 2.0 was
based on STIX 2.0 [12], and it has refined the previous
version of STIX [39]. We build the schema of our CKG based
on the classes and relationships specified in UCO 2.0.

Some important classes present in UCO 2.0 which have
been used in our CKG, along with some additional new
classes to better represent cyber-threat intelligence from an
AAR are:

• Software: An entity that relates to a piece of code usually
used as tool such as Office or Adobe.

• Exploit-Target: An entity that relates to the site of the
attack usually targeted by a malware such as Android or
an operating system like Windows.

• Malware: An entity that refers to malicious code and/or
software which is inserted into a system.

• Indicator: An entity that contains a pattern which helps
the administrator to indicate an ongoing attack or mali-
cious activity.

• Vulnerability: An entity that refers to a patch of bug or
weakness that could be exploited by ill-intended users.

• Course-of-action: An entity that refers an action or set
of actions that either prevents or responds to an attack.

• Tool: An entity that refers to legitimate software that can
be used by threat actors for malicious activities.

• Attack-pattern: An entity that refers to steps that could
result in an active attack on an individual or group of
users.

• Campaign: An entity that refers to grouping of activities
that could lead to a malicious attack.

• Filename: A file which is used by the malicious software
to execute the attack

• Hash: A SHA-256 hash of an executable which may be
used to identify an attack

• IP Addresses: An IP Address or addresses which a mali-
cious software may be using in the course of the attack

In our previous work about CKG improvement, we have
defined the classes and the relationships, necessary for the
schema of our CKG. [39] Next, we discuss the 3 pipeline
systems- MEE, RelExt, and CKG in detail.

1) MALWARE ENTITY EXTRACTOR (MEE)
After compiling the AAR corpus, we pass each report to the
Malware Entity Extractor (MEE). The MEE has been trained
separately, with data from different sources, like, Common
Vulnerability and Exposures (CVE), security blogs, STIX
datasets, AARs, dark web posts, etc. The MEE is trained in

VOLUME 8, 2020 211695

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

FIGURE 3. Some of the classes and the relationships as shown by the VOWL visualizer.

FIGURE 4. Components of the Malware Entity Extractor (MEE) and its performance on an AAR excerpt.

such a way, that given a piece of text, it will predict an entity
class as output for every word in that piece of text. MEE
aims to detect the type of knowledge present in the AAR. Our
knowledge graph schema is based on Unified Cybersecurity
Ontology (UCO) 2.0 [45].

MEE is based on the Stanford NER [8], it takes as input,
the context of a particular word, for which it has been tasked
to find the label, and then tries to match possible labels it
can find for a word with a similar context in the training
set. It also factors in the structure of the sentence. From
the way MEE has been trained, it is clear that the model
performs better as a class predictor if it has seen that particular
word before. For AARs, we add sentences in the training

set, which gets appended to the training corpus. The corpus
also has sentences frommany other cybersecurity sources and
not just AARs. We discuss the performance of the MEE in
subsequent sections, the model performs well although it has
not encountered much of the text from an AAR in its training
set. This basically means that our MEE can perform well on
unseen data, which is critical as we want our MEE to perform
well on new AARs. We use these named entities to assert
the entities and their classes in the Cybersecurity Knowledge
Graph (CKG). Our MEE model has two sub-components-
A regular expression model to extract file names, hashes
and IP Addresses from the files and a Conditional Random
Field (CRF) component to identify various named entities and

211696 VOLUME 8, 2020

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

classes (See Section III-B). Next , we describe these two sub-
components.

a: REGULAR EXPRESSIONS
The first component uses regular expressions to find pieces of
text, which correspond to classes which do not need a context
to be identified, some of these are-
• Filename
• Hash
• IP Address

We form simple regular expressions which help us detecting
IP Addresses :

\.(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])\.(25[0-5]|2
[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|1
[0-9][0-9]|[1-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|

[1-9]?[0-9])

and a regular expression we to detect file hashes :

[0-9a-f] {5,40} \[0-9a-f]{10,64}

b: CONDITIONAL RANDOM FIELDS
We use a conditional random field (CRF) named entity recog-
nizer (NER) system from CoreNLP [25] to identify the mal-
ware entities, which requires contextual information.We used
6 ,184 sentences, which contained about 53,829 words from
various sources, including:
• Microsoft Security Bulletins [28]
• Adobe Security Blogs [1]
• CVE descriptors [30]
• Annotated After Action Reports (AARs)

We annotated a portion of them to form a training set.
We describe the various splits for training in Section IV-A.
Manning et al. in their paper [8] have described how the use
of Gibbs’ sampling instead of the traditional Viterbi encod-
ing facilitates capturing of non-local information. CRF is a
probabilistic graphical model, which encapsulates bidirec-
tional flow of information. In order to form Markov chains,
for Gibbs’ sampling to work, the CRF model converts the
graphical model into linear chains. This helps in capturing
non-local information, and ensuring label consistency. The
word, ‘Adobe Reader’, used in a sentence may not always
have ample contextual information for our model to infer
that it is a ‘Software’. But with the help of a CRF model
augmented by Gibbs’ sampling, even if there was non-local
evidence to suggest that ‘Adobe Reader’ is a ‘Software’, our
MEE is successfully able to detect the correct class of the
word. We discuss the performance of MEE and its compo-
nents in Section IV.

2) RELATIONSHIP EXTRACTOR (RelExt)
We take pairs of malware entities captured by our MEE and
pass it to the next stage of our pipeline, which establishes
a relationship existing between a given pair of entities. The
RelExt is essentially a neural network that takes two vectors
representing two entities extracted by ourMEE and predicts a

relationship between them. We train a Word2vec [29] model
separately and the extracted entities are passed to themodel to
generate their respective embeddings. The dimension of the
embeddings is 200. The RelExt neural network takes a pair
of embeddings as input. It has ab input layer, 3 hidden layers,
and a softmax layer as output. The dimension of the input
layer is 400 and the hidden layers have dimensions 200, 100,
and 50 respectively. The output softmax layer has a dimension
of 6.

Before we send entity pairs to RelExt, we perform
post-processing of candidate entity pairs based on the
pre-defined schema of our CKG. We only pass the entity
pairs, which can have a credible relationship between them,
and we discard the pairs of entities which, according to the
schema of our CKG, cannot have any relationship. For exam-
ple, there can be no direct relationship between a ‘Software’
and a ‘Filename’, according to our CKG, so we do not pass
entity-pairs which are of the type ‘Software’ and ‘Filename’
as candidates to our next stage. Since we have already defined
a schema for our CKG, we automatically filter out pairs of
entities which do not have credible relationships between
them. This component of our pipeline, is a neural network,
which takes in two entities as input and then predicts a
particular relationship which exists between the two entities.

The first stage for relationship extraction is to represent the
input entities in a vector form, which is suitable for neural
networks to perform matrix multiplication. The output of the
MEE (See Section III-B1), merely produces a class type,
or entity type, for a particular word, which is not sufficient for
neural networks. So we take the corpus we used for training
the MEE, and generate word2vec embeddings [29] for each
word. Word2Vec is a technique to represent words present in
a corpus. Word2vec algorithm captures the context of each
word in the corpus, and represents each word with a vector
of a specified length. We train word2vec on a corpus of
cybersecurity text from NVD [37], CVE [30], and STIX data
from TAXII servers [39], to represent each entity captured by
our MEE.

The second part of the relationship extractor is to train the
neural network with the help of a training set made from
NVD, CVE and STIX datasets. We have labeled pairs of
entities and the relationship which exists between them. Our
dataset consists of a total of 33,000 labeled relationships.
We split the dataset into a training set and validation set.
We use different split ratios: 80 (train), 20 (validation); 70
(train), 30 (validation); 90 (train), 10 (validation). Table 3,
and Table 4, contain the experimental results of RelExt on the
validation set. After we have a trainedmodel that is capable of
producing a vector output for any input word, we take the enti-
ties predicted from the AARs and generate the embeddings
for various entities. We then train the neural network model
RelExt to produce the output class of relationship that exists
between the pairs of embeddings. We evaluate our Relext
model in Section IV-B.
Sample output for the RelExt component, here the neural

network produces the relationship between cyber entities -

VOLUME 8, 2020 211697

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

• ‘Hellsing’(Malware)-uses-‘suspicious email’
• ‘Hellsing’ (Malware)- uses - ‘015915BB..’ (Hash)

This component’s output is an Entity-Relationship Set, which
we will use in the next stage to populate the CKG.

C. CYBERSECURITY KNOWLEDGE GRAPH
ASSERTION
After we generate the entity-relationship set, which is the
output of the relationship extraction component of our sys-
tem, we are able to assert this data to our Cybersecurity
Knowledge Graph. We base our knowledge graph schema
on STIX (Structured Threat Intelligence) [12] and use UCO
2.0 [45] to provide cybersecurity domain knowledge to the
system. The output of the relation extraction is a set of
semantic triples and the types of the individual entities.
Entity classes, relations, and the specific classes which act
as a domain or range of each relation describe the schema
of a knowledge graph. The following is a description of
the schema for our CKG. Each relations in our CKG is
mentioned in the following list, along with its domain
and range.

• attributedTo: Domain:Malware or Tool or Vulnerability.
Range:Campaign.

• indicates: Domain:Indicator.
Range:Malware or Tool.

• hasProduct: Domain:Software.
Range:Software

• mitigates: Domain:Course-of-Action.
Range:Malware or Tool or Vulnerability.

• hasVulnerability: Domain:Software or Exploit-Target.
Range:Vulnerability.

• uses: Domain:Malware or Tool or Attack-Pattern.
Range:Malware or Tool or Vulnerability.

D. CYBERSECURITY KNOWLEDGE GRAPH (CKG)
FUSION
In our dataset, we encounter multiple AARs describing the
same attacks or malwares. Ideally, we would like to fuse
knowledge extracted from different AARs describing the
same malware to create a more robust CKG.

If an AAR entity has been already asserted in our CKG
and an exact match is available, we simply declare a
‘owl:SameAs’ assertion and fuse the graph entities. Here we
declare that the two entities nodes and subgraphs are the
same. If there is no exact match for a newly discovered AAR
entity, we calculate the term frequency–inverse document
frequency (TF-IDF) scores to calculate similarity between the
current document and previously processed AARs. We also
calculate string similarity between new entities and entities
which are already asserted using various ‘edit-distance’ met-
rics. If there is a close match, we fuse them. Fusion helps us
discover knowledge about a malware or a cyber-entity which
is found in multiple AAR sources. This makes our CKGmore
robust, with more information about cyber-entities ingested.
Here is an example query on the ‘unfused’ CKG.

SELECT ?x WHERE {
?x a CKG: Malware ;

CKG: u s e s
CKG:588 f41bbc117346355113f . }

The above query returns:

He l l s i n g

The same query on the ‘fused’ CKG returns:

SELECT ?x WHERE {
?x a FusedCKG : Malware ;

FusedCKG : u s e s
FusedCKG :588 f41bbc117346355113f . }

The above query returns:

He l l s i n g , XWeber

In figure 5 we see how the Hellsing malware and its
attributes are identified and asserted in the CKG. We can see
that ‘Hellsing’ ‘uses’ different files like ‘cmd.exe’, ‘test.exe’,
and ‘xKat.exe’. This was created using the entity relation-
ship sets from two reports about the same malware. One of
them mentioned the filename ‘xkat.exe’ and the other report
mentioned a filename called ‘xKat.exe’. An edit-distance
algorithm helped us calculate the similarity between the two
entities and we used an ‘owl:SameAs’ relation to assert that
those two individuals were identical. All relationships held
by one of the nodes will hold for the other as a result of the
‘owl:SameAs’ assertion. We also see other entities identified.
For example, ‘7zip archive’ is a ‘Tool’ which is used by the
Hellsing malware.

IV. EXPERIMENTS AND RESULTS
To evaluate our entire system, we ran experiments on vari-
ous individual components. The first two components in our
system are MEE and RelExt. Since both these components
are classification tasks we use standard classification scoring
metrics like precision, recall, and F-1 scores.

A. MEE EVALUATION
The corpus for our Malware Entity Extractor (MEE) com-
prises of security bulletins from Adobe [1] and Microsoft
[28], CVE descriptions [30], and annotated After Action
Reports. We performed evaluations on two types of datasets:
• On a split of the entire corpus. This evaluation set
contains a mixed bag of sentences from all the sources
mentioned. There is no overlap between the training
set and the test set. We perform a 10 fold evaluation
and averaged the results to produce precision, recall,
and F-1 scores. The entire dataset consisted of about
3600 sentences.We used 720 sentences (20%) for testing
and the rest for training. In Table 1, we can see the
precision,recall, and f-1 scores for each individual class
that is present in the test set.

• Specifically on a set of sentences from After Action
Reports. We annotate somemore sentences from various

211698 VOLUME 8, 2020

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

FIGURE 5. Hellsing malware entities in the Cybersecurity Knowledge Graph.

TABLE 1. Precision, Recall, and F-1 score for Entity Classes evaluated
across the test sets of the corpus.

TABLE 2. Precision, Recall, and F-1 score for Entity Classes evaluated
across the test sets of after action reports.

After Action Reports to form a test set specifically to
evaluate MEE’s performance on this type of data. The
test set consisted of 50 annotated sentences chosen at
random from After Action Reports. These were not
present in the training set, which had the 3600 sentences.
In Table 2, we can see the precision, recall, and F-1
scores of the classes which were present in the test set of
the AAR corpus.

It should be noted here that the average scores for the test
set of the AAR corpus, is slightly lower than the scores for
the test set of the entire training corpus. This is because the
sentences in blogs, CVE, Microsoft and Adobe Security are
more structured and follows a fixed format. This allows the
CRF based MEE to easily detect patterns in the sentences,
as compared to detecting sentences from the AAR test set.
The sentences in the AAR reports are much more complex
and diverse, making entity detection for the MEE, more
challenging.

B. RelExt EVALUATION
We evaluated the RelExt in accordance with the method
stated by Pingle et al. [39]. The total dataset comprises
of 90,000 annotated relationships from Common Weakness
Enumeration [31], triples extracted from Trusted Automated
eXchange of Indicator Information (TAXII) [14] servers,
annotated triples from the same corpus of Microsoft Secu-
rity Bulletins, Adobe Security Bulletins, and After Action
Reports.

Although there is very limited prior work for relation
extraction in the domain of cybersecurity [17] , it is difficult
for us to compare our results with the results obtained by
other approaches. This is because there is no common dataset
for comparison, nor are there agreed upon relationships to
extract. Since we define our own schema, we have a set of
pre-defined relationship classes for the RelExt pipeline.

Jones et al. [17], discuss a relation extraction pipeline for
cybersecurity. However, the dataset that they have chosen is
comprised of NVD [37] feeds and CVE [30] data. However,
these data feeds are simple and they have an underlying
structure present in them. This is not the case for our dataset,
which not only comprises of NVD and CVE feeds but also
sentences from long technical reports which are much more
complex, making it more difficult for basic NLP techniques
to successfully perform relation extraction on our dataset.

VOLUME 8, 2020 211699

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

TABLE 3. Precision, Recall, and F-1 score for relationship classes.

TABLE 4. Accuracy for various splits on training and testing data.

In Table 3, we can see the precision, recall, and F-1 scores
of each relationship class, averaged across all types of splits
(80-20, 90-10, 70-30). In Table 4, we can see the accuracy
scores of all classes on each type of split.

C. CKG EVALUATION
Evaluation metrics for knowledge graphs are an open chal-
lenge. Some of the related work that has been done in
this area, concentrated on validating RDF triples, against
supporting or contradicting knowledge found from various
other sources [23]. Another work [10] describes the cost of
knowledge graph evaluation. It talks about various sampling
methods which can help us choose triples at random and
verify the correctness of those triples. The paper calculates
the cost of different sampling and evaluation methods, based
on the number of samples we choose for evaluation. In our
evaluation methodology, we use a fixed number of triples
for verification, selected at random. It should be noted that
the components of our system leading to the CKG (MEE
and RelExt) have been evaluated separately. The evaluation
scores of these components give us an idea about the cor-
rectness of the CKG triples. However, since the CKG is the
final output of our pipeline, wewant to separately evaluate the
CKG. So, in order to evaluate the quality of the knowledge
graph created, we use human evaluators. The evaluator asks
questions in natural language. We translate these questions
to CKG queries, and we retrieve the results of these queries
and map them to the information a human can find, from
a particular AAR document. This method of evaluation a
knowledge graph using a domain expert human evaluator is
considerably expensive and slow.

We made a list of about 25 queries and asked the evaluator
what entities have been correctly identified by the system.
An example of such query is as follows-

Is there any software that is mentioned which has some
exposed vulnerabilities?

Descriptive Logic Query: Software, hasVulnerability some
Vulnerability

Answer: Adobe Flash Player, WindowsOSX
SPARQL Query: SELECT ?x WHERE { ?x a

Software;:hasVulnerability ?y. ?y a Vulnerability.}

TABLE 5. CKG evaluation.

Table 5, shows the average evaluation results from the
After Action Reports. Each of these queries produces a set of
entities as result. We see how many of these entities correctly
follow the ground-truth knowledge present in various AARs.
48% of correctly identified entities essentially means that
48%of all entities returned by our set of queries have captured
correctly the knowledge presented in the report. Only 17% of
the data is incorrect in our CKG.

D. REASONING
Our pipeline’s objective is to capture data from AARs so that
security engineers can use it without spending additional time
reviewing these reports to extract the data manually. Once
the CKG has been populated, we can leverage a robust query
mechanism that is available to the end users to retrieve desired
entities. The standard way of querying a CKG is through
SPARQL [46] queries which we show in this section.

Suppose an end user wants to know what ‘Tool’ two mal-
wares use in the fused CKG. The query for that in SPARQL
would be as follows:

SELECT DISTINCT ?x ?y ? z where {
?x a FusedCKG : Malware ;

FusedCKG : u s e s ? z .
? z a FusedCKG : Tool .
?y a FusedCKG : Malware ;

FusedCKG : u s e s ? z .
FILTER (? x != ?y) . }

The above query returns:

‘ Dark Ca raca l ’ ‘CrossRAT ’ ‘ Java ’
‘ He l l s i n g ’ ‘ Tro jan ’ ‘Windows 7 Dr ive r ’

The query asks for distinct pairs of entities in the same
namespace ‘FusedCKG’, which use the same ‘Tool’. The
response says both ‘Dark Caracal’ and ‘CrossRAT’ use
‘Java’, and ‘Hellsing’ and ‘Trojan’ use ‘Windows 7 driver’.

Another example can be about a user whowants to focus on
a particular filename. The user wants to list out all malwares
which use a particular file ‘test.exe’. The query that the user
can use, is as follows:

SELECT ?x WHERE {
?x a FusedCKG : Malware ;

FusedCKG : u s e s FusedCKG : t e s t . exe . }

The above query returns:

’ He l l s i n g ’
’XWeber ’

The query asks for all entities of the type malware, in the
namespace of ‘FusedCKG’ which ‘uses’ the entity ‘test.exe’
in the same namespace.

211700 VOLUME 8, 2020

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

Several AARs may be released by different organizations
describing a particular malware. Each AAR about a particular
malware may be the result of some ‘focused’ analysis done
on the malware. For example, we have multiple AARs about
the spyware ‘Pegasus’. Some of the AARs focus only on the
behavior of the malware in Android operating system. On the
other hand some reports are focusing on the behavior of
the malware on all mobile operating systems. Fusing knowl-
edge from different AARs helps us to aggregate knowledge
acquired from individual AARs. If we run the following
query on a CKG with knowledge from just one AAR about
‘Pegasus’:

SELECT ?x WHERE {
CKG: Pegasus CKG: u s e s ?x .
?x a CKG: Tool . }

The above query running on a CKG with no fusion returns:

‘SMS’
‘WiFi ’

The same query when ran on the fused CKG returns:

‘SMS’
‘WiFi ’
‘Camera ’
‘ Keylogger ’

Similarly, we can discover more knowledge about the Pega-
sus malware by merging knowledge from multiple reports:

SELECT ?x WHERE {
CKG: Pegasus CKG: u s e s ?x .
?x a CKG: Exp l o i t−Ta r g e t . }

On a CKG without fusion this query returns

‘ Android ’

The same query when run on a fused CKG returns

‘ Android ’
‘ iOS ’

V. CONCLUSION AND FUTURE WORK
We successfully created a pipeline of novel systems which
automatically extracts cybersecurity entities from After
Action Reports (AARs). The system identifies how each pair
of those entities are related, and asserts them into a Cyberse-
curity Knowledge Graph (CKG). The pipeline fuses knowl-
edge extracted from one AAR with other AARs that describe
the same attack. Our CKG comes with reasoning capabilities,
i.e, it helps end users execute queries and find similarities
between different cyber-attacks. We trained our MEE and
RelExt on cybersecurity text which is relatively shorter and
has a fixed structure, like text from CVEs, Microsoft Security
Bulletins, Adobe Security Bulletins. We showcased that by
appending a small number of sentences from AARs to our
corpus of other related cybersecurity text, we can create
generalized MEE and RelExt. MEE and RelExt perform well

on unseen text data from AARs, are able to extract entities,
and establish correct relationships between them. The fact
that our training set contains text data from a diverse range of
sources, makes our pipeline robust. We also showcased that
the results we get by executing the same queries on the fused
CKG has more information, than the results we get on the
same query executed on the unfused knowledge graph. This
proves that the quality of the knowledge graph describing all
AARs is improved by the process of fusion. This improve-
ment can then be leveraged by a security analysts, who can
use this information to better protect an organization.We have
demonstrated that it is possible to extract information from
AARs, without having to train our extractor models exclu-
sively on these reports.

In the future, it will be possible to apply neural models to
extract vector embeddings of entities in our CKG, and use it
for malware attribution.We can also extend the schema of our
ontology to capture more information about cyber-attacks,
which would lead to more informed resolutions by our CKG
reasoner.

REFERENCES
[1] Adobe. (May 2020). Adobe Security Bulletin. [Online]. Available:

https://helpx.adobe.com/security.html
[2] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, ‘‘Graph-based

malware detection using dynamic analysis,’’ J. Comput. Virol., vol. 7, no. 4,
pp. 247–258, Nov. 2011.

[3] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, and O. Yakhnenko,
‘‘Translating embeddings for modeling multi-relational data,’’ in Proc.
26th Int. Conf. Neural Inf. Process. Syst., vol. 2, 2013, pp. 2787–2795.

[4] R. A. Bridges, C. L. Jones, M. D. Iannacone, K. M. Testa,
and J. R. Goodall, ‘‘Automatic labeling for entity extraction in
cyber security,’’ 2013, arXiv:1308.4941. [Online]. Available:
http://arxiv.org/abs/1308.4941

[5] J. P. C. Chiu and E. Nichols, ‘‘Named entity recognition with bidirectional
LSTM-CNNs,’’ Trans. Assoc. Comput. Linguistics, vol. 4, pp. 357–370,
Dec. 2016.

[6] Cyberscoop. (May 2018). Notpetya Malware. [Online]. Available:
https://cyberscoop.com/nuance-communications-says-notpetya-
ransomware-cost-it-98-million-since-june/

[7] A. Ekbal and S. Bandyopadhyay, ‘‘Named entity recognition using support
vector machine: A language independent approach,’’ Int. J. Elect. Comput.
Eng., World Acad. Sci., Eng. Technol., pp. 589–604, 2010.

[8] J. R. Finkel, T. Grenager, and C. Manning, ‘‘Incorporating non-local infor-
mation into information extraction systems by Gibbs sampling,’’ in Proc.
43rd Annu.Meeting Assoc. Comput. Linguistics (ACL), 2005, pp. 363–370.

[9] FireEye. (May 2020). Fireeye Reports. [Online]. Available:
https://usa.kaspersky.com/enterprise-security/apt-intelligence-reporting

[10] J. Gao, X. Li, Y. E. Xu, B. Sisman, X. L. Dong, and J. Yang, ‘‘Efficient
knowledge graph accuracy evaluation,’’ Proc. VLDB Endowment, vol. 12,
no. 11, pp. 1679–1691, Jul. 2019.

[11] H. Gasmi, A. Bouras, and J. Laval, ‘‘LSTM recurrent neural networks for
cybersecurity named entity recognition,’’ in Proc. 13th Int. Conf. Softw.
Eng. Adv., 2018, p. 11.

[12] Oasis Group. (May 2013). STIX 2.0 Documentation. [Online]. Available:
https://oasis-open.github.io/cti-documentation/stix/examples.html

[13] Oasis Group. (May 2018). STIX 1.0 Documentation. [Online]. Available:
https://stixproject.github.io/documentation/

[14] Oasis Group. (May 2019). TAXII. [Online]. Available: https://oasis-
open.github.io/cti-documentation/taxii/intro

[15] G. Ji, K. Liu, S. He, and J. Zhao, ‘‘Knowledge graph completion with
adaptive sparse transfer matrix,’’ in Proc. 30th AAAI Conf. Artif. Intell.,
2016, pp. 1–7.

[16] X. Jiang, X. Wang, and D. Xu, ‘‘Stealthy malware detection through vmm-
based ‘out-of-the-box’ semantic view reconstruction,’’ in Proc. 14th ACM
Conf. Comput. Commun. Secur., 2007, pp. 128–138.

VOLUME 8, 2020 211701

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

[17] C. L. Jones, R. A. Bridges, K. M. T. Huffer, and J. R. Goodall, ‘‘Towards a
relation extraction framework for cyber-security concepts,’’ in Proc. 10th
Annu. Cyber Inf. Secur. Res. Conf., 2015, pp. 1–4.

[18] K. P. Joshi, A. Gupta, S. Mittal, C. Pearce, and T. Finin, ‘‘ALDA: Cognitive
assistant for legal document analytics,’’ in Proc. AAAI Fall Symp. Cognit.
Assistance Government Public Sector Appl., 2016, pp. 1–4.

[19] M. Joshi, S. Mittal, K. P. Joshi, and T. Finin, ‘‘Semantically rich, oblivious
access control using ABAC for secure cloud storage,’’ in Proc. IEEE Int.
Conf. Edge Comput. (EDGE), Jun. 2017, pp. 142–149.

[20] Kaspersky. (May 2020). Kaspersky Reports. [Online]. Available:
https://usa.kaspersky.com/enterprise-security/apt-intelligence-reporting

[21] N. Khurana, S. Mittal, A. Piplai, and A. Joshi, ‘‘Preventing poisoning
attacks on AI based threat intelligence systems,’’ in Proc. IEEE 29th Int.
Workshop Mach. Learn. Signal Process. (MLSP), Oct. 2019, pp. 1–6.

[22] J. Liu, Y. Wang, and Y. Wang, ‘‘The similarity analysis of malicious
software,’’ in Proc. IEEE 1st Int. Conf. Data Sci. Cyberspace (DSC),
Jun. 2016, pp. 161–168.

[23] S. Liu, M. d’Aquin, and E. Motta, ‘‘Measuring accuracy of triples
in knowledge,’’ in Proc. 1st Int. Conf. Lang., Data, Knowl. Cham,
Switzerland: Springer, 2017, pp. 343–357.

[24] C. Ma, H. Zheng, P. Xie, C. Li, L. Li, and S. Luo, ‘‘Neural sequence
labeling with linguistic features,’’ in Proc. 12th Int. Workshop Semantic
Eval., 2018, pp. 707–711.

[25] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. Mcclosky, ‘‘The stanford corenlp natural language processing toolkit,’’
in Proc. ACL, Syst. Demonstrations, 2014, pp. 55–60.

[26] A. McDole, M. Abdelsalam, M. Gupta, and S. Mittal, ‘‘Analyzing CNN
based behavioural malware detection techniques on cloud IaaS,’’ in Proc.
Int. Conf. Cloud Comput. (CLOUD), 2020, pp. 1–17.

[27] A. McDole, M. Abdelsalam, M. Gupta, S. Mittal, and M. Alazab, ‘‘Deep
learning techniques for behavioural malware analysis in cloud IaaS,’’
in Malware Analysis using Artificial Intelligence and Deep Learning.
Springer, 2020.

[28] Microsoft. (May 2020). Microsoft Security Bulletin. [Online]. Available:
https://msrc-blog.microsoft.com/tag/security-bulletin/

[29] T. Mikolov, I. S. K. Chen, G. Corrado, and J. Dean, ‘‘Distributed represen-
tations of words and phrases and their compositionality,’’ in Proc. 26th Int.
Conf. Neural Inf. Process. Syst., vol. 2, 2013, pp. 3111–3119.

[30] MITRE. (May 2020). CVELIST Project. [Online]. Available:
https://github.com/CVEProject/cvelist

[31] MITRE. (May 2020). CWE MITRE. [Online]. Available:
https://cwe.mitre.org/data/index.html

[32] S. Mittal, P. K. Das, V. Mulwad, A. Joshi, and T. Finin, ‘‘CyberTwitter:
Using Twitter to generate alerts for cybersecurity threats and vulnera-
bilities,’’ in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining
(ASONAM), Aug. 2016, pp. 860–867.

[33] S. Mittal, A. Joshi, and T. Finin, ‘‘Thinking, fast and slow: Combining
vector spaces and knowledge graphs,’’ 2017, arXiv:1708.03310. [Online].
Available: http://arxiv.org/abs/1708.03310

[34] S. Mittal, A. Joshi, and T. Finin, ‘‘Cyber-all-intel: An AI for security
related threat intelligence,’’ 2019, arXiv:1905.02895. [Online]. Available:
http://arxiv.org/abs/1905.02895

[35] S. N. Narayanan, A. Ganesan, K. Joshi, T. Oates, A. Joshi, and T. Finin,
‘‘Early detection of cybersecurity threats using collaborative cognition,’’
in Proc. IEEE 4th Int. Conf. Collaboration Internet Comput. (CIC),
Oct. 2018, pp. 354–363.

[36] L. Neil, S. Mittal, and A. Joshi, ‘‘Mining threat intelligence about open-
source projects and libraries from code repository issues and bug reports,’’
in Proc. IEEE Int. Conf. Intell. Secur. Informat. (ISI), Nov. 2018, pp. 7–12.

[37] NIST. (May 2020). NVD. [Online]. Available: https://nvd.nist.gov/
[38] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel, ‘‘Fast malware clas-

sification by automated behavioral graph matching,’’ in Proc. 6th Annu.
Workshop Cyber Secur. Inf. Intell. Res. (CSIIRW), 2010, pp. 1–4.

[39] A. Pingle, A. Piplai, S. Mittal, A. Joshi, J. Holt, and R. Zak, ‘‘RelExt: Rela-
tion extraction using deep learning approaches for cybersecurity knowl-
edge graph improvement,’’ inProc. IEEE/ACM Int. Conf. Adv. Social Netw.
Anal. Mining, Aug. 2019, pp. 879–886.

[40] A. Piplai, S. Mittal, M. Abdelsalam, M. Gupta, A. Joshi, and T. Finin,
‘‘Knowledge enrichment by fusing representations for malware threat
intelligence and behavior,’’ in Proc. IEEE Int. Conf. Intell. Secur. Inform.,
2020.

[41] R. Manikandan, K. Madgula, and S. Saha, ‘‘Cybersecurity text analysis
using convolutional neural network and conditional random fields,’’ in
Proc. 12th Int. Workshop Semantic Eval., 2018, pp. 868–873.

[42] P. Ranade, S.Mittal, A. Joshi, andK. Joshi, ‘‘Using deep neural networks to
translate multi-lingual threat intelligence,’’ in Proc. IEEE Int. Conf. Intell.
Secur. Informat. (ISI), Nov. 2018, pp. 238–243.

[43] S. R. Vadapalli, G. Hsieh, and K. S. Nauer, ‘‘Twitterosint: Automated
cybersecurity threat intelligence collection and analysis using Twitter
data,’’ in Proc. Int. Conf. Secur. Manage., 2018, pp. 220–226.

[44] Homeland Security. (May 2020). After Action Report Defintion. [Online].
Available: https://emilms.fema.gov/IS130a/groups/57.html

[45] Z. Syed, A. Padia, T. Finin, L. Mathews, and A. Joshi, ‘‘UCO: A unified
cybersecurity ontology,’’ in Proc. AAAI Workshop Artif. Intell. Cyber
Secur., 2016, pp. 1–8.

[46] W3. (May 2020). Sparql Query Language. [Online]. Available:
https://www.w3.org/TR/rdf-sparql-query/

[47] Z.Wang, J. Zhang, J. Feng, and Z. Chen, ‘‘Knowledge graph embedding by
translating on hyperplanes,’’ in Proc. 28th AAAI Conf. Artif. Intell., 2014,
pp. 1112–1119.

[48] Wired. (Jul. 2018). Worst Cybersecurity Breaches. [Online]. Available:
https://www.wired.com/story/2018-worst-hacks-so-far/

ARITRAN PIPLAI received the B.E. degree in
computer science from Jadavpur University, India.
He is currently pursuing the Ph.D. degree with
the University of Maryland at Baltimore County
(UMBC). He works with the Ebiquity Laboratory,
Department of Computer Science, UMBC. His
main research interest is the application of artifi-
cial intelligence to the field of cybersecurity.

SUDIP MITTAL (Member, IEEE) received the
B.Tech. and M.Tech. degrees in computer sci-
ence from IIIT Delhi and the Ph.D. degree in
computer science from the University of Mary-
land at Baltimore County (UMBC). He worked
with the Accelerating Cognitive Cyber Security
Research Laboratory (ACCL), Ebiquity Research
Lab, and the Center for Hybrid Multicore Pro-
ductivity Research (CHMPR). He is currently an
Assistant Professor of computer science with the

University of North Carolina at Wilmington (UNCW). His primary research
interests are cybersecurity and artificial intelligence. His goal is to develop
the next generation of cyber defense systems that help protect various orga-
nizations and people.

ANUPAM JOSHI (Fellow, IEEE) received the
B.Tech. degree from IIT Delhi in 1989, and the
M.S. and Ph.D. degrees from Purdue University,
in 1991 and 1993, respectively. He is currently the
Oros Family Professor and the Chair of the Com-
puter Science and Electrical Engineering Depart-
ment, University ofMaryland at Baltimore County
(UMBC). He is also the Director of the Center
for Cybersecurity, UMBC. His research interests
are in the broad area of networked computing

and intelligent systems. His primary focus has been on data manage-
ment and security/privacy in mobile/pervasive computing environments,
and policy-driven approaches to security and privacy. He has published
over 250 technical articles, filed and been granted several patents, and has
obtained research support from NSF, NASA, DARPA, the US DoD, NIST,
IBM, Microsoft, Qualcom, Northrop Grumman, and Lockheed Martin.

211702 VOLUME 8, 2020

A. Piplai et al.: Creating Cybersecurity Knowledge Graphs From Malware AARs

TIM FININ received the degrees from MIT and
the University of Illinois at Urbana–Champaign.
He is currently the Willard and Lillian Hackerman
Chair of Engineering and a Professor of computer
science and electrical engineering with the Univer-
sity of Maryland at Baltimore County (UMBC).
He has over 40 years of experience in applying AI
to problems in information systems and language
understanding. He has held positions at UMBC,
Unisys, the University of Pennsylvania, and the

MITAI Laboratory. His current research interests include knowledge graphs,
analyzing and extracting information from text, and cybersecurity. He is
a fellow of ACM and AAAI. He was a recipient of the IEEE Technical
Achievement Award.

JAMES HOLT is currently a Researcher with
the Laboratory for Physical Sciences, where he
is focused on applying artificial intelligence and
machine learning techniques to address cyberse-
curity problems.

RICHARD ZAK currently works as a Senior
Lead Technologist with Booz Allen Hamilton and
Laboratory of Physical Sciences. His research
work involves using machine-learning algorithms
address cybersecurity problems, with a focus on
malware.

VOLUME 8, 2020 211703

