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Abstract: To investigate the use of linear diode laser bars to optically 
stretch cells and measure their mechanical properties, we present numerical 
simulations using the immersed boundary method (IBM) coupled with 
classic ray optics. Cells are considered as three-dimensional (3D) spherical 
elastic capsules immersed in a fluid subjected to both optical and 
hydrodynamic forces in a periodic domain. We simulate cell deformation 
induced by both single and dual diode laser bar configurations and show 
that a single diode laser bar induces significant stretching but also induces 
cell translation of speed < 10 µm/sec for applied 6.6 mW/µm power in 
unconfined systems. The dual diode laser bar configuration, however, can 
be used to both stretch and optically trap cells at a fixed position. The net 
cell deformation was found to be a function of the total laser power and not 
the power distribution between single or dual diode laser bar configurations. 
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1. Introduction 

In 1970, Ashkin demonstrated optical trapping as a non-contact manipulation technique [1]. In 
this, a single laser beam is focused to a diffraction-limited spot with high numerical-aperture 
optics allowing micron-sized particles or cells [2] to be trapped in solution. Recently, the 
technique has been extended beyond the simple trapping of cells to the direct probe of 
individual cell properties [3] and their deformation [4], stretching [5], folding, and rotation 
[6,7]. To extract quantitative information from this, different approaches have been employed 
including drag-based deformation [8], attaching beads [9], or multiple optical tweezers to 
deform individual cells [10–12]. Käs and associates have recently developed an optical 
trapping based stretcher in which they trap individual cells along a single axis between two 
counter-propagating diverging beams [5,11]. All of these techniques have demonstrated the 
utility and advantage of optical trapping for determining cell deformability; however, they do 
not lend themselves to high-throughput measurement as they focus on individual cells within 
static systems. More recently, Applegate et al. have implemented a significantly simplified 
optical trapping method that employs linear diode laser bars to induce optical forces within 
confining microfluidic systems of speed 300-700 µm/s depending on particle size [13]. This 
approach uses only a single bar-shaped laser beam for cell manipulation and sorting within 
flowing systems, eliminating the need for expensive associated optics to provide an easily 
integrated tool within microscale platforms. In recent work, Sraj et al. used this technique to 
both deform and stretch cells at a speed of 50 µm/s [14]. 

In this manuscript, we simulate the implementation of these linear optical sources for 
inducing deformation as optical stretchers. Here we compare their use in a single linear diode 
laser bar configuration and an opposed dual-bar configuration to determine the relative 
effectiveness of applying individual versus opposing force configurations. The numerical 
method we employ is the immersed boundary method (IBM) introduced by Peskin [15], used 
extensively to simulate fluid-structure interaction in biological systems [15–18], but now 
coupled with a ray-optics technique [5,19]. In the IBM, a finite element model of the capsule 
membrane is used to relate local membrane forces to local membrane deformation. Details of 
the numerical implementation and validation of our model can be found in our previous work 
[16]. Here, the initial force distribution is found using the governed mathematical model [5], 
now applied to the cell membrane where deformation is observed. 

2. Numerical method 

We model the cell membrane as an infinitely thin hyperelastic neo-Hookean material with 
negligible bending resistance. The neo-Hookean elastic model is commonly used for capsule 
deformation due to its simplicity and is characterized solely by the membrane stiffness Eh 
[16]. An unstressed spherical cell of initial radius a is first placed in an incompressible 
Newtonian fluid with the same density ρ and viscosity µ as the cytoplasmic fluid but with a 
different index of refraction. The diode laser bar emits light that induces optical forces on the 
cell surface due to the refractive index mismatch and the resulting light refraction and 
reflection at the interface. This leads to a transient cell deformation until membrane elastic 
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forces balance the applied optical forces unless the applied load is too large, in which case the 
cell membrane will rupture. In addition, this induced transient deformation of the cell induces 
fluid flow that, in turn, leads to viscous stresses that influence the characteristic time for 
capsule deformation: 

 
2

0 .
optical

a
t

F

µ
=   (1) 

Modeling of cell optical stretching forces has only recently been discussed [20,21]. In our 
work, the traditional ray optics approach used to determine the optical forces on large 
spherical systems is extended to calculation of local stress profiles across the front and back 
sphere surfaces as a function of refractive index and incident laser beam profile. This 
approach is valid when the object is much larger that the wavelength of the light [22]. For 
spherical objects this condition is given by 2πa/λ >> 1 where λ is the laser wavelength. For 
cells of radius greater than 3 µm and laser wavelengths less than 1 µm this condition is 
satisfied [5]. Commercially available linear diode laser bars 1 µm in width consist of a 
number of individual emitters along the length of the diode bar separated by a finite gap. 
These individual sources emit light with a small divergence angle, generally ~10°. To simplify 
our ray optics calculations, we model the diode laser bar light source as an infinite number of 
parallel rays, an approximation that works well for these small divergence angles. As the rays 
refract, change in path leads to a change in the momentum carried by the light that is 
transferred to the interface through conservation. When the interface is an object, its surface 
absorbs this momentum and experiences a force proportional to the laser power via Newton's 
2nd law. Multiple reflections are neglected here as their effects rapidly diminish with the 
reflectance R < 0.005 for all rays. To simplify calculation we consider the front and back 
surface of the cell separately. The parallel ray hits the front surface of sphere with an angle α 
and the refracted angle found using Snell’s law, n1sinα = n2sinβ, as illustrated in Fig. 1(a) and 
detailed in [21]. The calculated optical forces imposed by the diode laser bar optical stretchers 
are integrated into the IBM by applying them on the nodes of the fully 3D membrane finite 
element grid. These forces are assumed constant as the cell deforms [5]. 

The net optical force Foptical on a cell surface can be written in this form: 

 ,m
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n PQ
F

c
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where 
m

n  is the buffer medium index of refraction, P the total laser power, Q the 

dimensionless trapping efficiency and c the speed of light in vacuum. For simplicity Q is 
calculated following [5] where it is decomposed into two components (parallel and 
perpendicular to the laser axis) as follows: 
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where n = 
p

n /
m

n  and
p

n  is the cell’s refractive index. The magnitude of trapping efficiency 

Q at any point is then found using 2 2( ) ( )  Q Q Q⊥= + � and the total trapping efficiency and 

corresponding total force can be found through surface integration. 
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Fig. 1. Model of the diode laser bar geometry used and the ray optics approach on a spherical 
cell in the (a) y-z plane and (b) x-z plane. The position and dimension of the diodes are not 
drawn to scale 

Cell deformation (asymmetry) is characterized by the Taylor deformation parameter, 

 
A B

DF
A B

−
=

+
  (5) 

where A and B are the lengths of the major and minor axes of elongated cells. The 
deformation parameter DF does not describe the local strain distribution within the capsule 
membrane but instead provides a macroscopic description of the state of capsule deformation. 

3. Physical and computational values 

We consider a 3D elastic spherical capsule of radius a = 3 µm using a neo-Hookean elastic 
model of membrane stiffness Eh = 0.1 dyne/cm. The cell is immersed in a homogeneous fluid 
having the properties of water with a density ρ = 1 g/cm

3
 and dynamic viscosity µ  = 0.8 cP. 

The index of refraction is 1.37 for the fluid inside the cell and 1.33 outside the cell. The 
optical source is a linear diode laser bar of dimension 200 × 1 µm

2
 [Fig. 1(a) and (b)] and λ = 

833 nm [13,14]. The 200 µm length lies in the y-axis and the laser beam direction is along the 
z-axis. The induced optical forces from Eqs. (3) and (4) are in the x-z plane. Figure 2(a) and 
2(b) provide a 2D side view and color map of the optical stress distribution on a 3D cell 
membrane in single and symmetric dual diode laser bar configurations at the same total laser 
power. The centerline of the 1 µm wide optical beam from the diode laser bar (red square) 
intersects the cell equator [see Fig. 1(b)]. The long axis of length 200 µm is in and out of the 
plane. As expected, a single diode laser bar produces a net translating force, Foptical in the z-
direction, pushing the cell away from the light source [Fig. 2(a)]. For the dual trap case, the 
diode laser bars are positioned symmetrically on opposite sides of the cell in the same plane 
and the total net force is zero; however the cell is now subjected to stretching forces on both 
the front and back sides [Fig. 2(b)]. The fluid domain is a cube with a side that is 8x the cell 
radius with periodic boundary conditions. The uniform grid used in the simulations has 64

3
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nodes with a grid spacing of a/8 while the finite element cell grid has 25600 triangular 

elements. A time step of 10
−5

 sec was used to ensure numerical stability. 

 

Fig. 2. 2D side view of the optical stress distribution color map on a 3D cell membrane of 
radius a from a 1 µm wide (a) single diode laser bar (red square) with long axis in and out of 
the figure along the y-direction. The net force is pushing the cell away from the diode laser bar 
and (b) symmetric dual diode laser bars (both with long axes along the y-direction) where the 
cell does not translate. The total optical power is the same for both cases but the maximum 
local surface stress for case (a) is twice that of case (b). The arrows indicate the direction of 
back and front translational force. The position and dimension of the diodes are not drawn to 
scale. 

4. Results and discussion 

Cell deformation, quantified by the Taylor parameter DF, is simulated for 0 < t* = t/t0 ≤ 1 
insuring a steady-state shape is reached for the different diode configurations. The total diode 
optical power is varied for both single and dual diode laser bar configurations. Figure 3(a) 
shows the evolution of DF as a function of the dimensionless time, t*, using single and 
symmetric dual diode laser bar optical stretchers for different laser powers. The characteristic 
time, t0, for a 6.6 mW/µm laser power is 12 ms and, using a time step of 0.01 ms, ~1200 time 
steps were required to reach a steady-state shape. In the case of a 106 mW/µm laser, t0 = 0.75 
ms and only 75 time steps were required. As expected, the equilibrium deformation increases 
with the applied laser power. In these calculations, we note that a single diode laser bar both 
deforms the model cell and imparts a net translation force and cell movement. Here, the single 
diode laser bar and the symmetric dual diode laser bar deformation profiles are similar for the 

same total laser power. In Fig. 3(b) we plot the equilibrium deformation DF∞ as a function of 
the net applied optical force, Foptical where, in the case of fixed cell parameters, Foptical is an 
indication of the total optical power used. We clearly see from Fig. 3(b) that the total optical 
power is the dominant parameter and not the diode laser bar number. 
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Fig. 3. (a) Evolution of deformation parameter DF as a function of time for different diode 
laser power using single and dual diode laser bars. Total laser power is held fixed by setting the 
power in each diode laser in the dual configuration to half the power of the single diode laser 

case. For the physical properties provided in the text, the asymptotic values DF∞ range from 
0.008 using a 6.6 mW/µm diode laser (Foptical = 0.62 pN) to 0.11 using a 106 mW/µm diode 

laser (Foptical = 9.98 pN). (b) Variation of equilibrium deformation parameter DF∞ as a function 
of the net optical force Foptical for different optical stretcher cases. Lines are guides to the eye. 

To investigate cell movement for the case of a single diode laser bar, we calculate the cell 
translational speed at steady state (terminal speed). For the lowest laser power used, 6.6 
mW/µm, the computed net optical force Foptical is 0.62 pN which could lead to cell translations 
in the direction of laser beam (z-axis) of ~9 µm/sec at steady state in unconfined systems, 
assuming simple Stokes drag. Higher laser powers of 106 mW/µm provide Foptical of 9.98 pN 
and theoretical cell speeds of ~160 µm/sec. 

Figure 4(a) and Fig. 4(b) illustrate the steady-state deformed shapes induced by both 
single and symmetric dual diode laser bar optical stretchers. Note that in the single diode case, 
translation of the cell is apparent over the time scale of the applied stretching forces. From 
these and the quantitative values of Fig. 3, the steady-state deformation of the cell depends on 
the total power but appears independent of the power distribution. This result is certainly valid 
for smaller applied stretching forces and at small deformations but will break down as the 
front of the cell is significantly deformed and our assumption of constant applied stretching 
forces becomes invalid. In this, the changing refraction at the cell front will broaden the 
stretching profile on the backside of the cell, leading to significant asymmetry in the force 
distribution. Though simulations that take this into account are certainly feasible, most 
experimental efforts aimed at determining cell stiffness will occur at lower applied optical 
powers with smaller induced deformations where any possible impact of the stretching on cell 
properties is minimized. 
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Fig. 4. Side view of the deformed cell at steady-state from a fully 3-D simulation colored by 
the elastic energy distribution, Eng, normalized by Eh using (a) single diode of 53.3 mW/µm 
power and (b) symmetric dual diodes of 26.6 mW/µm power each. Total energy is the same but 
is more localized in the case of the single diode. 

5. Conclusions 

In this paper, we simulate the transient cell deformation induced by single and dual linear 
diode laser bar optical stretchers. We compare the deformation and relaxation by applying 
increasing optical forces and power distributions on a spherical cell with neo-Hookean 
membrane properties. Our simulations show that the forces imposed by a single diode laser 
bar optical stretcher can be used to both deform and translate cells immersed in fluid. Because 
single source configurations require no alignment, implementation of single diode optical 
stretchers where small translational forces can be tolerated will greatly simplify measurement 
of cell deformation in high-throughput applications. 
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