
 



 

 

 

 

 

 

 

 

 

APPROVAL SHEET 
 

 

 

 

 

 

 

 

Title of Dissertation:   On the Integration of Inconsistent Knowledge with 

     Bayesian Networks 

 

 

Name of Candidate: Yi Sun 

   Doctor of Philosophy, 2018 

 

 

 

 

 

 

 

Dissertation and Abstract Approved: _____________________________                                                            

     Doctor Yun Peng 

     Professor (Chair) 

     Department of Computer Science 

     and Electrical Engineering 

 

 

 

 

 

 

Date Approved: ________________ 

 

 

 

 



 

 

 

Abstract 

 

 

Title of Dissertation:   On the Integration of Inconsistent Knowledge with 

   Bayesian Networks 

 

Yi Sun, Doctor of Philosophy, 2018 

 

Directed By:               Yun Peng 

   Professor 

    Department of  Computer Science and Electrical Engineering 

   University of Maryland, Baltimore County 

 

Incorporating or integrating new knowledge into existing knowledge bases (KBs) is 

critical for developing and maintaining the reliability and accuracy thereof. This thesis 

focuses on integrating pieces of discrete probabilistic knowledge, represented as low 

dimensional distributions (also called constraints), into an existing Bayesian network (BN) 

where the probabilistic dependency relations among the variables in these constraints are 

inconsistent with those captured by the network structure of the existing BN. In this 

situation, we say the constraints have structural inconsistencies with the BN. None of the 

existing methods for probabilistic knowledge integration deal with structural 

inconsistencies specifically. When such inconsistencies occur, these methods either do 

not converge or converge by modifying the constraints to remove these inconsistencies. 

      In this thesis we develop a theoretical framework and related methods to fill this gap. 

The contributions of this thesis are in three areas. First, we define structural inconsistency 

so it can be distinguished from other types of inconsistencies. Second, we develop a 

method, referred to as InconsId, to identify structural inconsistencies between a BN and a 

set of constraints. Third, we propose two classes of methods to overcome the structural 



 

inconsistencies by modifying the structure of the existing BN. The class of AddNode 

methods adapts virtual evidence method of BN reasoning to solve the problem of 

integrating structurally inconsistent constraints with a BN. The class of AddLink methods 

addresses the same issue by compensating for the missing dependencies in the BN with 

added links. Variations of methods are developed in each class to balance the 

computational cost and solution quality. Additionally, both theoretical analysis and 

experiments are conducted to validate the effectiveness of these methods and compare 

their performance. At the end of this thesis, the developed framework and related 

methods are extended to solve a real-world problem of constructing a large BN from a set 

of small BNs. 

      By modifying the structure of the existing BN in a principled way, our work pioneers 

the research in the area of integrating structurally inconsistent constraints without 

sacrificing their integrity. Our research can be applied to a wide range of problems for 

knowledge integration with BNs without imposing structural restrictions on the inputs. 

Therefore, it may yield more accurate and more reliable knowledge models. It can also be 

extended to other related KB integration tasks such as KB merging. 
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1 Introduction 

1.1 The Motivations 

Knowledge bases (KBs), such as Wikipedia [92], DBpedia [1, 47, 87], and Google’s 

Knowledge Vault [25, 52, 90], are usually developed incrementally with segments of new 

knowledge added separately to them. Properly incorporating or integrating such new 

knowledge into existing knowledge bases is critical for developing and maintaining the 

reliability and accuracy of the KBs [7, 8, 11, 22, 50]. Since pieces of new knowledge may 

come from different sources, it would not be a surprise to find them inconsistent with 

each other or with the existing knowledge base [24, 74, 75]. In this situation we say 

inconsistency occurs during knowledge integration. 

The issue of inconsistency is more notable when integrating uncertain knowledge. 

Uncertainty usually arises, among other things, when the knowledge is incomplete or 

contains noise [26, 41]. The degree of uncertainty can be conveyed through probabilities. 

In this thesis we focus on a specific kind of knowledge integration for uncertain 

knowledge, referred to as probabilistic knowledge integration, in which the knowledge 

base is represented as a joint probability distribution (JPD) over a set of variables of 

interest, and the pieces of new knowledge are represented as lower dimensional 

distributions (also called probabilistic constraints, or constraints for short). The process 

of probabilistic knowledge integration involves updating the JPD with the constraints 

until the modified JPD can satisfy all the constraints. Additional objectives can be 

imposed on the integration process, the most common one being the requirement of 
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minimizing the change to the original JPD according to certain metrics for the distance 

between distributions [18]. Existing works in this field mainly utilize Iterative 

Proportional Fitting Procedure (IPFP) [76] to update the JPD in various ways. Research 

has shown that inconsistencies can occur among the constraints if the marginal or 

conditional distributions do not agree for variables shared by the constraints. Methods 

such as GEMA and CC-IPFP [78] as well as SMOOTH [66, 86] have been developed to 

solve this kind of inconsistency. Their main idea is to find a JPD whose marginal 

distributions are as close to each of the inconsistent constraints as possible. In other 

words, the solution is a compromise among inconsistent constraints. 

Representing a knowledge base directly using a JPD has several problems. Most 

notably among them are the large space requirement and high computational cost when 

the number of variables is large. In contrast, as a graphical model, the Bayesian network 

(BN) [37, 38, 59] can compactly represent the JPD and support efficient computation by 

adding structures to the flat distribution table that captures the interdependencies among 

the variables. These features make the BN very appealing in representing the 

probabilistic knowledge base [14, 48, 62], and its popularity has been increasing steadily 

since it was first brought to the AI community by Pearl and others in the 1980s. However, 

knowledge integration methods such as those based on IPFP cannot be applied directly to 

the BN since operations of IPFP are defined over the full JPD tables, not the BN. In order 

to solve this problem, IPFP was extended to E-IPFP [23, 65] by adding a structural 

constraint during the iteration, which forces the result to comply with the BN structure. 

To reduce the computational cost for large BNs, D-IPFP [23, 65] was proposed to 

decompose a global E-IPFP problem into a set of smaller local E-IPFP problems. 
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A new type of inconsistency may occur during the integration when the knowledge 

base is represented as a BN. Specifically, an inconsistency can occur when the 

probabilistic dependencies among some of the variables in a constraint disagree with the 

dependencies represented by the structure of the BN. We call this kind of inconsistency 

structural inconsistency. When the structural inconsistency occurs, one can choose to 1) 

keep the structure of the BN unchanged and integrate as much consistent knowledge in 

the constraint as possible, and ignore or reject the inconsistent part of the knowledge in 

the constraint; 2) modify the structure of the BN so that the constraint can be completely 

integrated into the BN; or 3) find a trade-off between the above two options. 

Existing methods in this area typically choose the form of the first option. The 

integration of pieces of new knowledge is carried out by only updating the numerical 

parameters, i.e., the conditional distribution tables, of the existing BN while keeping the 

network structure intact. The rationale behind this is that compared to the dependency 

relations in the constraint, the structure of the BN often represents more stable and 

reliable aspects of the domain knowledge. Therefore, it is desirable to not change the BN 

structure frequently. E-IPFP-SMOOTH [65] is an example of this option. Similar to E-

IPFP, E-IPFP-SMOOTH also maintains the structural invariance and updates only the 

numerical parameters of the BN while keeping its structure untouched. In addition, it also 

iteratively modifies the constraint during the integration process to gradually reduce or 

smoothen the structural inconsistencies. At convergence, the inconsistencies are removed 

from the constraint and the modified constraint is integrated into the BN. 

This thesis aims to explore the second option to completely integrate the constraint 

that has structural inconsistency with the BN. The motivation for doing this is that when 
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the constraint is more current or comes from a more reliable source, the new dependency 

relations it brings should be respected. In such situations it is necessary and beneficial to 

modify the structure of the existing BN so that the constraint, including the new 

dependency relations it brings, can be integrated into the BN in its entirety. This can be 

illustrated by a tiny example BN in Figure 1.1. The 4 node BN is built for a hypothetical 

disease diagnosis domain. Its variables include two kinds of diseases, 
1D  and 

2D , and 

two symptoms, 
1S  and 

2S . This BN has three arcs that correlate
1D  with 

1S  and 
2D  with 

1S  and 
2S . This graphical structure implies that

1D  and 
2S  are independent of each other 

given
2D and

1S , i.e., 
1 2 2 1 1 2 1 2 2 1( , | , ) ( | , ) ( | , )P D S D S P D D S P S D S  . Hypothetically, a 

more recent survey on the four variables generates more accurate interdependencies 

among them as it targets a specific population and uses an improved method. The result 

of the survey is represented by a JPD
1 2 1 2( , , , )Q D D S S with the conditional distribution 

1 2 2 1( , | , )Q D S D S ≠ 
1 2 1 2 2 1( | , ) ( | , )Q D D S Q S D S , which means

1D  and 
2S are dependent 

given
2D  and 

1S . But this dependency correlation does not exist in the existing BN. To 

integrate this piece of new knowledge, the structure of the existing BN needs to be 

changed. One obvious suggestion for structural modification is to add a link from
1D  to 

2S . The updated BN with the newly integrated dependency relation can provide more 

accurate results for future disease diagnoses for that specific population. 
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Figure 1.1 A 4 node BN for a hypothetical disease diagnosis domain 

The results of our research may have practical applications for other knowledge 

integration tasks. One of these tasks we have investigated is to construct a large 

probabilistic knowledge base from several smaller knowledge bases represented as BNs. 

The existing solutions to this problem include but not limited to Multiply Sectioned 

Bayesian Network (MSBN) and MSBN-based multi-agent system proposed by Xiang [81, 

82, 83, 84], as well as Agent Encapsulated Bayesian Network (AEBN) proposed by 

Bloemeke [5]. These solutions have strict structural restrictions on the Bayesian networks. 

For example, MSBN constructs a global BN from a set of subnets with shared variables, 

where each of the subnets is controlled by an agent. The knowledge represented by the 

subnets are accessed as a single large BN during inference, which is made possible by 

enforcing the shared variables to be identical and all parents of a shared variable to 

appear in one subnet in MSBN. In AEBN, each agent uses a BN to represent its domain 

knowledge, and exchanges beliefs with other agents via connections between identical 

variables. When there are multiple connections between two BNs, the probabilistic 

influences cannot be properly propagated and the conflicts cannot be resolved in AEBN. 

Such issues have limited the applications of these solutions. In contrast, methods from 

our research shall be able to lift these restrictions on the subnets and properly handle the 

structural inconsistencies among the subnets when solving this problem. 
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1.2 Thesis Statement 

In this thesis, we develop a theoretical framework and related methods for integrating 

inconsistent probabilistic knowledge with Bayesian networks. Going beyond existing 

works in this area, our framework is able to identify the structural inconsistencies and 

overcome them by modifying the structure of the existing BN in a principled way. The 

contributions of this thesis are as follows: 

First, we define structural inconsistency so that it can be distinguished from other 

types of inconsistencies and be properly targeted during the knowledge integration 

process. 

Second, we establish the theorem that any dependency that is implied by the 

constraint but does not hold in the BN structure will cause structural inconsistencies. 

Based on this theorem we develop a method, named InconsId, to identify structural 

inconsistencies between a BN and a set of constraints. This is accomplished by first 

extracting dependency information from each constraint, then checking in the BN to see 

if any of those dependencies are not captured by the BN structure. 

Third, we propose two classes of methods to address the issue of modifying the 

structure of the existing BN to overcome the structural inconsistencies. The class of 

AddNode methods adapts Pearl’s virtual evidence method [59] while the class of 

AddLink methods addresses the issue of missing dependencies in the BN with added 

links. Variations of methods are developed in each class to balance the computational 

cost and solution quality. Both theoretical analysis and experiments are conducted to 

validate the effectiveness of these methods and compare their performance. 
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The developed framework and related methods are extended to solve the problem of 

constructing a large BN from a set of small BNs. Experiments show that, with the help of 

the integration constraints that provide the missing dependencies among the small BNs, 

these BNs can be successfully merged into a large BN. 

This research is primarily based on the pioneering work done by Dr. Peng’s research 

group [63, 64, 65, 66]. Their existing work enables the integration of consistent and 

inconsistent constraints into the BN without making changes to the BN structure. This 

thesis is carried out to complement their work for situations where BN structure update is 

necessary and beneficial when structural inconsistencies happen during the integration. 

Some of the preliminary work in this thesis has been presented in [71, 72]. 

By modifying the structure of the existing BN in a principled way, our work will 

pioneer the area of integrating structurally inconsistent constraints without sacrificing 

their integrity. Our research can be applied to a wide range of problems for knowledge 

integration with BNs without imposing structural restrictions on the inputs. It can also be 

extended to other related KB integration tasks. 

1.3 Dissertation Outline 

The rest of this thesis is organized as follows. In Chapter 2 we introduce some 

background and review the existing works related to our problem. It includes IPFP, 

Bayesian networks, knowledge integration methods, virtual evidence method, BN 

structure learning methods, MSBN, and other relevant material. 

In Chapter 3 we first establish the theorem that any dependency that is implied by the 

constraint but does not hold in the BN structure will cause structural inconsistency. This 
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leads to our definition of the structurally inconsistent constraint. Based on this definition, 

we develop a method, named InconsId, to identify structural inconsistencies between a 

BN and a set of constraints. Examples are provided to show how this method works. 

Time complexity analysis is performed for this method. Experiments are also conducted 

to evaluate its performance. 

In Chapter 4 we propose a class of methods, referred to as the AddNode methods, to 

overcome the structural inconsistencies by adding nodes to the existing BN. The basis of 

the AddNode methods, called AddNode-Basic, adapts the virtual evidence method to 

solve the structural inconsistencies between a BN and a set of constraints. Several 

variations of the AddNode-Basic method are also developed to balance the computational 

cost and solution quality, as well as to address other concerns. These include 

AddNode+Merge and AddNode+Factorization which can be used when it is 

computationally beneficial to merge small constraints or to split large constraints.  This 

chapter also investigates the issue of efficient integration in situations where both 

structurally consistent and inconsistent constraints are presented. Examples are provided 

for those methods to show how they work. Experiments are conducted to compare their 

performance in different situations. 

In Chapter 5 we propose another class of methods, referred to as the AddLink 

methods, to address the issue of structural inconsistencies by adding links to the existing 

BN. The basis of the AddLink methods, called AddLink-Basic, solves this problem by 

adding one link for each dependency that exists in the constraints but is missing in the 

BN. A variation of the AddLink-Basic method, named AddLink-Prune, is developed to 

minimize the number of links to be added to the existing BN. Reducing the number of 
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added links is consistent with our integration objective of minimizing the changes to the 

original KB, which may reduce the computational complexity for the probabilistic 

reasoning in the updated BN. Examples are provided to show how the methods work. 

Experiments are conducted to validate the effectiveness of the methods and to compare 

their performance. 

In Chapter 6 we extend the developed framework and related methods to solve an 

instance of the problem of constructing a large BN from a set of small BNs with very 

encouraging experiment results. 

In Chapter 7 we conclude our work with directions for future research. 
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2 Background and Related Work 

This thesis focuses on the discrete probabilistic knowledge integration where the 

knowledge base is represented as a joint probability distribution (JPD), and the pieces of 

new knowledge are represented as lower dimensional distributions (also called 

probabilistic constraints, or constraints for short). In Section 2.1 we review several 

methods for probabilistic knowledge integration. We first introduce the Iterative 

Proportional Fitting Procedure (IPFP), which can be used to find a distribution that 

satisfies a set of constraints and guarantees that this distribution is as close to the original 

distribution as possible. Then we review GEMA, CC-IPFP, and SMOOTH, which extend 

IPFP to integrate constraints when they are inconsistent with each other. 

In Section 2.2 we introduce the Bayesian network (BN) which can represent the 

interdependencies among the variables graphically and decompose the JPD into a set of 

smaller distributions associated with each variable. After presenting several important 

properties of the BN, we review some existing approaches for knowledge integration 

with a BN, including E-IPFP, D-IPFP and E-IPFP-SMOOTH. 

In Section 2.3 we introduce Pearl’s virtual evidence method because it inspires us to 

develop the class of AddNode methods for overcoming structural inconsistencies. Virtual 

evidence method plays an important role in some BN reasoning problems. After a brief 

explanation of the differences and relations among hard evidence, soft evidence, and 

virtual evidence in BN reasoning, we present the principle of the virtual evidence method, 

and show how a soft evidence represented as a distribution such as our probabilistic 

constraint can be converted into a virtual evidence. 
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In Section 2.4 we review BN-IPFP algorithms which combine Pearl’s virtual 

evidence method with IPFP for BN reasoning with multiple soft evidences. After 

introducing and comparing the three versions of BN-IPFP algorithms, we provide an 

example to show how they work. 

In Section 2.5 we compare our problem with the problem of BN structure learning. 

BN structure learning focuses on determining which links are the most appropriate to be 

added to the BN given the data, which is similar to the concern we have in the class of 

AddLink methods. After briefly reviewing the existing methods for BN structure learning, 

we explain why these methods cannot be applied directly to the problem we set out to 

solve. 

In Section 2.6 we introduce the MSBN framework because it is related to a 

knowledge integration problem we will investigate, namely how to automatically 

construct a large BN from a set of small BNs. After reviewing its definitions for 

hypertree and d-sepset interface, which are the two key constraints MSBN enforces upon 

the small BNs, we point out its limitation in situations where small BNs do not obey 

structural restrictions. 

The following convention is used in this thesis. To name a set of variables, we use 

capital italic letters such as X ,Y , Z . To name their instantiations, we use lower case 

italic letters such as x , y , z correspondingly. To name an individual variable in a set, we 

use subscript to indicate its position in a set, such as iX  for the
thi variable in set X , 

and ix for its instantiation. P, Q, R are specifically used to indicate probability 

distributions, and bold P , Q , R are used for sets of distributions. Y is used to represent all 

the possible instantiations of a set of variables Y . 
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2.1 Knowledge Integration with JPD 

In this section we will describe the problem of probabilistic knowledge integration for 

knowledge bases represented as joint probability distributions and review the related 

methods for solving this problem. 

2.1.1 The Problem of Probabilistic Knowledge Integration 

In this thesis, knowledge integration refers to the process of incorporating new 

knowledge into an existing knowledge base. The probabilistic knowledge base can be 

represented using a JPD ( )P X , where X represents the set of variables in the domain. The 

new knowledge that needs to be integrated into ( )P X usually comes from more up-to-

date or more specific observations for a certain perspective of the domain. It can be 

represented as a lower dimensional probability distribution over a subset of X , which is 

called probabilistic constraint, or constraint for short. 

We use probability distribution ( )j

jR Y to denote the thj piece of new knowledge or 

the thj constraint over the set of variables jY , where
jY X . A set of constraints can be 

represented as 1

1{ ( ), , ( )}m

mR Y R YR , where m is the number of constraints. 

Definition 2.1 (Constraint Satisfaction) Let ( )P X be a JPD, and ( )R Y be a constraint, 

whereY X . ( )P X is said to satisfy ( )R Y  if ( ) ( )P Y R Y , i.e., the marginal distribution 

of ( )P X on variable set Y equals ( )R Y . 

The set of all JPDs that satisfy constraint R is denoted as RP . The set of all JPDs that 

satisfy all the constraints in R is denoted as RP . 
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The problem of probabilistic knowledge integration is to modify the existing 

knowledge base ( )P X so that the resulting JPD ( )Q X  satisfies all constraints in R , i.e., 

( )Q X 
R

P . There are other desirable integration objectives, a commonly adopted one is 

to require that ( )Q X , while satisfying R , is as close to ( )P X as possible [18]. To 

measure the degree of changes to ( )P X , we can use some distance metrics for 

distributions such as I-divergence, which is also known as K-L (Kullback–Leibler) 

distance as defined below [18, 43, 78]. 

Definition 2.2 (I-divergence) Given two probability distributions ( )P X and ( )Q X , I-

divergence from ( )P X to ( )Q X is defined as: 

( )
( ) log  if ( ) ( )

( )( ( ) || ( ))

otherwise

x X

P x
P x P X Q X

Q xI P X Q X 




 


                (2.1) 

where ( ) ( )P X Q X means ( )Q X dominates ( )P X , i.e. ' '{ | ( ) 0} { | ( ) 0}X P X X Q X   . 

Note that I-divergence is zero if and only if ( )P X and ( )Q X  are identical. Also note 

that I-divergence is non-symmetric. 

2.1.2 The Iterative Proportional Fitting Procedure 

The problem of probabilistic knowledge integration can be solved with the Iterative 

Proportional Fitting Procedure (IPFP). IPFP is a mathematical procedure that iteratively 

modifies a JPD in order to find a distribution that satisfies a set of probability constraints 

while maintaining minimum I-divergence to the original distribution. It was first 

proposed by Kruithof in 1937 [42]. Later it was used as a procedure to estimate cell 

frequencies in contingency tables under marginal constraints [21]. Its convergence was 
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proved in [18, 27, 68, 78]. It was also extended as Conditional Iterative Proportional 

Fitting Procedure (CIPFP) to deal with conditional constraints [6, 16]. 

The core of IPFP is to calculate I-projection [76], which is defined as follows: 

Definition 2.3 (I-projection) JPD *( )Q X  is said to be an I-projection of JPD ( )P X on the 

set of JPDs ( )XQ if for any ( ) ( )Q X XQ , *( )Q X has the minimum I-divergence 

with ( )P X , i.e., 

 *( ( ) || ( )) min ( ( ) || ( ))
Q

I Q X P X I Q X P X



Q

                          (2.2) 

It has been shown in [17] that the I-projection is unique. If ( )XQ is the set of all JPDs 

that satisfies a set of constraints R , i.e., ( )X 
R

Q P , then *( )Q X is a JPD that satisfies all 

the constraints R , and at the same time *( )Q X has the minimal I-divergence with ( )P X  

[78]. 

IPFP iteratively modifies the current JPD
1( )kQ X

, starting with 
0( ) ( )Q X P X , each 

time using one constraint ( )j

jR Y in R , according to the following formula: 

1

1

1

0             if ( ) 0

( ) ( )
( )   otherwise

( )

j

k

j
k j

k j

k

Q Y

Q X R Y
Q X

Q Y







 


 




      (2.3) 

where modj k m , which determines the constraint used at iteration k , and m is the 

number of constraints in R . It has been shown that the resulting distribution ( )kQ X  is the 

I-projection of 1( )kQ X  on 
jRP  for ( )j

jR Y  [76]. 

Definition 2.4 (Consistency among Constraints) Let R be a set of constraints. If 

RP , i.e., there is at least one JPD that satisfies R , then we say constraints in R are 
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consistent with each other. Otherwise, we say constraints in R are inconsistent with each 

other. 

IPFP will only converge when constraints are consistent with each other. In such 

situation, IPFP will converge to a JPD *( )Q X , which is the I-projection of the initial 

JPD
0( ) ( )Q X P X  on

RP , for the given constraints R . That is, *( )Q X  satisfies R , and 

among all the JPDs that satisfy R , *( )Q X has the minimal I-divergence with the initial 

JPD
0 ( )Q X . Csiszar [18] has provided a convergence proof for IPFP based on I-

divergence geometry. When constraints are inconsistent with each other, we have RP , 

and IPFP will not converge but oscillate among multiple JPDs [18, 63, 79]. 

2.1.3 Integrating Inconsistent Constraints 

In real-world situations, since knowledge usually comes from different sources and is 

obtained by different means, inconsistency often exists among constraints [78, 86]. 

Vomlel proposed CC-IPFP and GEMA [78, 79] which extend IPFP to integrate 

constraints that are inconsistent with each other. 

At each iteration of CC-IPFP, it first computes the I-projection of 1( )kQ X  to
jRP , and 

then mixes the result with 1( )kQ X using the following formula to get ( )kQ X : 

 1 1

1

( )
( ) (1 ) ( ) ( )

( )

j

j

k k k k k j

k

R Y
Q X Q X Q X

Q Y
  



       (2.4) 

where modj k m , which determines the constraint used at iteration k , and m is the 

number of constraints in R . 1/ ( 1)k k   , which monotonically decreases towards 0 

when k increases. It can be seen from (2.4) that the process starts like the standard IPFP. 
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But the influence of constraints and the inconsistency among constraints are gradually 

diminished along with the iteration process. 

The resulting JPD of CC-IPFP does not satisfy all the constraints. But it is as close to 

each of the constraints as possible, which can be measured by the total variation. 

Definition 2.5 (Total Variation) Given two probability distributions ( )P X and ( )Q X , 

the total variation between them is defined as: 

 ( , ) | ( ) ( ) |
x X

P Q P x Q x


                     (2.5) 

It has been proven that CC-IPFP would converge to a distribution *( )Q X  such that, 

among all the distributions in ( )XQ , *( )Q X  has the minimum sum of total variations for 

all the constraints, i.e., 

 *

1 1

( ( ), ( )) min ( ( ), ( ))
m m

j j j j

j j
Q

j j

Q Y R Y Q Y R Y 


 

 
Q

   (2.6) 

In contrast to CC-IPFP, GEMA allows one to give different weights to the constraints. 

The weight can reflect the degree of trust for each of the constraints. At each iteration of 

GEMA, it first computes the I-projection of 1( )kQ X  for ( )j

jR Y , then takes a weighted 

sum of the I-projections for all the constraints to get ' ( )kQ X : 

 '

1

1 1

( )
( ) ( )

( )

jm
j

k j k j
j k

R Y
Q X Q X

Q Y
 

 

     (2.7) 

where j  is the weight for ( )j

jR Y , 0 1j  , and
1

1
m

j

j




 . 

Then it computes a new set of constraints ' ' 1 '

1{ ( ), , ( )}m

mR Y R YR from ' ( )kQ X  

with
' ') (( )j j

j kR QY Y , and performs a standard IPFP on 1( )kQ X with '
R  to get ( )kQ X . 



17 

 

 

Definition 2.6 (I-aggregate) Let ( )Q X be a JPD, and 1

1{ ( ), , ( )}m

mP Y P YP be a set of 

distributions, where jY X . I-aggregate is the weighted sum of the I-divergence for 

each distribution ( )j
jP Y in P , i.e., 

                                            
1

( ) ( ( ) || ( )),
m

j j

j j

j

I Q Y P YQ 


 P          (2.8) 

where j is the weight for ( )j
jP Y , 0< j <1, and

1

1
m

j

j




 . 

It has been proven that GEMA would converge to a JPD *( )Q X , such that for any 

distribution ( )Q X in the set of JPDs ( )XQ , *( )Q X has the minimum I-aggregate for all 

the constraints in R , i.e., 

 *

1 1

( ( ) || ( )) min ( ( ) || ( ))
m m

j j j j

j j j j
Q

j j

I Q Y R Y I Q Y R Y 


 

   
Q

   (2.9) 

Experiments in [86] have shown that CC-IPFP converges very slowly, and GEMA is 

very sensitive to the initial JPD and the constraints. To address the limitations of CC-

IPFP and GEMA, Peng and Zhang proposed the SMOOTH algorithm [65, 86] for 

knowledge integration when constraints are inconsistent with each other. Compared to 

CC-IPFP and GEMA, SMOOTH is more efficient and stable, and is not sensitive to the 

initialization of the data. SMOOTH makes bi-directional modification at each iteration. It 

not only pulls the JPD closer to the constraints, but also pulls the constraints towards the 

JPD. In this way, the inconsistency among the constraints is gradually reduced or 

smoothened, which may lead to a faster convergence. 

At each iteration of SMOOTH, the first step is to modify constraint ( )j

jR Y with 

smoothing factor using the following formula, where 0 1  : 
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'

1( ) ( ) (1 ) ( )j j j

j j kR Y R Y Q Y        (2.10) 

In this step the updated constraint
' ( )j

jR Y has incorporated a small portion of 
1( )j

kQ Y
, 

which is the marginal distribution of the JPD that has been modified by all the constraints 

in R in proceeding sequence of revisions. This helps ( )j

jR Y to pull itself closer to all the 

other constraints. Thus the inconsistency is reduced or smoothened among the constraints. 

The second step is to compute the I-projection of 
1( )kQ X

 to
' ( )j

jR Y : 

'

1

1

( )
( ) ( )

( )

j

j

k k j

k

R Y
Q X Q X

Q Y




       (2.11) 

These two steps are repeated for each of the constraints in R until the process 

converges. The resulting JPD satisfies all the updated constraints after their inconsistency 

is gradually smoothened. The convergence of SMOOTH for two constraints that are 

inconsistent with each other has been proved in [65]. 

2.2 Knowledge Integration with BN 

In this section we will introduce Bayesian network and review the related methods for 

knowledge integration with a BN. 

2.2.1 Bayesian Network 

The JPD that is used to represent the knowledge base can become intractably large as the 

number of variables increases. For n  discrete variables, their JPD requires (2 )nO  space 

to store all the probabilities for the knowledge base. Moreover, manipulating such huge 

full JPD is very challenging from the computational perspective. In contrast to JPDs, 

graphical models such as BNs can capture the conditional independence among the 
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variables and represent their interdependencies through the graph structure among the 

variables. Using such graphical models one can greatly reduce the space and time 

complexity of representing and reasoning with probabilistic knowledge in general  and 

improve the efficiency of knowledge integration process in particular [13, 32, 60, 61]. 

These advantages make BNs very popular in representing probabilistic knowledge bases 

[3, 9, 28, 35]. 

Specifically, a BN G is a directed acyclic graph (DAG) which can represent a JPD 

( )P X  over a set of variables
1( , , )nX X X , where each node in the BN represents a 

variable in X , and an arc (also called link in this thesis) between two nodes represents the 

direct dependency between the variables the two nodes represent. A conditional 

probability table (CPT) is attached to each node to represent the strength of the 

dependencies. We use 
SG  to refer to the DAG, i.e., the network structure of G , and 

PG  

to refer to the set of all the CPTs in G . A BN can be represented as ( , )S PG G G  

where {( , )}S i iG X  , and { ( | )}P i iG P X  , with
i denoting the set of parents of 

iX  and 

an arc is drawn from each variable in 
i  to 

iX . In this thesis we assume  
1, , nX X are in 

topological order according to SG . 

Definition 2.7 (Topological Order) Let 1, , nX X  be all the nodes in the DAG SG , 

where the subscripts 1, ,n  are the indexes of the nodes. 
1, , nX X  are said to be in 

topological order according to SG  if for every arc i jX X in SG , iX  has lower index 

than jX , i.e., i j . 

With this ordering, we can express JPD ( )P X in the following way: 

 1 1 2 1 1 1( ) ( , , ) ( ) ( | ) ( | , , )n n nP X P X X P X P X X P X X X       (2.12) 
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Definition 2.8 (Local Markov Property) In a Bayesian network, a variable 
iX  is 

independent of all of its non-descendants
iN  given its parents

i , i.e., 

 ( | , ) ( | )i i i i iP X N P X      (2.13) 

Based on the local Markov property, the JPD ( )P X of ( , )S PG G G can be factored 

into a product of CPTs according to the BN structure 
SG , i.e., 

 
1 1 1( , , ) ( | , , ) ( | )n i i i i

i i

P X X P X X X P X        (2.14) 

This is called the chain rule of the BN and ( | )i iP X   is called a factor of the chain 

rule decomposition. We can also say ( | )i iP X   is extracted from ( )P X according to 
SG  

if 
i  is determined by

SG . We use 
SGP to denote the set of all JPDs that can be factored 

according to 
SG , i.e., 

SGP contains all JPDs that have the same structure as
SG . 

2.2.2 E-IPFP and D-IPFP 

Is IPFP approach applicable to knowledge integration when the knowledge base is 

represented as a BN? One may suggest the following simple steps: 1) generate the JPD 

from the given BN, 2) integrate the given constraint into this JPD using IPFP, and 3) 

generate a modified BN from the resulting JPD from step 2) according to the original BN 

structure. However, as illustrated by the following example, this approach would not 

work. Consider a BN given in Figure 2.1 and constraint ( , )R B C  in Figure 2.2. We run 

IPFP and get 1( , , )Q A B C  which is shown in Figure 2.3(a) as the resulting JPD. It can be 

seen that 1Q  satisfies ( , )R B C . However, if we extract CPTs which are shown in Figure 

2.3(b) from 1( , , )Q A B C  according to the BN structure, and generate the JPD from these 



21 

 

 

CPTs using the chain rule, we would get '

1( , , )Q A B C  shown in Figure 2.3(c). 

'

1( , , )Q A B C is different from 
1( , , )Q A B C  and it no longer satisfies ( , )R B C . 

 

Figure 2.1 A 3 node BN with its CPTs and JPD 

 

Figure 2.2 Constraint ( , )R B C  

 

(a) Resulting JPD that satisfies ( , )R B C . 

 

(b) CPTs extracted from 1( , , )Q A B C . 
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(c) JPD generated from the CPTs in (b) using the chain rule. 

Figure 2.3 Result after running IPFP with the 3 node BN and ( , )R B C  

The problem stems from the fact that IPFP does not preserve the dependencies 

depicted by the BN structure when applied to modify the JPD of the BN. To solve this 

problem, Peng et al. proposed the E-IPFP algorithm [63] based on IPFP with an extension 

of the simple steps mentioned at the beginning of this subsection: when the JPD from 

step 3) is different from that of step 2), E-IPFP will continue to iterate to step 1). In a 

sense this is equivalent to take the BN and its JPD from step 3) as an additional constraint. 

Since this JPD obeys BN structure, it is called a structural constraint. Specifically, the 

structural constraint, denoted as
1mR 
, is generated by first extracting CPTs from the 

current 1( )kQ X according to SG , then getting the JPD from these CPTs using the chain 

rule, i.e., 

 1 1( ) ( | )
i

m k i i

X X

R X Q X  



    (2.15) 

In each round after iterating through the constraints 1

1{ ( ), , ( )}m

mR Y R YR , 

1( )mR X is applied to 1( )kQ X  to force the JPD to satisfy SG . 

Convergence of E-IPFP can be determined by testing if the difference between ( )kQ X  

and 1( )kQ X  is below a given threshold. The following is the E-IPFP algorithm. 
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Given the BN in Figure 2.1 and the constraint in Figure 2.2, E-IPFP converges after 

134 iterations. The resulting CPTs and JPD are shown in Figure 2.4. 

 

(a) CPTs of the resulting BN. 

 

(b)JPD of the resulting BN. 

Figure 2.4 Resulting CPTs and JPD after running E-IPFP 

E-IPFP ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. 
0 ( ) ( | )i i

i

Q X P X  , where ( | )i i PP X G  ; 

2. Starting with 1k  , repeat the following procedure until convergence: 

2.1. (( 1)mod( 1)) 1j k m    ; 

2.2. If 1j m  , 
1

1

( )
( ) ( )

( )

j

j

k k j

k

R Y
Q X Q X

Q Y




  ; 

        Else, extract
1( | )k i iQ X 

 from
1( )kQ X

according to
SG , 

                              1( ) ( | )
i

k k i i

X X

Q X Q X 



 ; 

2.3. 1k k  ; 

3. Return ( , )S PG G G , with { ( | )}P k i iG Q X  . 
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As can be seen from Figure 2.4, the resulting JPD *( , , )Q A B C which is shown in 

Figure 2.4(b) satisfies ( , )R B C . Also, because *( , , )Q A B C is the product of CPTs of the 

resulting BN which are shown in Figure 2.4(a), *( , , )Q A B C  satisfies the BN structure. 

One issue of E-IPFP is that it is computationally intractable for large BNs. In step 2.2 

of E-IPFP, each entry in
1( )kQ X

is checked against all the entries of ( )j

jR Y . This 

computational cost is in the order of | | | |(2 2 )
iX YO  , which grows exponentially with the 

number of variables in the BN. To address this issue, Peng et al. developed D-IPFP which 

decomposes a global E-IPFP problem into a set of local E-IPFP problems. Each of the 

local E-IPFP problems is performed on a subnet of the BN that only contains jY and their 

parents for each constraint ( )j

jR Y . This greatly improves the performance for knowledge 

integration with large BNs. The following is the D-IPFP algorithm. 

 

D-IPFP ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. 
0( | ) ( | )i i i iQ X P X  for all ( | )i i PP X G  ; 

2. Starting with 1k  , repeat the following procedure until convergence: 

2.1. (( 1)mod( 1)) 1j k m    ; 

2.2. '

1

1

( )
( | ) ( | )

( )

j

jj j j j

k k kj

k

R Y
Q Y S Q Y S

Q Y




   ,  

             where ( ) \j
i

j j

iX Y
S Y


 , and k is a normalization factor; 

2.3. '( | ) ( | ), j

k i i k i i iQ X Q X X Y    ; 

2.4. 1k k  ; 

3. Return ( , )S PG G G , with { ( | )}P k i iG Q X  . 
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2.2.3 E-IPFP-SMOOTH 

E-IPFP only converges when constraints in R are consistent with each other and with the 

network structure
SG . Otherwise, it oscillates among several JPDs. To solve this issue, 

Peng et al. proposed the E-IPFP-SMOOTH algorithm which extends the SMOOTH 

algorithm to the situation where the knowledge base is represented as a BN [64]. 

The following example shows how E-IPFP-SMOOTH overcomes the inconsistency 

among the constraints, as well as the inconsistency between the constraint and the BN 

structure. This example uses the BN in Figure 2.1 and the constraints in Figure 2.5. 

 

Figure 2.5 Constraints
1( , )R A B ,

2 ( , )R A C  and
3( , , )R A B C  

1( , )R A B  and 
2 ( , )R A C  are inconsistent with each other because 1 2( ) ( )R A R A . 

3( , , )R A B C is inconsistent with the structure of the BN because 3( , | )R B C A   

3 3( | ) ( | )R B A R C A , which conflicts with the BN structure’s assertion that B and C are 

conditionally independent given A. Figure 2.6(a) shows the resulting BN after running E-

IPFP-SMOOTH with 1( , )R A B and 2 ( , )R A C . Figure 2.6(b) shows the resulting BN after 
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running E-IPFP-SMOOTH with
3( , , )R A B C . The constraints in Figure 2.5 have been 

modified to '

1( , )R A B , '

2 ( , )R A C and '

3( , , )R A B C as shown in Figure 2.7. 

 

(a) Resulting BN after integrating 
1( , )R A B  and 

2 ( , )R A C . 

 

(b) Resulting BN after integrating
3( , , )R A B C . 

Figure 2.6 Resulting BN after running E-IPFP-SMOOTH 
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Figure 2.7 Constraints '

1( , )R A B , '

2 ( , )R A C and '

3( , , )R A B C  

We can see from the above examples that E-IPFP-SMOOTH overcomes both kinds of 

inconsistencies by modifying the constraints. For the inconsistency among the constraints, 

a compromise is reached at the end for all the constraints. The algorithm can be easily 

modified to accommodate weights that reflect levels of trust or confidence for each 

constraint. For the inconsistency between the constraint and the BN structure, E-IPFP-

SMOOTH modifies the dependencies in the constraint to align with the BN structure 

while keeping the BN structure unchanged. In this example, after running E-IPFP-

SMOOTH with
3( , , )R A B C , '

3( , , )R A B C is consistent with the BN structure because 

' ' '

3 3 3( , | ) ( | ) ( | )R B C A R B A R C A  . That is, B and C are no longer conditionally dependent 

given A as in the original constraint
3( , , )R A B C . In other words, the dependency relations 

brought by the constraint is not integrated into the BN. Therefore, this method can only 

be used in applications where it is desirable to keep the dependency relations given in the 

BN intact during the integration, but not applicable when it is desirable for the BN to 

adapt to the new dependencies given in the constraints. 
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2.3 Virtual Evidence Method 

Pearl proposed virtual evidence method [57] for BN reasoning with virtual evidence. BN 

reasoning is an inference process for calculating posterior probabilities given evidence. 

Posterior probabilities are also called beliefs in Bayesian networks. Thus, BN reasoning is 

also referred to as BN belief update [2, 12, 51]. 

2.3.1 Soft Evidence and Virtual Evidence 

Evidence is a collection of findings. Researchers have identified three kinds of evidences 

in BN belief update: hard evidence, virtual evidence and soft evidence. 

To explain each kind of evidence, we use variable X to represent a specific event. If 

the event occurs, X is in the true state. If the event does not occur, X is in the false state. 

Each kind of evidence specifies the state X is in from a different perspective. 

Hard evidence specifies the particular state variable X is in. For example, “the event 

represented by variable X has occurred” is a hard evidence. 

Soft evidence [76] specifies the probability distribution for the states variable X is in. 

It is the evidence of uncertainty. This type of evidence is used when one is uncertain 

about the state X is in, but is certain about the distribution ( )P X for the states 

variable X is in. ( )P X is based on the true observations and can be treated as a hard 

evidence. For example, “the event represented by variable X has been observed to occur 

and not occur with distribution ( ) (0.45,0.55)P X  ” is a soft evidence. 

( ) (0.45,0.55)P X   is a true observation and itself can be considered a hard evidence. 

That is, when a soft evidence is applied, its accompanied ( )P X  should be accepted by 

the belief system. 
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Virtual evidence [57] specifies the likelihood ratio for the state variable X is claimed 

to be in. It is the evidence with uncertainty. Suppose one believes with 

probability p about the claim that the event represented by X occurs, and does not occur 

with probability1 p . Then the likelihood ratio can be represented as ( ) : (1 )L X p p  , 

which does not necessarily need to be a specific probability. For example, “the event 

represented by variable X has been observed to occur, but there is only 45% chance that 

this observation is true” is a virtual evidence with likelihood ratio ( ) 0.45:0.55L X  . 

Virtual evidence and soft evidence are two types of uncertain evidences [4]. Each of 

them has its own characteristics and obeys a different belief update rule. Pearl proposed 

virtual evidence method for BN belief update with virtual evidence by extending the 

given BN with a binary virtual node [57]. Figure 2.8 shows how the method works for 

virtual evidence ( ) 0.45:0.55L X  . It first creates a virtual node V with X as its only 

parent in the BN, with state v standing for the event that X x  has occurred. Then it sets 

up the CPT of V which satisfies ( | ) : ( | ) ( )P V v X x P V v X x L X     . The CPT can 

contain any specific probability entries that satisfy this likelihood ratio requirement. In 

Figure 2.8 the CPT of V satisfies this requirement because 0.63:0.77 0.45:0.55 . At the 

end the method treats v as a hard evidence by instantiating V to v. This will update the 

belief in the given BN, and the updated BN will satisfy the given virtual evidence. 

 

Figure 2.8 Virtual node V created for virtual evidence ( ) 0.45:0.55L X   
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2.3.2 Converting Soft Evidence into Virtual Evidence 

For belief update with soft evidence, Jeffrey proposed Jeffrey’s rule [36] to update a joint 

distribution ( )P X  with a soft evidence ( )Q Y , whereY X . Jeffrey’s rule assumes that 

the conditional probability of all the other variables given Y should not change, i.e., 

 ( \ | ) ( \ | )Q X Y Y P X Y Y    (2.16) 

where \X Y  refers to all the variables in X but not in Y . 

Based on Jeffrey’s rule, we have: 

 
( , ) ( )

( ) ( \ | ) ( ) ( ) ( )
( ) ( )

P X Y P X
Q X P X Y Y Q Y Q Y Q Y

P Y P Y
       (2.17) 

Thus the distribution ( )P X  under the observation ( )Q Y  should be updated to: 

    
( )

( ) ( )
( )

Q Y
Q X P X

P Y
         (2.18) 

It has been proven that after updating ( )P X  by ( )Q Y  using Jeffery’s rule in (2.18), 

the resulting distribution ( )Q X  is the same as the I-projection of ( )P X on ( )Q YP by (2.3) 

[66]. Jeffrey’s rule guarantees that the updated distribution can satisfy the evidence while 

making minimum changes to the original distribution. However, it cannot be applied 

directly to a joint distribution represented as a BN. Chan and Darwiche solved this 

problem by first converting a soft evidence to a virtual evidence, then applying Pearl’s 

virtual evidence method to realize the belief update in the BN with a soft evidence [12]. 

Let ( )P X  be a distribution and ( )Q Y  be a soft evidence, where Y X , and Y be all 

the possible instantiations of Y such that (1) (2) ( ), , , my y y Y form a mutually exclusive 

and exhaustive set of events. Then ( )Q Y  can be converted to a virtual evidence with the 

following likelihood ratio: 
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(1) (2) ( )

(1) (2) ( )

( ) ( ) ( )
( ) : : :

( ) ( ) ( )

m

m

Q y Q y Q y
L Y

P y P y P y
    (2.19) 

To set up the CPT for the virtual node V using this likelihood ratio, we use the 

following formula in this thesis to calculate its entries whenY  takes the instantiation of 

( )iy : 

    

( ) ( )

( )

1( ) ( )

( ) ( )

( )

1( ) ( )

( ) ( )
( | )

( ) ( )

( ) ( )
( | ) 1

( ) ( )

m
i i

i

ii i

m
i i

i

ii i

Q y Q y
P V v y

P y P y

Q y Q y
P V v y

P y P y





 

 
    

 





      (2.20) 

When this virtual evidence is applied to ( )P X  by instantiating V to v, the updated 

distribution is the same as what is obtained using Jeffrey’s rule after applying ( )Q Y [12]. 

2.4 BN-IPFP 

For multiple virtual evidences, the BN belief update by one virtual evidence will not 

affect the belief update by another virtual evidence. This is because each of the virtual 

evidences is treated as a hard evidence on the virtual node, which is instantiated to true. 

The likelihood ratio on V, which is determined by the virtual evidence itself and reflected 

in the CPT, will not be affected by the belief update caused by the instantiation of other 

virtual nodes. 

The situation is different for BN belief update with multiple soft evidences. After 

satisfying one soft evidence, the updated distribution may not satisfy the other soft 

evidences. For example, given two soft evidences 
11 ( )se Q Y  and 

22 ( )se Q Y , suppose 

we first convert 1se  and 2se  to two virtual evidences and then apply the virtual evidence 
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method with these two virtual evidences. After applying 1( )Q Y , the revised JPD would 

satisfy 1se  (i.e., its marginal on 1Y equals 1( )Q Y ).  After applying 2( )Q Y , the revised 

JPD would satisfy 2se , but there is no way to guarantee it still satisfies 1se . This is also 

true when the soft evidences are applied in different orders or applied at the same time 

[54, 55, 65, 80]. 

To solve this problem, Peng et al. proposed BN-IPFP algorithms which combine 

Pearl’s virtual evidence method with IPFP for BN belief update with multiple soft 

evidences. There are three versions of BN-IPFP algorithms: BN-IPFP-1, BN-IPFP-2 and 

BN-IPFP-SMOOTH. BN-IPFP-1 uses one soft evidence at each iteration. If the marginal 

of the current distribution ( )P Y  does not satisfy this soft evidence ( )Q Y , BN-IPFP-1 

first converts this soft evidence to a virtual evidence according to (2.19), then updates the 

distribution with this virtual evidence using virtual evidence method. The iteration 

continues until the process converges. The following is the BN-IPFP-1 algorithm. 
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BN-IPFP-2 first merges all the soft evidences into a single soft evidence using IPFP, 

then converts this merged soft evidence into a virtual evidence, and updates the entire BN 

with it using the virtual evidence method. The following is the BN-IPFP-2 algorithm. 

BN-IPFP-1 ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. Let 
0 ( )Q X  denote ( )P X , the joint distribution of the given BN; 

2. Starting with 1k  , repeat the following steps until convergence: 

2.1. 1 ( 1)modj k m   ; 1 | ( 1) / |l k m   ; 

2.2. Construct virtual evidence with likelihood ratio 

             
( )(1) (2)

,

1 (1) 1 (2) 1 ( )

( )( ) ( )
( ) : : :

( ) ( ) ( )

s

s

jj j

jj

j l j j j

k k k j

R yR y R y
L Y

Q y Q y Q y  

  

 where (1) (2) ( ), , ,
s

j j j

j

jy y y Y are the state configurations of jY ; 

2.3. Update the BN with , ( )j

j lL Y using virtual evidence method, and let ( )kQ X  

denote the distribution of the updated BN; 

2.4. 1k k  ; 
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Given a set of soft evidences that are consistent with each other, these two algorithms 

converge to the same distribution, which can satisfy all the soft evidences and also has 

minimum I-divergence with the original distribution. In comparison, BN-IPFP-1 is more 

suitable for small BNs with a large number of variables in the soft evidences. This is 

because at each iteration it computes the marginal distribution for variables in the soft 

evidence and updates the belief for the entire BN. BN-IPFP-2 works better for large BNs 

with a small number of variables in the soft evidences because it only updates the joint 

distribution of all those variables. In this case it is more efficient than BN-IPFP-1 because 

by merging the soft evidences first, it avoids repeated computations with the large BN. 

BN-IPFP-SMOOTH was proposed for multiple soft evidences that are inconsistent 

with each other. It incorporates SMOOTH into BN-IPFP and smoothens the 

inconsistencies by modifying the soft evidences. 

To get a better understanding of BN-IPFP-1 and BN-IPFP-2, we show the result of 

applying them to the BN in Figure 2.1 with two soft evidences: ( ) (0.45,0.55)R B   

BN-IPFP-2 ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. Use any BN inference method to obtain ( )P Y  from ( )P X , where 1 mY Y Y   , 

and ( )P X is the joint distribution of the given BN; 

2. Update ( )P Y by IPFP using 1

1{ ( ), , ( )}m

mR Y R YR as constraints until 

converging to *( )Q Y ; 

3. Construct a virtual evidence with likelihood ratio ( )L Y computed 

from *( )Q Y and ( )P Y by (2.19); 

4. Apply ( )L Y as a single virtual evidence to update ( )P X . 
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and ( ) (0.55,0.45)R C  . Figure 2.9(a) shows the resulting BN after applying BN-IPFP-1, 

where two virtual nodes are added to the given BN, one for each soft evidence. In Figure 

2.9(b), only one virtual node is added to the given BN after applying BN-IPFP-2. We can 

see that in both cases the two soft evidences can be satisfied simultaneously. Also, as 

expected, the two algorithms converge to the same distribution at the end. 

 

(a) Resulting BN of BN-IPFP-1. 

 

(b) Resulting BN of BN-IPFP-2. 

Figure 2.9 Resulting BNs of BN-IPFP-1 and BN-IPFP-2 

2.5 BN Structure Learning 

In this section we briefly review the BN structure learning methods that target problems 

similar to those our AddLink methods are set to solve, i.e., finding the set of links 

between the variables to form a DAG that can best represent the given data. After 



36 

 

 

introducing the existing methods for BN structure learning, we list the reasons why these 

methods are not fit for the specific problem we set to solve. 

There are mainly two approaches to learn BN structures from raw data, one is score-

based and the other is constraint-based [40]. The score-based approach first defines a 

scoring function to evaluate how well a DAG matches the data, then searches for a DAG 

that maximizes the score. An example for this approach is the K2 algorithm [15]. It 

defines the following Bayesian scoring function: 

 
1 1 1

( 1)!
!

( 1)!

i iq rn
i

ijk

i j kij i

r

N r


  



 
     (2.21) 

where n is the number of variables, 
iq  is the number of all possible configurations of the 

parents of variable 
iX , 

ir   is the number of states of variable 
iX , ijk is the number of 

instances in the data where variable 
iX  takes its 

thk value and the parents of
iX take 

the thj  configuration, and ijN is the number of instances in the data where the parents of 

variable iX take the thj configuration. This score is decomposable [15] and the value at 

variable iX can be calculated using the following function: 

1 1

( 1)!
( , ) !

( 1)!

i iq r

i
i ijk

j kij i

r
f i

N r
 

 




 
       (2.22) 

where i  are the parents of iX . The informal intuition is that ( , )if i  is the probability of 

the data given that the parents of iX  are i . To find a DAG that maximizes the score, the 

K2 algorithm performs a hill-climbing search over the possible DAGs by adding or 

removing a link at each step according to a localized scoring function decomposed from 

(2.22) and a pre-ordering of the variables that sets their topological relations. The process 
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stops when no link change can increase the score. Other score-based methods may use a 

different scoring function such as BDe (Bayesian Dirichlet equivalence) score [20, 31] or 

MDL (Minimum Description Length) score [44, 73], or adopt a different search strategy 

such as heuristic search [34, 69, 85] or simulated annealing [30, 33, 53]. All these 

methods have the common goal of finding a DAG with the highest score so it can best 

represent the given data. 

In contrast, the constraint-based approach first applies statistical tests to the data to 

discover the interdependencies among the variables, then builds the skeleton of the DAG 

with undirected edges, and finally determines their directions. An example of this 

approach is IC (Inductive Causation) algorithm [77]. For each pair of variables 
iX  and 

jX , it searches for a set of variables ijS  such that 
iX  and jX  are independent given ijS  

based on the result of the statistical test. If ijS  is not found, an undirected edge is added 

between
iX and jX . In the next step, for each pair of non-adjacent nodes 

iX  and jX  with 

a common neighbor 
kX  such that k ijX S , it creates a V-structure of the form 

i k jX X X  . In the last step, it tries to orient as many of the undirected edges as 

possible as long as no new V-structure or a directed cycle is created. Other constraint-

based methods such as the PC (Peter and Clark) algorithm [70] or GS (Grow-Shrink) 

algorithm [49] go through the similar phases of first identifying the skeleton of the DAG 

based on the statistical results and then orienting as many undirected edges as they can. 

When the DAG already exists, new data can be used to improve the existing DAG so 

that the refined DAG can more accurately reflect the structure of the new data. Buntine 

proposed a Bayesian score based approach to update the existing BN with new data [10]. 
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It aims to maximize the posterior probabilities of the updated BN with new data. Wai 

Lam proposed a more flexible approach to update the BN structure with new data based 

on MDL. This method is also able to preserve the existing DAG to various degrees [45]. 

To reduce the computational cost, its update scope for adding, removing, or reversing 

links is limited to be among the nodes covered by new data and the parents of these nodes. 

As can be seen from the above examples, the focus of the BN structure learning 

methods is about determining which links are the most appropriate to be added to the BN 

given the data. It is similar to the concern we have for overcoming structural 

inconsistencies by adding links. However, the BN structure learning methods cannot be 

used directly to solve our problem for the following reasons. First, the data in our 

problem is a list of probabilistic constraints, which need to be completely satisfied instead 

of being satisfied to the maximum degree. The score-based BN structure learning 

methods operate on raw data, which is usually not possible to be completely satisfied. 

Besides, the instances of learning data for these structure learning methods are complete 

instantiations of all variables in the domain while in our problem each constraint is a low 

dimensional distribution which only involves a small subset of these variables. Therefore, 

the existing methods for BN structure learning are not fit for the problem of overcoming 

structural inconsistencies by adding links. 

2.6 MSBN 

In this section we briefly review MSBN (Multiply Sectioned BN) proposed by Xiang [81, 

82, 83, 84] because it is related to the problem of constructing a large BN from a set of 

small BNs to which we hope our methods developed in this thesis can be applied. MSBN 
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sections a large BN representing an uncertain domain into multiple small BNs, and 

deploys each of them to an agent which is in charge of a subdomain. Each agent reasons 

about the state of its subdomain based on its partial knowledge of the entire domain 

together with its local observations, and communicates with other agents to estimate the 

state of the entire domain. Figure 2.10 shows an example of a BN G being sectioned into 

three smaller BNs,
0G , 

1G  and
2G , each of which can be deployed to an agent. 

 

(a) A 15 node BN G . 

 

(b) Three BNs,
0G ,

1G , and 
2G  sectioned from G . 

Figure 2.10 A 15 node BN G is sectioned into three BNs 0G ,
1G , and 2G  

To accomplish the task of estimating the state of the entire uncertain domain with 

limited amount of communication, MSBN enforces two key technical constraints: 

hypertree and d-sepset interface [81]. 

Definition 2.9 (Hypertree) Let ( , )G V E be a connected graph with V being the set of 

all of its nodes and E  being the set of all of its links. Let { ( , )}i i iG V E  be a set of 
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subgraphs sectioned from G . Let the subgraphs be organized into an undirected 

treewhere each node is uniquely labeled by
iG  and each link between 

kG  and 
mG   is 

labeled by the non-empty interface 
k mV V   such that for each i  and j , 

i jV V is 

contained in each subgraph on the path between 
iG  and 

jG  in . Then is a hypertree 

over G. Each
iG is a hypernode and each interface is a hyperlink. 

The hypertree represents how agents communicate with each other, where variables 

in each hyperlink are shared by agents. Figure 2.11 illustrates the hypertree for G  in 

Figure 2.10(a). 
5X and

10X are shared by
0G  and 

1G . 
6X  and

12X are shared by
1G  and

2G . 

 

Figure 2.11 The hypertree for graph G in Figure 2.10(a) 

Definition 2.10 (d-sepset) Let G be a directed graph such that a hypertree over G exists. 

A node iX  contained in more than one subgraph with its parents i  in G  is a d-sepnode 

if there exists at least one subgraph that contains 
i . An interface I  is a d-sepset if 

every iX I  is a d-sepnode. 

In MSBNs agents communicate by exchanging their beliefs over shared variables. 

Each shared variable needs to be a d-sepset. The interface between 0G  and 1G  in Figure 

2.11 is a d-sepset because 5X and 10X are only shared by 0G  and 1G , and 5X  has all its 

parents contained in 1G while 10X has all its parents contained in 0G . For the same reason, 

the interface between 1G  and 2G  in Figure 2.11 is also a d-sepset. 
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Definition 2.11 (MSDAG) A hypertree MSDAG 
i iG G , where each

iG  is a DAG, is a 

connected DAG such that (1) there exists a hypertree over G , and (2) each hyperlink 

in is a d-sepset. 

The structure of an MSBN needs to be an MSDAG with a hypertree organization. 

Graph G in Figure 2.10(a) is an MSDAG because it satisfies the two requirements. 

The hypertree organization guarantees the effective communication among the small 

BNs, so they can estimate the state of the entire domain through cooperation. But its strict 

restrictions on the shared variables limit the application of MSBN when the subnets are 

not obtained by sectioning a large BN but directly from individual agents’ modeling of 

their respective subdomains. In particular, the requirement for the shared variables to be 

identical can be reasonable only if all the agents model their part of the world based on 

the same conceptualization of the domain and have accurate information. The 

requirement for all parents of a shared variable to appear in one subnet is hard to meet 

when the agents have different access levels or different scopes of information. Therefore, 

when structural restrictions need to be relaxed, MSBN is not suitable for modeling the 

overall uncertain knowledge of a large distributed domain represented as a set of BNs. 

2.7 Summary 

In this chapter we introduced background knowledge that our research is based on, 

including the problem of probabilistic knowledge integration, IPFP, and Bayesian 

networks. We also reviewed the existing methods including CC-IPFP, GEMA and 

SMOOTH for knowledge integration with JPD when constraints are inconsistent with 
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each other. These IPFP-based methods cannot be applied directly to the BNs since 

operations of IPFP are defined over the full JPD, not the BNs. 

For knowledge integration with BNs, we reviewed E-IPFP which extends IPFP by 

adding a structural constraint during the iteration to force the result to comply with the 

BN structure. We also reviewed D-IPFP which reduces the computational cost for large 

BNs by decomposing a global E-IPFP problem into a set of smaller local E-IPFP 

problems. Lastly, we reviewed E-IPFP-SMOOTH which incorporates SMOOTH into E-

IPFP to resolve the situation where the constraints are inconsistent with each other or 

with the BN structure. In the same manner as E-IPFP and D-IPFP, E-IPFP-SMOOTH 

keeps BN’s structure intact and smoothens the inconsistencies by modifying the 

constraints during the integration process. 

We also introduced virtual evidence method because it is closely related to our 

AddNode methods for overcoming structural inconsistencies. Virtual evidence and soft 

evidence are two types of uncertain evidences, each of which has its own characteristics 

and obeys a different belief update rule. BN belief update with virtual evidence can be 

achieved by Pearl’s virtual evidence method which adds a virtual node to the BN. BN 

belief update with soft evidence can be accomplished by first converting the soft 

evidence into a virtual evidence and then applying virtual evidence method. 

Belief update with multiple virtual evidences can be carried out directly because the 

update for one virtual evidence does not affect the update for another virtual evidence. 

However, this is not the case for belief update with multiple soft evidences because the 

update for one soft evidence affects the update for the other soft evidences. We reviewed 
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BN-IPFP algorithms which combine Pearl’s virtual evidence method with IPFP to 

overcome the challenge. 

We provided a brief review for BN structure learning methods because our AddLink 

methods for overcoming structural inconsistencies have similar concern as to which links 

to be added to the BN based on the data. We listed the differences between our problem 

and the problem of BN structure learning, and explained why the methods for BN 

structure learning cannot be applied directly to our problem. 

At the end of this chapter we reviewed MSBN because it is related to the problem we 

will investigate, namely the problem of constructing a large BN from a set of small BNs. 

MSBN sections a large BN into multiple small BNs, and estimates the state of the entire 

domain with limited amount of communication among the small BNs. MSBN imposes 

strict restrictions on the structure of the small BNs, making it hard to be applied to 

problems such as merging small BNs into a large BN when the structural restrictions 

need to be relaxed. 
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3 Identify Structural Inconsistencies 

When the knowledge base is represented as a BN, structural inconsistency can occur 

during knowledge integration when the probabilistic dependencies among some of the 

variables in a constraint disagree with the dependencies represented by the structure of 

the BN. In this chapter we take a closer look at this issue and investigate how to identify 

the structural inconsistencies between a BN and a constraint. This chapter is organized as 

follows: 

In Section 3.1 we establish the theorem that any dependency that is implied by the 

constraint but does not hold in the BN structure will cause structural inconsistencies. This 

leads to our definition for structurally inconsistent constraint. Based on this definition, 

structural inconsistencies can be easily distinguished from other types of inconsistencies 

and be properly targeted during the knowledge integration process. 

In Section 3.2 we develop a method called InconsId to identify structural 

inconsistencies between a BN and a set of constraints. This is accomplished by first 

extracting dependency information from each of the constraints, then checking the BN to 

see if any of those dependencies are not captured by its structure. An example is provided 

to show how this method works. 

In Section 3.3 we analyze the time complexity of the InconsId method. The factors 

that could affect the execution time of the algorithm include the size of the BN, the 

number of constraints, and the number of variables in each constraint. Experiments are 

conducted to evaluate the execution time of the algorithm when these factors take 

different values. 
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3.1 Structural Inconsistencies 

As we know the conditional independencies among variables in a probability 

distribution ( )P X can be encoded by the DAG 
SG  when ( )P X is represented as a BN 

( , )S PG G G . In this section we will analyze how the independencies encoded in a DAG 

SG and the independencies exist in a probability distribution ( )P X affect the relation 

between
SG and ( )P X when they cover the same set of variables X . This analysis will 

help us to specify the requirement for the constraint R with which R can be integrated with 

a BN ( , )S PG G G . This will lead to our definition for structurally inconsistent constraint, 

and further help to articulate the problem we set to solve in this thesis. 

Given a probability distribution ( )P X and a DAG 
SG  over the same set of 

variables X , we use ( , , )PI U V W  to denote that U and V are independent given W in 

( )P X , and we use ( , , )
SGI U V W  to denote that U and V are independent given W in

SG , 

where U , V and W are disjoint subsets of X . The connection between
SG and ( )P X can 

be made through the following definitions [29, 56, 59]: 

Definition 3.1 (I-Map) If every independency implied by SG holds in ( )P X , then we 

say SG is an I-Map of ( )P X . That is, ( , , ) ( , , )
SG PI U V W I U V W . 

Definition 3.2 (D-Map) If every independency implied by ( )P X holds in SG , then we 

say SG is a D-Map of ( )P X . That is, ( , , ) ( , , )
SP GI U V W I U V W . 

Definition 3.3 (P-Map) If SG is both an I-Map and a D-Map of ( )P X , then we say SG is 

a Perfect Map, or P-Map of ( )P X . That is, ( , , ) ( , , )
SP GI U V W I U V W . 
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Definition 3.4 (Minimal I-Map) The minimal I-Map of ( )P X is a DAG 
SG such that 

removing any arc from 
SG introduces independencies that do not hold in ( )P X . 

Nir Friedman et al. defined I-Map from a different perspective. According to [39], a 

DAG is said to be an I-Map of a probability distribution if the probability distribution 

satisfies all the local dependencies associated with the DAG. Based on this definition, Nir 

Friedman et al. have proposed and proved that a DAG is an I-Map of a probability 

distribution if and only if the probability distribution can be factored according to that 

DAG [39, 91]. Here we reproduce this theorem and its proof using our notational 

conventions. 

Theorem 3.1 
SG is an I-Map of ( )P X if and only if ( )P X can be factored according 

to
SG , i.e., ( ) ( | )i i

i

P X P X  , where 
i is determined by

SG . 

Proof: 

[Sufficiency] Let
i be the parents of 

iX , 
iD be the descendants of 

iX , and
iN be the 

non-descendants of 
iX . Then

1{ , , } { }n i i i iX X X D N    . We have: 

( , , )
( | , )

( , , )
i

i i i
i i i

i i iX

P X N
P X N

P X N








, 

where 

1

( , , ) ( , , , ) ( | )
i i

n

i i i i i i i j jD D
j

P X N P X N D P X  


     

( | ) ( | ) ( | ) ( | )
i

j i k i l i

i i j j k k l lD
X N X X D

P X P X P X P X


   
  

    . 

Since ( | ) 1
i

l i

l lD
X D

P X 


  , we have: 
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( , , ) ( | ) ( | ) ( | )
j i k i

i i i i i j j k k

X N X

P X N P X P X P X


   
 

   . 

By summing over all the instantiations of 
iX , we have: 

( , , ) ( | ) ( | ) ( | )
i i

j i k i

i i i i i j j k kX X
X N X

P X N P X P X P X


   
 

     

                             ( | ) ( | ) ( | )
i

j i k i

j j k k i iX
X N X

P X P X P X


  
 

   . 

Since ( | ) 1
i

i iX
P X   , we have: 

( , , ) ( | ) ( | )
i

j i k i

i i i j j k kX
X N X

P X N P X P X


  
 

   . 

Therefore, 

( | ) ( | ) ( | )
( , , )

( | , ) ( | )
( , , ) ( | ) ( | )

j i k i

i

j i k i

i i j j k k

X N Xi i i
i i i i i

i i i j j k kX
X N X

P X P X P X
P X N

P X N P X
P X N P X P X





  


 
  

 

 

  

 

  
. 

It means
iX  is independent of any of its non-descendants given its parents. Thus

SG is an 

I-Map of P . 

[Necessity] Assume, without loss of generality, 1, , nX X are in topological order 

according to SG . By the chain rule we have: 

1 1 1

1

( , , ) ( | , , )
n

n i i

i

P X X P X X X 



 . 

Now consider one of the factors 1 1( | , , )i iP X X X  . Let i be the parents of iX . 

Since 1, , nX X are in topological order according to SG , we have 1 1{ , , }i iX X  . 

Furthermore, none of iX ’s descendants can possibly be in the set 1 1{ , , }iX X  . Besides 

the parents of iX , all the other variables in 1 1, , iX X   are the non-descendants of iX , 
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which is denoted as
iZ . We have

1 1{ , , }i i iX X Z   . Since
SG is an I-Map of ( )P X , 

according to the local Markov property of (2.13), 
iX is independent of any of its non-

descendants given its parents. So we have: 

1 1( | , , ) ( | , ) ( | ).i i i i i i iP X X X P X Z P X     

Applying this transformation to all the factors in the chain rule decomposition, the 

conclusion follows.                             

Besides, since every dependency implied by ( )P X holds in
SG if and only if every 

independency implied by
SG holds in ( )P X , we have the following theorem: 

Theorem 3.2 Let
SGP denotes the set of all JPDs that can be factored according to

SG . 

( )
SGP X P if and only if every dependency implied by ( )P X holds in

SG . 

It is interesting to note from Theorem 3.2 that, ( )
SGP X P , the dependencies 

implied by
SG  do not necessarily hold in ( )P X . That means

SG can have more 

dependencies than ( )P X , but not less. 

Next we are going to specify the requirement for the constraint R with which R can be 

integrated with a BN ( , )S PG G G . From Chapter 2 we know that, to guarantee that a 

constraint R can be integrated with a BN ( , )S PG G G , there must exist a JPD ( )P X which 

can both satisfy R and be factored according to SG . According to this and Theorem 3.2 we 

have the following theorem: 

Theorem 3.3 Let RP denote the set of all JPDs that can satisfy constraint R , and let
SGP  

denote the set of all JPDs that can be factored according to SG . 
SR G P P  if and only 

if every dependency implied by R holds in SG . 
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Proof: 

[Sufficiency] Let X be the set of variables of 
SG , and Y  be the set of variables of R . 

Case 1. When R and
SG have the same set of variables, i.e., Y X , then { }R RP . If 

every dependency implied by R holds in
SG , then by Theorem 3.2,

SGRP . 

Thus { }
SR G R  P P . 

Case 2. When the set of variables of R is a subset of that of 
SG , i.e., Y X , we can 

construct a JPD ( )P X such that ( ) ( )P Y R Y  and each variable in X Y is independent of 

the other variables in X . That is, ( )P X satisfies R , and ( )P X also has the same 

dependencies as R . Thus ( ) RP X P , and every dependency implied by ( )P X holds in
SG . 

Since ( )P X and
SG have the same set of variables, according to Case 1, 

{ }
SR G P  P P . 

[Necessity] Let ( )
SR GP X  P P , then ( ) RP X P and ( )

SGP X P . Since ( )P X satisfies 

R , every dependency in R also holds in ( )P X . Since ( )
SGP X P , according to Theorem 

3.2, every dependency implied by ( )P X holds in SG . Therefore, every dependency 

implied by R holds in SG .                 

Based on Theorem 3.3, we have our definition for structurally inconsistent constraint: 

Definition 3.5 (Structurally Inconsistent Constraint) Given a BN ( , )S PG G G over a 

set of variables X , and a probability constraint R over a set of variablesY , whereY X , 

if every dependency implied by R holds in SG , then we say R is structurally consistent 

with SG , or R is a structurally consistent constraint for SG . Otherwise if any dependency 
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implied by R does not hold in
SG , we say R is structurally inconsistent with

SG , or R is a 

structurally inconsistent constraint for
SG . 

Based on Definition 2.4 and Definition 3.5, we can use the following way to 

differentiate structural inconsistencies from other inconsistencies between a 

BN ( , )S PG G G and a set of constraints R . 
iR R , if 

i SR G P P , then
iR has 

structural inconsistency with the BN.  If RP , then R has inconsistency among the 

constraints. As an example, constraints
1( , )R A B and

2 ( , )R A C in Figure 2.5 are 

inconsistent with each other, and constraint
3( , , )R A B C in Figure 2.5 has structural 

inconsistency with the BN. 

With the definition of structurally inconsistent constraint, the problem we set to solve 

in this thesis can be formally stated as follows: 

Given a BN ( , )S PG G G with JPD ( )P X , and a set of consistent constraints 

1

1{ ( ), , ( )}m

mR Y R YR in which some of the constraints have structural inconsistencies 

with
SG , construct a new BN ( , )S PG G G with probability distribution ( )P X that meets 

the following conditions: 

C1: Constraint satisfaction: ( )j

jR Y R , ( ) ( )j j

jP Y R Y ; 

C2: Minimality: I-divergence ( ( ) ( ))I P X P X and the change from
SG to SG are as 

small as possible. 
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3.2 The Method to Identify Structural Inconsistencies 

In the previous section we have established the theorem that any dependency that is 

implied by the constraint but does not hold in the BN will cause structural 

inconsistencies. In this section we will develop a method based on this theorem to 

determine if a set of constraints has structural inconsistencies with a BN. This is 

accomplished by first extracting dependency information from each constraint using the 

independent test, then checking in the BN to see if any of those dependencies are not 

captured by the BN structure based on the d-separation method. We will provide an 

example to show how this method works. 

3.2.1 The Independence Test 

To extract dependency information from a constraint, we can perform the independence 

test. The kind of independence test we use in this thesis is as follows. The 0th order 

unconditional independence test is to check whether ( , ) ( ) ( )u v u vR Y Y R Y R Y   holds for 

each pair of variables 
uY  and 

vY  in constraint R . If the equality holds, 
uY and 

vY are 

independent, otherwise they are dependent. The thj order independence test for R is to 

check whether the following equation holds for each pair of variables uY  and vY  in R : 

                                    ( , | ) ( | ) ( | )u v u vR Y Y W R Y W R Y W                                        (3.1) 

where W is a set of any j number of variables in R other than uY and vY . 

Taking into consideration of the numerical precision during the test, we set a 

threshold of 10-4 in all our experiments when comparing ( , | )u vR Y Y W with 
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( | ) ( | )u vR Y W R Y W . That is, 
uY and 

vY are considered independent given W when the 

following equation holds: 

             
4( , | ) ( | ) ( | ) 10u v u vR Y Y W R Y W R Y W                                    (3.2) 

All dependencies in a constraint can then be obtained by performing all independent 

tests according to (3.2) from 0th order to ( 2)thn order. 

3.2.2 The d-separation Method 

To check whether some dependency is captured by a BN structure, we can use the d-

separation method [58]. This method can identify if two variables are dependent in a BN 

by looking at the connection types for the variables along the path between these two 

variables. In general, there are three types of connections in BNs. 

The first type is serial connection, i.e.
u w vX X X  , where

uX , 
vX and

wX are 

three variables in the BN. If 
wX  is not observed, 

uX and
vX are dependent. Information 

can be transmitted between
uX and

vX through
wX if 

wX is not observed. If 
wX is observed, 

uX and vX are independent. Information cannot be transmitted between uX and vX through 

wX if wX is observed. Observing wX blocks the information path. 

The second type is diverging connection, i.e. u w vX X X  , also known as 

common cause. If wX is not observed, uX and vX are dependent. Information can be 

transmitted through wX among children of wX if wX is not observed. If wX is observed, 

uX and vX are independent. Information cannot be transmitted through wX among children 

of wX  if wX is observed. Observing wX blocks the information path. 
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The third type is converging connection, i.e. 
u w vX X X  , also known as common 

effect. If neither
wX nor any of its descendants are observed, 

uX and
vX are independent. 

Information cannot be transmitted through
wX among the parents of 

wX . It leaks 

through
wX and its descendants. If 

wX or any of its descendants is observed, 
uX and

vX are 

dependent. Information can be transmitted through
wX among parents of

wX if 
wX or any 

of its descendants are observed. Observing
wX or its descendants opens the information 

path. 

A path between
uX and

vX is blocked by a set of variablesW if either that path contains 

a variable
wX that is inW and the connection at

wX is either serial or diverging, or that the 

path contains a variable
wX such that

wX and its descendants are not in W and the 

connection at
wX is a converging connection. We say

uX and
vX are d-separated byW if all 

paths between
uX and

vX are blocked byW . 

3.2.3 The InconsId Method 

Based on Definition 3.5 for structurally inconsistent constraint, we propose a method to 

identify structural inconsistencies between a BN and a set of constraints. The method is 

named InconsId, which stands for inconsistency identification. 

For each constraint iR in R , the InconsId method first extracts all the dependencies 

from iR using the independence test, and checks whether each dependency holds in the 

BN using the d-separation method. If not, this dependency is added to a local dependency 

list iDL in the format of , ,u vX X W  , which means uX and vX are dependent given a set 

of variablesW  in the constraint but independent in the BN. Here we assume the nodes are 
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in topological order according to the DAG of the BN, and
uX has lower index than

vX . 

Thus, if a link between
uX and

vX is to be added, it shall have the direction of 
u vX X . 

After all the independence tests are completed for
iR , if 

iDL is still an empty list, it means 

all the dependencies implied by
iR hold in the BN. Thus

iR is classified as a structurally 

consistent constraint and is added to the global structurally consistent constraint set R . 

Otherwise if there are still any items left in
iDL , it means these dependencies are implied 

by
iR but do not hold in the BN. Thus

iR  is classified as a structurally inconsistent 

constraint and is added to the global structurally inconsistent constraint set R . Each item 

in
iDL is added to the global dependency list DL if it does not already exist in DL . 

After all the constraints are processed, the method returns R , R  and DL . The items 

in DL contain important information which will be used later in modifying the structure 

of the existing BN to overcome the structural inconsistencies. The following is the 

InconsId method. 
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The following example illustrates how the InconsId method works with the BN in 

Figure 3.1 and four constraints in Figure 3.2. For each constraint, the method checks 

whether all the dependencies existing in the constraint hold in the BN. For 1( , , )R B D F , 

1 DL , so it is added to R . For 2( , , )R B D G , 2 { , ,{ } }D G B  DL , so it is added 

to R , and , ,{ }D G B  is added to DL . For 3( , , )R D E G , 3 { , ,{ } }D G E  DL , so it is 

added to R , and , ,{ }D G E  is added to DL . For 4( , , )R D F G , 4 DL , so it is added 

InconsId ( ( , )S PG G G ,
1{ , , }mR RR ) 

1.  R ,  R , DL ; 

2. For each constraint
iR in R , do the following: 

2.1. 
i DL , 

in = the number of variables in
iR ; 

2.2. If 1in  , go to step 2.3. Otherwise for each pair of variables
uX and

vX in
iR , 

do from 0th  order to ( 2)thn  order independence test for them according to 

(3.2). If the test fails, use the d-separation method to check in
SG whether

uX  

and
vX are dependent given a set of variablesW in the constraints. If they are 

independent in
SG , add , ,u vX X W  to

iDL , with
uX  having lower index than 

vX  in the BN; 

2.3. If 
i DL , add

iR to R . Otherwise, add
iR to R , and for each entry in

iDL , 

add it to DL if it does not already exist in DL ; 

3. Return R , R , and DL . 
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to R . At the end, the method returns
1 4{ ( , , ), ( , , )}R B D F R D F G R ,

2{ ( , , )R B D G R , 

3( , , )R D E G }, and , ,{ } , , ,{ } }{ D G B D G E   DL . 

 

 

Figure 3.1 A 7 node BN and its CPTs 

 

Figure 3.2 Constraints 1 2 3( , , ), ( , , ), ( , , )R B D F R B D G R D E G and 4( , , )R D F G  
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3.3 Experiments 

In this section we will analyze the time complexity of the InconsId method and conduct 

experiments to evaluate the execution time of the method. To analyze the time 

complexity of the InconsId method, we first consider a single constraint R . Let n  be the 

number of variables in R , so the number of pairs of variables in R is 2 ( 1) / 2nC n n  . For 

each pair of variables, the number of independence tests performed is 

0 1 2 2
2 2 2 2n n

n n nC C C  
      . If any of the independence tests fails, the method checks 

whether the dependency holds in the BN using the d-separation method, which can be 

implemented in linear time of the size of the BN [19]. Let | |V be the number of nodes 

and | |E  be the number of links in the BN, the time complexity of the d-separation method 

is (| | | |)O V E . So the time complexity of the InconsId method for a single constraint 

is 2( 2 (| | | |))nO n V E   . 

Since the InconsId method processes every constraint in the same way, the time 

complexity for a set of constraints
1{ , , }mR RR  will be m  times of the time complexity 

for a single constraint, where m is the number of constraints in R . That is, the total time 

complexity of the InconsId method is 2

1

( ( 2 (| | | |)))i

m

n
i

i

O n V E


   . 

Based on the above analysis, we know that the execution time of the InconsId method 

is related to the number of variables in each constraint, the size of the BN, as well as the 

number of constraints in the constraint set. Next we will conduct experiments to evaluate 

the performance of the InconsId method and see empirically how its execution time is 
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affected by each of these factors. The experiments in this thesis are conducted based on 

Netica API from Norsys [89]. 

The first set of experiments is designed to evaluate the execution time of the InconsId 

method for a single constraint when the number of variables in the constraint varies from 

2 to 10. The BN in this set of experiments has 25 nodes and 50 links. The result in Figure 

3.3 shows the relation between the number of variables in the constraint and the 

execution time of the InconsId method when the size of the BN and the number of 

constraints are fixed. 

 

Figure 3.3 Result of Experiment 1 for the InconsId method 

The second set of experiments is designed to evaluate the execution time of the 

InconsId method when the number of binary variables in the BN varies from 10 to 80. 

This set of experiments uses a single constraint with 6 variables. The result in Figure 3.4 

shows the relation between the size of the BN and the execution time of the InconsId 

method when the number of variables in the constraint and the number of constraints are 

fixed. 
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Figure 3.4 Result of Experiment 2 for the InconsId method 

The third set of experiments is designed to evaluate the execution time of the 

InconsId method when the number of constraints varies from 2 to 10. Each constraint in 

the constraint set has 6 variables. The BN in this set of experiments has 25 binary 

variables. The result in Figure 3.5 shows the relation between the number of constraints 

in the constraint set and the execution time of the InconsId method when the number of 

variables in each constraint and the size of the BN are fixed. 

 

Figure 3.5 Result of Experiment 3 for the InconsId method 

From the above experiment results we can see that the execution time of the InconsId 

method increases exponentially with the number of variables in the constraint, and 

increases linearly with either the size of the BN or the number of constraints. These 

experiment results are consistent with our theoretical analysis. 
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3.4 Summary 

In this chapter we established the theorem that a constraint is structurally consistent with 

a BN if and only if every dependency implied by the constraint holds in the BN structure. 

Based on this theorem, we defined structurally inconsistent constraint which has 

dependency that does not hold in the BN structure, and described how to differentiate 

structural inconsistency from other inconsistencies. With the definition of structurally 

inconsistent constraint, we provided a formal statement for the problem we set to solve in 

this thesis. 

Based on the established theorem and definition, we proposed the InconsId method to 

identify structural inconsistencies between a BN and a set of constraints. The method first 

extracts all the dependencies from each constraint using the independence test and then 

checks whether each dependency holds in the BN using the d-separation method. If any 

of these dependencies do not hold in the BN structure, the constraint will be classified as 

a structurally inconsistent constraint. We demonstrated how the InconsId method works 

through an example. 

We analyzed the time complexity of the InconsId method and conducted experiments 

to evaluate its performance on the execution time. It was shown that the execution time of 

the InconsId method increases exponentially when the number of variables in the 

constraint increases, and increases linearly when either the size of the BN or the number 

of constraints increases. 
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4 Overcome Structural Inconsistencies – AddNode Methods 

With our proposed methods in the last chapter, structural inconsistencies can be identified 

between a BN and a set of constraints. Our next goal is to overcome these identified 

structural inconsistencies by modifying the structure of the existing BN. In this chapter 

we will address this issue by adding nodes to the existing BN. This is done by adapting 

the virtual evidence method originally developed for dealing with uncertain evidence in 

BN reasoning. The class of methods proposed in this chapter is called AddNode methods. 

In Section 4.1 we introduce the basic method of this class, named AddNode-Basic. 

This method overcomes the structural inconsistencies between a BN and a set of 

constraints by adding one node for each constraint. It executes a process similar to BN-

IPFP which adds a virtual node for each constraint and repeatedly iterates over all the 

constraints until convergence. At the convergence, this extended BN satisfies all the 

constraints. Several variations of AddNode-Basic are proposed later to improve 

computational efficiency and minimize the changes to the existing BN structure. 

In Section 4.2 we propose the AddNode+Merge method which adds only one virtual 

node for all the constraints. This is done by first merging all the constraints into a single 

constraint with IPFP, then using AddNode-Basic to integrate the merged constraint by 

adding only one node for it to the existing BN. 

In Section 4.3 we propose the AddNode+D-IPFP method to integrate the structurally 

inconsistent constraints using the AddNode-Basic method while integrating the 

structurally consistent constraints using D-IPFP. Compared to the AddNode-Basic, the 

AddNode+D-IPFP avoids adding nodes for the structurally consistent constraints. 
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In Section 4.4 we propose the AddNode+Factorization method to factorize large 

constraints into smaller ones and add nodes only for the structurally inconsistent parts of 

the constraints. In this way the number of the parents as well as the size of the CPTs for 

the added nodes can be reduced. 

In Section 4.5 we analyze each method theoretically for the class of AddNode 

methods, and conduct experiments to evaluate their performance. 

4.1 The AddNode-Basic Method 

Given a BN and a structurally inconsistent constraint, we can accommodate the identified 

structural inconsistencies in a way similar to Pearl’s virtual evidence method. This is 

accomplished by first adding a node to the existing BN for the constraint and making this 

node the child of all the variables of that constraint, then setting the CPT of the node with 

the likelihood ratio calculated from the constraint using (2.19), and setting the state of the 

node to true. As the parents of the added node, all the variables covered by the constraint 

have converging connection with each other. Thus, they are dependent when the added 

node is set to true. With this added structure, the dependencies in the constraints that do 

not hold in the original BN now can be represented by the revised BN structure. Thus, the 

structural inconsistencies are overcome. Also, because the likelihood ratio is calculated 

using (2.19) and is used to construct the CPT of the added node, based on the virtual 

evidence method, the updated distribution will satisfy the constraint once the added node 

is set to true. 

For multiple constraints 1

1{ ( ), , ( )}m

mR Y R YR , after satisfying one constraint, the 

updated distribution may not satisfy the other constraints. Inspired by BN-IPFP-1, we 
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combine the above process for a single constraint with IPFP to iterate over all the 

constraints until convergence. Taking into account of the numerical precision, the method 

is considered to be at convergence when the following equation holds: 

4

1

| ( ( ), ( )) | 10
m

j j

j

j

Q Y R Y 



         (4.1) 

where ( )jQ Y is the marginal distribution on jY in the BN, and ( ( ), ( ))j j

jQ Y R Y is the 

total variation between ( )jQ Y and ( )j

jR Y . This rule also applies to the other AddNode 

methods for determining convergence. The following is the AddNode-Basic method. 
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The convergence and correctness of the AddNode-Basic method are established in 

Theorem 4.1 below. 

AddNode-Basic ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. 
0( ) ( )Q X P X , where ( )P X is the joint distribution of the given BN; 

2. For each ( )j

jR Y in R , add a node 
jV  to 

SG with variables in jY as its parents; 

3. Starting with 1k  , repeat the following process until convergence: 

3.1. 1 ( 1)modj mk   ; 1 |1 | ( ) /l k m   ; 

3.2. Calculate the likelihood ratio from 
1( )j

kQ Y
 and ( )j

jR Y  by (2.19): 

         
(1) (2) ( )

,

1 (1) 1 (2) 1 ( )

( ) ( ) ( )
( ) : : :

( ) ( ) ( )

j j j

lj
j l j j j

k k k l

R y R y R y
L Y

Q y Q y Q y  

   

          where (1) (2) ( ), ,...,j j jj

ly y y Y are the state configurations of jY ; 

3.3. Construct the CPT of jV with likelihood ratio , ( )j
j lL Y  by (2.20). 

 The CPT entries when jY takes the instantiation of ( )

j

ty are calculated by: 

 

( ) ( )

( )

11 ( ) 1 ( )

( ) ( )

( )

11 ( ) 1 ( )

( ) ( )
( | )

( ) ( )

( ) ( )
( | ) 1

( ) ( )

j jl
t tj

j t j j
tk t k t

j jl
t tj

j t j j
tk t k t

R y R y
P V true y

Q y Q y

R y R y
P V false y

Q y Q y

 

 

 

 
    

 





; 

3.4. Set the state of jV  to true,  and let ( )kQ X denote the distribution of the 

updated BN; 

3.5. 1k k  ; 

4. Return the updated BN as output. 
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Theorem 4.1 If constraints in 1

1{ ( ), , ( )}m

mR Y R YR are consistent with each other, 

then the AddNode-Basic method converges to JPD *( )Q X , where ( )i

iR Y R , 

*( ) ( )i i

iQ Y R Y . 

Proof: 

Consider the
thk iteration when constraint ( )j

jR Y is selected to update the BN. ( )kQ X  

obtained in step 3.4 of the AddNode-Basic method is the same as the one obtained by 

updating
1( )kQ X

with , ( )j
j lL Y using Pearl’s virtual evidence method. According to 

Theorem 5 in [12], when this virtual evidence is applied to
1( )kQ X

, the updated 

distribution is exactly the same as what can be obtained using Jeffrey’s rule after 

applying ( )j

jR Y . It has also been proven in [66] that after updating
1( )kQ X

by 

( )j

jR Y using Jeffery’s rule, the resulting distribution ( )kQ X is the same as the I-

projection of 
1( )kQ X

on
( )j

jR Y
P . That is, 

1

1

( )
( ) ( )

( )

j

j

k k j

k

R Y
Q X Q X

Q Y




  , 

which is one step of IPFP. This means the AddNode-Basic method is the same as 

applying IPFP to a set of consistent constraints 1

1{ ( ), , ( )}m

mR Y R YR . Therefore, it 

converges to joint probability distribution *( )Q X , where ( )i

iR Y R , *( ) ( )i i

iQ Y R Y .  

The following example illustrates how the AddNode-Basic method works. Given a 

BN in Figure 3.1 and four constraints in Figure 3.2, some of which are inconsistent with 

the BN, AddNode-Basic first adds one node to the existing BN for each constraint. Then, 

for each constraint, it calculates the likelihood ratio based on the constraint and the 
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probability distribution of the current BN, then constructs the CPT of the node added for 

the constraint based on the likelihood ratio, and sets the state of the added node to true. 

This process is repeated until converging in 2 iterations. Figure 4.1 shows the resulting 

BN (a) together with the four CPTs of the virtual nodes (b). Figure 4.2 shows the 

marginal distributions in the resulting BN for the variables in each constraint. We can see 

that the resulting BN satisfies all the four constraints. 

 

(a) Resulting BN after integrating the four constraints. 

 

(b) Resulting CPTs of the added nodes. 

Figure 4.1 Result after running the AddNode-Basic method 
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Figure 4.2 Marginal distributions of the resulting BN 

4.2 The AddNode+Merge Method 

The AddNode-Basic method adds one node for each constraint and iterates repeatedly 

over all the constraints until convergence. To reduce the number of added nodes and 

avoid computing the marginal 
1( )kQ X

 in each iteration, we can first merge all the 

constraints into one constraint using IPFP, then add a single node to the existing BN for 

the merged constraint, and set the state of the node to true. In this way only one node is 

added to the existing BN, and the update to the BN only happens once. The following is 

the AddNode+Merge method. 
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The convergence and correctness of the AddNode+Merge method are established in 

Theorem 4.2 below. 

Theorem 4.2 If constraints in 1

1{ ( ), , ( )}m

mR Y R YR are consistent with each other, 

then the AddNode+Merge method converges to the same JPD as the AddNode-Basic 

method. 

Proof: 

Since constraints in R are consistent with each other, the result of step 2 will converge 

to
*( )Q Y . After calculating ( )L Y from

0 ( )Q Y and
*( )Q Y in step 4 and updating 

( , )S PG G G with ( )L Y using Pearl’s virtual evidence method in step 6, the method will 

converge because it is a special case of AddNode-Basic method with a single constraint. 

Let
*( )Q X be the distribution of the resulting BN. According to Theorem 5 of [12] and 

Theorem 1 of [66], we have: 

AddNode+Merge ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. 
0( ) ( )Q Y P Y  where 1 mY Y Y   , and ( )P X is the joint distribution of the 

given BN; 

2. Apply IPFP on
0 ( )Q Y with constraints in R until converging to *( )Q Y ; 

3. Add a node V to
SG with variables in Y  as its parents; 

4. Calculate likelihood ratio ( )L Y from
0 ( )Q Y and *( )Q Y by (2.19); 

5. Construct CPT of V with likelihood ratio ( )L Y by (2.20); 

6. Set the state of V to true to update the BN; 

7. Return the updated BN as output. 
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*
*

0

0

( )
( ) ( )

( )

Q Y
Q X Q X

Q Y
  . 

Also, according to Theorem 4 of [66], given an initial distribution
0 ( )Q X and a set of 

consistent constraints 1

1{ ( ), , ( )}m

mR Y R YR , applying IPFP on
0 ( )Q X with m  

constraints in R is equivalent to modifying 
0 ( )Q X with a single constraint *( )Q Y , 

where 1 mY Y Y   , and *( )Q Y is the converging distribution when applying IPFP on 

0 ( )Q Y with constraints in R . Thus the AddNode+Merge method converges to the same 

JPD as the AddNode-Basic method.                                                                        

The following example illustrates how AddNode+Merge method works. Given a BN 

in Figure 3.1 and four constraints in Figure 3.2, it first runs IPFP to merge the constraints 

into one constraint '( , , , , )R B D E F G as shown in Figure 4.3. Then it adds a nodeV to the 

existing BN, calculates the likelihood ratio based on '( , , , , )R B D E F G and the probability 

distribution of the BN, constructs the CPT of V based on the likelihood ratio, and sets the 

state of V to true. Figure 4.4 shows the resulting BN (a) together with the resulting CPTs 

for the added node (b). Experiment shows that this BN satisfies all the four constraints. 

Also note that, the two BNs in Figure 4.1 (a) and 4.4 (a) are identical except the former 

has four added virtual nodes and the latter only has one. 
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Figure 4.3 The merged constraint '( , , , , )R B D E F G  

 

(a) Resulting BN after integrating the four constraints. 

 

(b) Resulting CPTs of the added node. 

Figure 4.4 Result after running the AddNode+Merge method 
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The size of the CPT for the single added node grows exponentially with the number 

of distinct variables in the constraint set, which will impact the performance of the 

method. To solve the problem, we can combine the idea of the AddNode+Merge method 

with the AddNode-Basic method by first dividing the constraints in the constraint set into 

several groups, then merging the constraints in each group into one constraint which 

contains a moderate number of variables, and integrating these merged constraints with 

the existing BN using the AddNode-Basic method. The following example shows how it 

works. Given a BN in Figure 3.1 and four constraints in Figure 3.2, we first use IPFP to 

merge the first two constraints into constraint '

1( , , , )R B D F G  and the last two constraints 

into constraint '

2( , , , )R D E F G , which are shown in Figure 4.5. Then we use the 

AddNode-Basic method to integrate the two merged constraints '

1( , , , )R B D F G and 

'

2( , , , )R D E F G  with the existing BN. Figure 4.6 shows the resulting BN (a) together with 

the resulting CPTs for the added nodes (b). Experiment shows that this BN satisfies all 

the four constraints. 

 

Figure 4.5 The merged constraints '

1( , , , )R B D F G and '

2( , , , )R D E F G  
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(a) Resulting BN after integrating the four constraints. 

 

(b) Resulting CPTs of the added nodes. 

Figure 4.6 Result after running AddNode-Basic with two merged constraints 

4.3 The AddNode+D-IPFP Method 

The AddNode-Basic method adds a virtual node for each constraint regardless it is 

structurally consistent or inconsistent. The change to the existing BN can be greatly 

reduced if the added nodes can be limited to the structurally inconsistent constraints only, 

and let the structurally consistent constraints be integrated using E-IPFP or D-IPFP. In 

this thesis for computational reason we will only use D-IPFP to integrate structurally 
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consistent constraints. The new method named AddNode+D-IPFP combines the 

AddNode-Basic method with D-IPFP to reduce the number of added nodes to the existing 

BN. After grouping constraints in R into 
R and 

R using the InconsId method, it repeats 

the process of integrating the structurally inconsistent constraints in 
R using the 

AddNode-Basic method, and integrating the structurally consistent constraints in 
R using 

D-IPFP until convergence. The following is the AddNode+D-IPFP method. 
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AddNode+D-IPFP ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. 
0( ) ( )Q X P X , where ( )P X is the joint distribution of the given BN; 

2. Run the InconsId method to group R into 
R and 

R ; 

3. For each ( )j

jR Y in 
R , add a node jV to SG with variables in jY as its parents; 

4. Starting with 1k  , repeat the following process until convergence: 

  /*apply the AddNode-Basic method*/ 

4.1. For each ( )j

jR Y in 
R , do the following: 

4.1.1. Calculate likelihood ratio ( )j
jL Y from 1( )j

kQ Y and ( )j

jR Y by (2.19); 

4.1.2. Construct CPT of jV with likelihood ratio ( )j
jL Y by (2.20); 

4.1.3. Set the state of jV  to true, and let ( )kQ X denote the distribution of the 

updated BN; 

4.1.4. 1k k  ; 

      /*apply the D-IPFP algorithm*/ 

4.2. For each ( )t

tR Y in 
R , do the following: 

4.2.1. '

1

1

( )
( | ) ( | )

( )

t
t t t t t

k k kt

k

R Y
Q Y S Q Y S

Q Y




   ,  

                        where ( ) \t
i

t t

iX Y
S Y


 , and k is a normalization factor; 

4.2.2. '( | ) ( | ), t

k i i k i i iQ X Q X X Y    ; 

4.2.3. 1k k  ; 

5. Return the updated BN as output. 

 



75 

 

 

The following example shows how AddNode+D-IPFP method works. Given a BN in 

Figure 3.1 and four constraints in Figure 3.2, the method first runs the InconsId method to 

group the four constraints into 1 4{ ( , , ), ( , , )}R B D F R D F G R and
2{ ( , , )R B D G R , 

3( , , )}R D E G . Then it adds one node for each constraint in 
R to the existing BN. After 

that it runs step 3 of the AddNode-Basic method for 
R and one iteration of D-IPFP 

for 
R alternatively until convergence. Figure 4.7 shows the resulting BN (a) together 

with the updated CPTs for the existing nodes in the BN and the resulting CPTs for the 

added nodes (b). Experiment shows that this BN satisfies all the four constraints. 

 

(a) Resulting BN after integrating the four constraints. 

 

(b) Resulting CPTs of the existing nodes and the added nodes. 

Figure 4.7 Result after running the AddNode+D-IPFP method 



76 

 

 

4.4 The AddNode+Factorization Method 

When integrating a structurally inconsistent constraint using the AddNode-Basic method, 

all the variables in the constraint are set as the parents of the added node. The size of the 

CPT of the added node grows exponentially with the number of variables in the 

structurally inconsistent constraint, which will affect the performance of the method. 

Therefore, we propose the AddNode+Factorization method to reduce the number of 

parents for the added nodes when integrating structurally inconsistent constraints with a 

large number of variables. 

The method can factorize a large constraint into smaller ones and only add nodes for 

those that are structurally inconsistent with the existing BN. The factorization for each 

constraint is based on the interdependencies among its variables. Specifically, for each 

constraint ( )j

jR Y , the method orders its variables according to the topological order in
SG . 

Then for each variable j

kY in constraint ( )j

jR Y , the method finds the minimal 

subset
1 1{ , , }j j j

k kA Y Y  such that 1 1( | , , ) ( | )j j j j j

j k k j k kR Y Y Y R Y A  . This is similar to the 

process of constructing a minimal I-Map for ( )j

jR Y  [39]. Thus, we have 

( ) ( | )j j j

j j k k

k

R Y R Y A . In this way, in order to satisfy ( )j

jR Y , we only need to make 

sure each factor ( | )j j

j k kR Y A is satisfied, or ({ } )j j

j k kR Y A is satisfied. ({ } )j j

j k kR Y A  is 

called a factorized constraint and is added to fR . 

After all constraints are factorized, the method groups the factorized constraints in 

fR into structurally consistent constraint set f


R  and structurally inconsistent constraint 

set f


R  based on the dependencies on the dependency list. The method then integrates the 
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constraints in f


R with AddNode-Basic and integrates the constraints in f


R with D-IPFP. 

The following is the AddNode+Factorization method. 

 

The convergence and correctness of the AddNode+Factorization method are 

established in Theorem 4.3 below. 

AddNode+Factorization ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. f R , f

 R , f

 R ; 

2. Run the InconsId method to get the dependency list DL ; 

3. For each ( )j

jR Y in R , do the following: 

3.1. Order the variables in jY according to the topological order in
SG ; 

3.2. For each variable j

kY in jY , do the following: 

3.2.1. Find the minimal subset
1 1{ , , }j j j

k kA Y Y  such that 

                        1 1( | , , ) ( | )j j j j j

j k k j k kR Y Y Y R Y A  ; 

3.2.2. ( )f

f fR Y R , if ({ } )j j f

k kY A Y  , then add ({ } )j j

j k kR Y A to fR ; 

3.2.3. ( )f

f fR Y R , if ({ } )f j j

k kY Y A  , then remove ( )f

fR Y from fR ; 

4. For each ( )f

fR Y in fR , if , ,u vX X W   in DL , { , } f

u vX X Y , then add 

( )f

fR Y to f


R , otherwise add ( )f

fR Y to f


R ; 

5. Run the AddNode-Basic method for f


R , and run D-IPFP for f


R until 

convergence;   

6. Return the updated BN as output. 
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Theorem 4.3 If constraints in 1

1{ ( ), , ( )}m

mR Y R YR are consistent with each other, 

then the AddNode+Factorization method converges to JPD *( )Q X , where ( )i

iR Y R , 

*( ) ( )i i

iQ Y R Y . 

Proof: 

In step 3 of the AddNode+Factorization method, each constraint ( )j

jR Y in R is 

factorized into ( | )j j

j k k

k

R Y A . As long as each factor ( | )j j

j k kR Y A is satisfied, ( )j

jR Y will 

be satisfied. Also, if ({ } )j j

j k kR Y A is satisfied, ( | )j j

j k kR Y A will be satisfied. Step 3.2.2 

adds ({ } )j j

j k kR Y A to fR if { }j j

k kY A  is not a subset of the variable set of any constraints. 

Step 3.2.3 removes any constraint in fR if its variable set is a subset of { }j j

k kY A . These 

two steps guarantee that no constraint in fR is satisfied more than once when later being 

integrated with the BN. Step 4 of the method groups the factorized constraints in fR into 

structurally consistent constraint set f


R  and structurally inconsistent constraint 

set f


R based on the dependencies on the dependency list. In this way the missing 

dependencies identified by the InconsId method in step 2 can be satisfied after the 

factorized constraints in f


R are integrated with the existing BN using the AddNode-Basic 

method in step 5. Since all the constraints factorized from R as well as all the 

dependencies in R are satisfied in the resulting BN at the end of step 5, all constraints 

in R are satisfied. Thus, the AddNode+Factorization method converges to joint 

probability distribution
*( )Q X , where ( )i

iR Y R , *( ) ( )i i

iQ Y R Y .                                
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The following example shows how the AddNode+Factorization method works. Given 

a BN in Figure 3.1 and four constraints in Figure 3.2, the method first runs the InconsId 

method to get , ,{ } , , ,{ } }{ D G B D G E   DL . After that it factorizes the four 

constraints into
1 1 1 1( , , ) ( ) ( ) ( )R B D F R B R D R F   ,

2 2 2 2( , , ) ( ) ( ) ( | )R B D G R B R D R G D   , 

3 3 3 3( , , ) ( ) ( ) ( | )R D E G R D R E R G D    and
4 4 4 4( , , ) ( ) ( ) ( | )R D F G R D R F R G D   . At the 

end of step 3, 1 1 2 3{ ( ), ( ), ( , ), ( )}f R B R F R D G R ER . Then it groups the constraints in fR  

into structurally consistent constraints set f


R and structurally inconsistent constraints 

set f


R based on the dependencies in DL . At the end of step 4, 1 1 3{ ( ), ( ), ( )}f R B R F R E R , 

2{ ( , )}f R D G R . Then it integrates f


R with the AddNode-Basic method and integrates 

f


R with D-IPFP until convergence. Figure 4.8 shows the resulting BN (a) together with 

the updated CPTs for the existing nodes in the BN and the resulting CPTs for the added 

nodes (b). Experiment shows that this BN satisfies all the four constraints. 

 

(a) Resulting BN after integrating the four constraints. 

 



80 

 

 

 

(b) Resulting CPTs of the existing nodes and the added nodes. 

Figure 4.8 Result after running the AddNode+Factorization method 

4.5 Experiments 

In this section we will analyze the time performance for each AddNode method. We will 

also conduct experiments to empirically evaluate their performance, and see how their 

execution time are affected by the number of constraints and the size of the BN. 

First we analyze the amount of changes the added nodes of the AddNode methods 

bring to the existing BN. Given a BN ( , )S PG G G with all binary variables and a set of 

constraints 1

1{ ( ), , ( )}m

mR Y R YR , let ( )i
iR Y be any constraint in R and

iw be the number 

of variables in iY . Let 1 2 mY Y Y Y     and w be the number of variables inY . Let 

u  be the number of inconsistent constraints in R , ( )j
jR Y be any inconsistent constraint 

in R  and jw be the number of variables in ( )j
jR Y . Let v  be the number of inconsistent 

constraints in the set of the factorized constraints of R , ( )k
kR Y be any inconsistent 

constraint in the set of the factorized constraints of R and kw be the number of variables 

in ( )k
kR Y . The changes to the existing BN made by the AddNode methods are 

summarized in Table 4.1. 
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Table 4.1 Summary of changes to the existing BN made by the AddNode methods 

Method # Added Nodes # Added Links # Added CPT Entries 

AddNode-Basic m  
m

i

i

w  2 i

m
w

i

  

AddNode+Merge 1 w  2w  

AddNode+D-IPFP u  

u

j

j

w  2 j

u
w

j

  

AddNode+Factorization v  
v

k

k

w  2 k

v
w

k

  

 

From the summary we can see that, among all the methods in the class of AddNode 

methods, AddNode+Merge adds the fewest nodes to the existing BN. AddNode+D-IPFP 

adds fewer nodes than AddNode-Basic when there are structurally consistent constraints. 

The number of nodes added by AddNode+Factorization depends on how many 

structurally inconsistent constraints are factorized from the constraint set. For the number 

of added links, compared to AddNode-Basic, AddNode+Merge adds fewer links when 

there are shared variables among the constraints. AddNode+D-IPFP adds fewer links 

when there are consistent constraints. AddNode+Factorization adds fewer links when 

there are structurally consistent parts in the constraints. For the number of added CPT 

entries, in general, AddNode+Merge adds the most CPT entries unless there are a 

significant number of shared variables among the constraints. To use AddNode+Merge in 

the case where the number of distinct variables in the constraint set is large, it is better to 

first divide all constraints into several groups according to some distance or relevance 

measure, then merge the constraints in each group into one constraint which contains a 
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moderate number of variables. Table 4.2 shows the modifications to the existing BN for 

the examples in this chapter. 

Table 4.2 Modifications to the existing BN for the examples of AddNode methods  

Method # Added Nodes # Added Links # Added CPT Entries 

AddNode-Basic 4 12 32 

AddNode+Merge 1 5 32 

AddNode+D-IPFP 2 6 16 

AddNode+Factorization 1 2 4 

 

Next we analyze the time performance for each method in the class of AddNode 

methods. For the AddNode-Basic method, it updates the belief of the entire BN at each 

iteration. The time complexity is equal to the BN inference method it uses for belief 

update. If it uses the Junction Tree method [46], the time complexity for one iteration of 

the AddNode-Basic method is exponential to the size of the largest clique in the junction 

tree of the existing BN. For the AddNode+Merge method, it updates the joint distribution 

of Y using IPFP and the time complexity for one iteration is exponential to | |Y . For the 

AddNode+D-IPFP method, the time complexity for the structurally inconsistent 

constraints is the same as that of the AddNode-Basic method. For the structurally 

consistent constraints, D-IPFP has the overhead of constructing and applying the 

structural constraint at each iteration, which is more computationally expensive than the 

AddNode-Basic method. For the AddNode+Factorization method, it has the overhead of 
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factorizing the constraints as well as constructing and applying the structural constraint 

for the structurally consistent parts of the constraints. Therefore, it is more 

computationally expensive than the AddNode-Basic method. 

Finally, we will conduct experiments to evaluate the performance of the AddNode 

methods and see empirically how expensive they can be. The first set of experiments is 

designed to evaluate the execution time of each method when the number of constraints 

varies from 2 to 10. Each constraint in the constraint set has 3 variables. The summary for 

the constraints is in Table 4.3. The BN in this set of experiments has 15 binary variables. 

The result in Figure 4.9 shows the relation between the number of constraints in the 

constraint set and the execution time of each method when the size of the BN is fixed. 

Table 4.3 Summary for the constraints in Experiment 1 

# Constraints 

# Distinct 

Variables in 

All Constraints 

# 

Structurally 

Consistent 

Constraints 

# 

Structurally 

Inconsistent 

Constraints 

# Factorizable 

Constraints 

Size 

of DL 

2 5 1 1 1 4 

4 8 2 2 1 5 

6 10 2 4 1 10 

8 11 2 6 1 15 

10 11 2 8 1 23 
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Figure 4.9 Result of Experiment 1 for the AddNode methods 

The second set of experiments is designed to evaluate the execution time of each 

method when the number of binary variables in the BN varies from 20 to 80. This set of 

experiments uses 6 constraints, each of which has 3 variables. The dependency list in 

each experiment has 6 items. The result in Figure 4.10 shows the relation between the 

size of the BN and the execution time of each method when the number of constraints 

and the size of the dependency list are fixed. 

 

Figure 4.10 Result of Experiment 2 for the AddNode methods 

From the above experiment results we can see that, the execution time of the 

AddNode-Basic method increases linearly when the number of constraints or the size of 

the BN increases. AddNode-Basic is faster than AddNode+Merge because in 
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AddNode+Merge the size of the CPT for the single added node grows exponentially with 

the number of distinct variables in the constraint set. AddNode-Basic is faster than 

AddNode+D-IPFP and AddNode+Factorization because the latter two methods involve 

IPFP for the structurally consistent constraints, and IPFP is the major contributing factor 

for the time performance of these two methods. 

4.6 Summary 

In this chapter we proposed the class of AddNode methods to overcome structural 

inconsistencies by adding nodes to the existing BN. These methods adapt the virtual 

evidence method originally developed for dealing with uncertain evidence in BN 

reasoning. 

In Section 4.1 we introduced the basic method of this class, the AddNode-Basic 

method. For each constraint in the constraint set, it adds a node to the existing BN, makes 

the variables in the constraint as the parents of the added nodes and derives its CPT 

according to the likelihood rule of Pearl’s virtual evidence method, then sets the state of 

the node to true. This process is iterated over all the constraints until convergence. After 

validating the concept of our idea with this basic method, we developed several variations 

of this method to balance the computational cost and solution quality in different 

situations, as well as to address some other concerns. 

In Section 4.2 we introduced the AddNode+Merge method, which first merges all the 

constraints using IPFP, then adds a single node to the existing BN for the merged 

constraint. The main benefit of this method is to reduce the number of added nodes to one. 



86 

 

 

It can be used when it is computationally beneficial to merge small constraints before 

applying the AddNode-Basic method. 

In Section 4.3 we introduced the AddNode+D-IPFP method, which integrates the 

structurally inconsistent constraints with the AddNode-Basic method and integrates the 

structurally consistent constraints with D-IPFP. In this way the number of nodes added to 

the existing BN can be reduced when there are structurally consistent constraints. 

In Section 4.4 we introduced the AddNode+Factorization method, which first 

factorizes large constraints into smaller ones and adds nodes only for those that are 

structurally inconsistent with the given BN. The benefit of this method is two-folds. First, 

by replacing a large constraint with a number of smaller ones, the size of the CPTs for the 

added virtual nodes can be substantially reduced. Second, some of the small constraints 

from the factorization may be structurally consistent, which can be integrated without 

changing the BN structure. 

In Section 4.5 we analyzed each method in the class of AddNode methods 

theoretically and conducted experiments to compare their performance in different 

situations. Experiments showed that compared to AddNode-Basic, other variations, while 

gaining some advantages, have their execution time increase much faster when the 

number of constraints or the size of the BN increases. 
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5 Overcome Structural Inconsistencies – AddLink Methods 

In Chapter 4 we proposed the class of AddNode methods to overcome the structural 

inconsistencies by adding nodes to the existing BN. In this chapter we propose another 

class of methods, referred to as AddLink methods, to address the issue of structural 

inconsistencies. 

In Section 5.1 we introduce the basic method of this class, named AddLink-Basic, to 

overcome the structural inconsistencies between a BN and a set of constraints. The idea 

of this method is to add one link for each dependency item on the dependency list in 

order to provide structural support for the missing dependencies. 

In Section 5.2 we propose the AddLink-Prune method which seeks to minimize the 

number of links to be added to the existing BN. This is based on our observation that 

probabilistic dependencies are interrelated and many times adding one link may provide 

structural support for dependencies captured in several items on the dependency list. A 

truly global optimization requires searching a gigantic combinatorial space of all possible 

"missing" links of a given BN, which is computationally intractable for large BNs. 

Instead, our method focuses on the set of links that are added by our AddLink-Basic 

method, and tries to find a minimal subset that satisfies all the items on the dependency 

list. 

In Section 5.3 we analyze the two AddLink methods and conduct experiments to 

evaluate their performance. 
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5.1 The AddLink-Basic Method 

After running the InconsId method, all the dependencies that exist in the constraints but 

are missing in the BN are stored on the dependency list. The absence of these 

dependencies in the BN is the cause of the structural inconsistencies. To provide 

structural support for these missing dependencies, we can add a link
u vX X for each 

item , ,u vX X W on the dependency list to make up for the missing dependencies in the 

existing BN. Note here that as discussed in Subsection 3.2.3, nodes
uX  and

vX are 

assumed to be in topological order according to the DAG of the BN, and 
uX  has lower 

index than
vX . After the links are added to the existing BN, there is no more structural 

inconsistency between the BN and the constraints. Then we can run either E-IPFP or D-

IPFP to integrate the constraints with the updated BN. The following is the AddLink-

Basic method. 

 

 

AddLink-Basic ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. Run the InconsId method with ( , )S PG G G and R as input to obtain the 

dependency list DL ; 

2. For each item , ,u vX X W  in DL , add a link u vX X  to SG if it has not been 

added; 

3. Run E-IPFP or D-IPFP with the modified BN and R as input; 

4. Return the updated BN as output. 
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The following example illustrates how the AddLink-Basic method works. Given a 

BN in Figure 3.1 and six constraints in Figure 5.1, it first runs the InconsId method to 

get { , , , , , , , , , , , , , , , , , }A B A E B C C D C E C G            DL . Then 

it adds links A B , A E , B C , C D , C E and C G  to the existing BN to 

address the structural inconsistencies between the BN and the constraints. At the end, it 

runs E-IPFP to integrate the constraints with the updated BN. Figure 5.2 shows the 

resulting BN after running the AddLink-Basic method. Experiment shows that this BN 

satisfies all the six constraints. Besides, the I-divergence of the resulting JPD to the 

original JPD is 0.341. 

 

Figure 5.1 Constraints 1 2 3 4 5( , ), ( , ), ( , ), ( , ), ( , )R A B R A E R B C R C D R C E and
6( , )R C G  

 

Figure 5.2 Resulting BN with added links colored red after running AddLink-Basic 
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5.2 The AddLink-Prune Method 

The AddLink-Basic method adds one link for each item on the dependency list, which 

may introduce redundant links if one item is already covered by the link added for 

another item. To remove the redundancy and minimize the changes to the existing BN, 

we propose the AddLink-Prune method to search for the minimal set of links to add. 

Informally speaking, this method works as follows. After adding a link between
uX  

and
vX for each item , ,u vX X W on the dependency list to a copy of the existing BN, 

the method uses depth-first search to find all the open paths between
uX  and

vX in this 

BN for each dependency item , ,u vX X W  . A path is open between
uX  and

vX if it is 

not blocked by W , which has been introduced in Subsection 3.2.2 for the d-separation 

method.  Then the method creates a graph in a specific way with the set of added links on 

each open path as its vertices. Note that to avoid confusion, we use vertices and edges for 

the elements of this graph while we keep using nodes and links for the BN. At the end, 

the method uses depth-first branch-and-bound search [67] to find the path with minimum 

cost from the Start vertex to the End vertex in the graph. As will be shown shortly, a path 

from the Start vertex to the End vertex represents a solution to our problem as the added 

links in all the vertices along this path cover all the items on the dependency list. The cost 

of the path is measured by the total number of distinct added links in all the vertices 

along the path. Thus the path with minimum cost has the fewest links that can be added to 

the existing BN to remove all the items on the dependency list. Next we will explain how 

this method works with the BN in Figure 3.1 and the six constraints in Figure 5.1. 
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5.2.1 Identify the Candidate Link Sets 

This method first runs the InconsId method to get the dependency list DL . In this 

example, { , , , , , , , , , , , , , , , , , }A B A E B C C D C E C G            DL  . 

After that it creates a temp DAG by copying the DAG of the existing BN. Then for 

each item , ,u vX X W on the dependency list, it adds a link
u vX X to the temp DAG. 

In this example, links A B , A E , B C , C D , C E and C G  are added to 

the temp DAG, which looks the same as the DAG in Figure 5.2. 

Next, for each item , ,u vX X W   on the dependency list, it uses depth-first search to 

find all the open paths from
uX to

vX in the temp DAG when variables in W are 

instantiated. The set of added links on the thj open path for the thi  dependency item is 

denoted as j

iL . As will be shown shortly, each j

iL will serve as a vertex for the graph in 

which this method will search for the optimal solution. In this example, there is one open 

path for the first dependency item , ,A B   , and the set of added links on this open 

path is denoted as 1

1 { }L A B  . There are three open paths for the second dependency 

item , ,A E   , and the sets of added links on these open paths are denoted 

as 1

2 { }L A E  , 2

2 { }L C E   and 3

2 { }L A B  . Similarly, the sets of added links on 

the open paths for the other dependency items are denoted 

as 1

3 { }L B C  , 2

3 { }L A B  , 1

4 { }L C D  , 2

4 { }L A B  , 3

4 { }L B C  ,

1

5 { }L C E  , 2

5 { }L A E  , 3

5 { }L A B  , 4

5 { }L B C  , 1

6 { }L C G  , 2

6 { }L A B  ,

3

6 { }L A E  , 4

6 { }L B C  and 5

6 { }L C E  . Note that although all j

iL s are singleton 

in this simple example, these vertices can contain multiple added links in general. 
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5.2.2 Construct a CLS Graph 

In the next step of the method, a CLS (Candidate Link Set) graph is created. The CLS 

graph in Figure 5.3 is created for our example. We will use it to illustrate the process of 

how to create a CLS graph with all the candidate link sets obtained from Subsection 5.2.1. 

This graph has a layered structure of | |DL + 2 levels, where | |DL denotes the size of 

the dependency list. Its first level has a single vertex Start, and the last level has a single 

vertex End. In our example the graph has 8 levels. 

All vertices j

iL are placed at the ( 1)thi  level of the graph, representing alternative 

ways of adding links to satisfy the thi item in DL . In our example, the vertex 

representing 1

1 { }L A B   is placed at the second level of the graph, and the vertices 

representing 1

2 { }L A E  , 2

2 { }L C E  and 3

2 { }L A B  are placed at the third level of 

the graph, etc. 

There is an edge from each vertex at the thi level to each vertex at the ( 1)thi  level, so 

that a path from Start to End contains one vertex from each level of the graph. In this 

example, edges are added from Start to 1

1 { }L A B  , and from 1

1 { }L A B   

to 1

2 { }L A E  , 2

2 { }L C E  and 3

2 { }L A B  , etc. Since each vertex at the ( 1)thi   

level of the graph contains a set of added links that together can satisfy the thi item in DL , 

the union of the added links in all the vertices along the path from Start to End is able to 

satisfy all the items in DL . That is, each path from Start to End provides a solution of 

what links to be added to the existing BN in order to overcome all the structural 

inconsistencies. 
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Figure 5.3 The CLS graph created with all the candidate link sets 

5.2.3 The Cost of a Path in the CLS Graph 

The cost of a path in the CLS graph is measured by the size of the union of the added 

links contained in each vertex along the path. In our example, the cost of the path 

1 1 1 1 1 1

1 2 3 4 5 6Start L L L L L L End       is 6 because there are 6 distinct added 

links along this path, which are A B , A E , B C , C D , C E and C G . 

Our goal is then to find a solution path with minimum cost, i.e., a path containing the 

fewest distinct links to be added to the existing BN. 
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5.2.4 Search the Path with Minimum Cost 

After the CLS graph is defined, the method uses depth-first branch-and-bound search to 

find the path with minimum cost from vertex Start to vertex End of the graph. The 

distinct links in the vertices on this path are the links to be added to the BN. 

The bound is set to the minimum cost of all the paths found so far. In our example, 

the initial bound is set to 6, which is the size of the dependency list. After searching the 

first path 1 1 1 1 1 1

1 2 3 4 5 6Start L L L L L L End       whose cost is 6, the bound is not 

updated because the minimum cost of all the paths found so far is 6. After searching the 

second path 1 1 1 1 1 2

1 2 3 4 5 6Start L L L L L L End        whose cost is 5, the bound is 

updated to 5 because the minimum cost of all the paths found so far is 5. 

Since each path from Start to End provides a solution of the necessary links to be 

added to overcome all the structural inconsistencies, we need to keep searching until the 

path with minimum cost is found in the CLS graph. In our example, the path with 

minimum cost is 1 3 2 2 3 2

1 2 3 4 5 6Start L L L L L L End       , which is highlighted in 

red in Figure 5.3 and has the cost of 1. The set of added links on this path is{ }A B . 

We choose depth-first branch-and-bound search to find the optimal path because it 

can combine the space saving of the depth-first search with the heuristic information 

saved in the bound. Branch-and-bound helps cut the search space and guarantees the 

optimality of the final search result. Besides, since the depth of the CLS graph is | | 1DL , 

depth-first search can be carried out with only limited space, which is desirable especially 

when the CLS graph is large. However, it may take a long time if the optimal path shows 

up at the very end of the search. 
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5.2.5 Integrate Constraints with the Updated BN  

At the end, the method adds the distinct links on the path with minimum cost in the 

CLS graph to the existing BN, and runs E-IPFP or D-IPFP to integrate the constraints 

with the updated BN. In our example, the method adds A B to the existing BN and runs 

E-IPFP to integrate the constraints with the updated BN. Figure 5.4 shows the resulting 

BN after running the AddLink-Prune method. Experiment shows that this BN satisfies all 

the six constraints. Besides, the I-divergence of the resulting JPD to the original JPD is 

0.341, and the I-divergence of the resulting JPD to the resulting JPD of the AddLink-

Basic method in Section 5.1 is 0.832. 

 

Figure 5.4 Resulting BN with added link colored red after running AddLink-Prune 

5.2.6 Summary of the Method 

As we can see from this example, compared to the AddLink-Basic method which adds 

six links to the existing BN, the AddLink-Prune method provides the same structural 

support for dependencies captured by the dependency list with only one added link. 

Also, the I-divergence of the resulting JPD to the original JPD of the AddLink-Prune 

method is the same as that of the AddLink-Basic method. Thus the AddLink-Prune 

method makes fewer changes to the original BN structure. 
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Besides, since the AddLink-Prune method focuses on the set of links that are added 

by the AddLink-Basic method, the search space only contains a set of six links for this 

example. If the method performs a truly global optimization, the search space will 

contain a set of fifteen links for this example. It will be computationally intractable when 

the size of the BN increases. 

The following is the AddLink-Prune method: 

 

AddLink-Prune ( ( , )S PG G G , 1

1{ ( ), , ( )}m

mR Y R YR )  

1. Run the InconsId method with ( , )S PG G G and R as input to obtain dependency 

list DL ; 

2. t

S SG G . For each item , ,u vX X W  in DL , add a link 
u vX X to t

SG if it has 

not been added; 

3. For each item , ,u vX X W  in DL , use depth-first search in t

SG to find all the open 

paths from
uX to

vX when variables inW are observed. The set of added links on 

the thj open path for the thi dependency item is denoted as j

iL ; 

4. Create a CLS graph and use the depth-first branch-and-bound search to find the 

path with minimum cost from Start vertex to End vertex in the graph, where the 

cost of the path is measured by the number of distinct links in all the vertices along 

the path, and the bound is set to the minimum cost of all the paths found so far; 

5. Add the distinct links on the path with minimum cost in the CLS graph to SG , and 

run E-IPFP or D-IPFP to integrate R with the updated BN; 

6. Return the updated BN as output. 
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5.3 Experiments 

In this section we will analyze the two AddLink methods and conduct experiments to 

evaluate their performance. First, we analyze the changes brought to the existing BN by 

the AddLink methods. Both of the AddLink methods add extra links to the existing BN. 

The AddLink-Basic method adds one link for each dependency item if the link has not 

been added. Compared to the AddLink-Basic method, the AddLink-Prune method may 

add fewer links to the existing BN, which may also reduce the number of added CPT 

entries to the existing BN. In addition, the likelihood of increasing the maximum clique 

size of the BN may also be reduced with fewer added links. Thus, the resulting BN of the 

AddLink-Prune method may have better performance for BN reasoning. Table 5.1 shows 

the modifications to the existing BN for the examples in this chapter. 

Table 5.1 Modifications to the existing BN for the examples of AddLink methods 

Method # Added Links # Added CPT Entries 
# Entries of the 

Largest CPT 

AddLink-Basic 6 13 8 

AddLink-Prune 1 1 4 

 

Next we will conduct experiments to evaluate the performance of the AddLink 

methods and see empirically how expensive they can be. The input data in these 

experiments is the same as what is used in the experiments to evaluate the time 

performance of the AddNode methods in Section 4.5.  We will use D-IPFP to integrate 

the constraints with the updated BN since D-IPFP works faster for large BNs. 
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The first set of experiments is designed to evaluate the execution time of each method 

when the number of constraints varies from 2 to 10. Each constraint in the constraint set 

has 3 variables. The BN in this set of experiments has 15 binary variables. The result in 

Figure 5.5 shows the relation between the number of constraints and the execution time 

of each method when the size of the BN is fixed. The size of the dependency list is also 

provided for each set of constraints. 

 

Figure 5.5 Result of Experiment 1 for the AddLink methods 

The second set of experiments is designed to evaluate the execution time of each 

method when the number of binary variables in the BN varies from 20 to 80. This set of 

experiments uses 6 constraints, each of which has 3 variables. The size of the dependency 

list in each experiment is 6. The result in Figure 5.6 shows the relation between the size 

of the BN and the execution time of each method when the number of constraints and the 

size of the dependency list are fixed. 
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Figure 5.6 Result of Experiment 2 for the AddLink methods 

From the experiment results we can see that the execution time of both methods 

increase linearly with the number of constraints and increase exponentially with the size 

of the BN. The difference of the execution time between the two methods is very small in 

both experiments. This is because both methods involve IPFP of similar complexity 

(same set of constrains and similar BN), and IPFP takes most of the computing time of 

these methods. Besides, the size of the dependency list is only six in the second set of 

experiments. This makes the CLS graph very small and the search for the optimal link set 

does not take much time in the AddLink-Prune method. If the size of the dependency list 

is large, the difference of the execution time between these two methods will be more 

obvious because the search for the added links in the AddLink-Prune method will take 

much more time compared to the AddLink-Basic method. 

5.4 Summary 

In this chapter we proposed the methods to overcome the structural inconsistencies by 

adding links to the existing BN. The class of methods is referred to as AddLink methods, 

which includes the AddLink-Basic method and the AddLink-Prune method. 
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The AddLink-Basic method adds one link for each item on the dependency list if the 

link has not been added. The added links provide structural support for the missing 

dependencies in the existing BN, and the constraints can then be integrated into the 

updated BN using E-IPFP or D-IPFP. 

The AddLink-Prune method is developed to reduce the links to be added to the 

existing BN. It uses depth-first search to find all the candidate sets of added links and 

defines a CLS graph based on these sets. Then it uses depth-first branch-and-bound 

search to find the path with minimum cost in the graph, which represents the fewest links 

to be added to the existing BN in order to overcome all the structural inconsistencies. 

In Section 5.3 we conducted experiments to evaluate the performance of the two 

AddLink methods. The experiment results showed that the execution time of both 

methods increase linearly with the number of constraints and increase exponentially with 

the size of the BN. The difference of the execution time between these two methods is 

very small in our experiments when the methods run under the same conditions. 
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6 Construct a Large BN from a Set of Small BNs 

In this chapter we extend the framework and the methods we developed in the previous 

chapters to solve the problem of constructing a large BN from a set of small BNs. 

In Section 6.1 we introduce the problem of constructing a large BN from a set of 

small BNs. To illustrate the problem, we use the Insurance BN in the BN repository [88] 

as an example. This BN is designed for evaluating car insurance risks. We split it into 

three small BNs, each for one kind of insurance cost. Meanwhile, a set of integration 

constraints is provided which represents the dependencies between the variables of the 

three small BNs. 

In Section 6.2 we first formulate the problem of constructing a large BN from a set of 

small BNs as our knowledge integration problem, then using the Insurance network 

example we describe the process of merging small BNs into a large BN by applying the 

InconsId method and one variation of either the AddNode or AddLink methods. 

In Section 6.3 we compare the performance of the AddNode and AddLink methods 

when applying them to merging small BNs into a large BN. We also compare the 

performance of the merged large BNs resulting from these methods. 

6.1 The Problem of Constructing a Large BN from a set of Small BNs 

Imagine that a group of experts are assigned a task to build a probabilistic model in the 

form of a BN for a certain domain. Each expert only has partial knowledge about the 

entire domain and is able to build a BN for the part of the domain that he or she is 
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familiar with. To integrate all their knowledge, the experts must communicate with each 

other in order to identify the dependencies among the small BNs they have built. This 

results in a set of probabilistic constraints that the merged BN should comply with. Now 

the problem is how to merge these small BNs into a large BN for the entire domain that 

satisfies these integration constraints. 

To explain this problem with a concrete example, we take the Insurance network from 

the BN repository and split it into three small BNs, one for medical cost, one for liability 

cost and one for property cost. Each small BN is considered to be built by an expert of 

that sub-domain. To simplify the representation of the BN, we modified the original 

Insurance network to make all nodes as binary variables. Figure 6.1 shows the modified 

Insurance network whose CPTs are set manually. We will use this BN as the baseline BN 

to compare with the resulting BNs after merging the three small BNs with the AddNode 

and AddLink methods. Figure 6.2 shows the three smalls BNs, obtained by removing 

some links from the large BN. Their CPTs are updated automatically by Netica after 

those links are removed. In this example, the small BNs are disconnected and do not have 

any shared variables. We will discuss the potential issues when the BNs to be merged 

have shared variables later. 
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Figure 6.1 The modified Insurance network 

 

(a) Small BN for medical cost. 

 

(b) Small BN for liability cost. 
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(c) Small BN for property cost. 

Figure 6.2 Three small BNs split from the Insurance network 

Figure 6.3 shows the links that have been removed from Figure 6.1 when splitting it 

into three small BNs. 

 

Figure 6.3 Links removed from the Insurance network when splitting it 

In real applications, the dependencies between variables among these component BNs 

can be obtained from the communication and consensus building among the experts of 

the related subdomains and represented in the form of constraints called integration 

constraints. The quality of these constraints (e.g., their accuracy and thoroughness) will 
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affect the quality of the merged BN. Here we skip this step and assume a good set of 

constraints exist so that we can focus on the operation of merging the given small BNs. 

Therefore in our example we artificially generate ten constraints, given in Figure 6.4, 

each of which is a marginal probability distribution of four variables from the baseline 

BN in Figure 6.1. Moreover, as can be seen from Figures 6.3 and 6.4, each constraint 

encodes the direct dependencies among the four variables related by the adjacent links 

removed from the baseline BN. For example, 
1R  corresponds to three adjacent links 

“AgeRiskAversion”, “AgeSenoirTrain”, and “AgeDrivingSkill”, and it encodes 

the direct dependencies between the four variables involved. However, not all the 

dependencies and their strength lost with the split of the baseline BN are encoded in these 

ten constraints. For example, “RiskAversion” and “Ruggedness” are dependent given 

“MakeModel” in Figure 6.1. But this dependency is not encoded in any of the ten 

constraints. More constraints can be generated to encode all the removed dependencies 

and their strength. However, to make this example simple and focused, we will limit the 

dependencies to be recovered in the merged BN to those in the ten constraints. Also, in 

real-world situations it is common that not all dependencies among the small BNs can be 

identified at once. This setting will also allow us to see how the incomplete set of  

dependencies provided by the integration constraints will affect the integration quality. 
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Figure 6.4 Ten integration constraints for the small BNs 

6.2 Merge the Small BNs into a Large BN 

Now we formulate the problem of merging small BNs into a large BN as our knowledge 

integration problem so that our methods of identifying and overcoming structural 

inconsistencies can be applied. This can be done by simply forming a BN G  which 

contains the given small BNs as disconnected components and then integrating the 

constraints representing the interdependencies among the small BNs into G . In our 

example, G contains the three disconnected components of Figure 6.2 (a), (b), and (c), 

and R contains the ten constraints. The integration of R into G starts by applying the 

InconsId method, which results in a dependency list of 88 items. These items represent 

the dependencies that exist in the constraints but are missing in G . Note that among the 

ten constraints, 9R and 10R are structurally consistent with G . The other eight constraints 

are structurally inconsistent with G . 
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Next we can use either the AddNode or AddLink methods to integrate R into G  and 

thus connect the three components into a connected large BN. The following are the 

results we get from these methods. 

After applying the AddNode-Basic method, the small BNs are merged into the large 

BN in Figure 6.5. 10 nodes have been added in it, one for each constraint. 

 

Figure 6.5 Result after running the AddNode-Basic method 

Since the number of distinct variables is too large in the constraint set, it is not 

appropriate to merge all the constraints into one constraint with the AddNode+Merge 

method. To solve the problem, we combine the idea of the AddNode+Merge method with 

the AddNode-Basic method. We first divide the ten constraints into five groups, each of 

which contains two constraints. Then we merge the constraints in each group into one 

constraint, and use AddNode-Basic to merge the small BNs into a large BN with the 

merged constraints. The resulting BN is shown in Figure 6.6. Here 5 nodes have been 

added, one for each merged constraint. 
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Figure 6.6 Result after running AddNode-Basic with the merged constraints 

After applying the AddNode+D-IPFP method, the small BNs are merged into the 

large BN in Figure 6.7. 8 nodes have been added, one for each structurally inconsistent 

constraint. The 2 structurally consistent constraints are integrated using D-IPFP. 

 

Figure 6.7 Result after running the AddNode+D-IPFP method 

After applying the AddNode+Factorization method, the small BNs are merged into 

the large BN in Figure 6.8. The ten constraints are factorized into 13 constraints, out of 

which 10 are structurally inconsistent constraints and 3 are structurally consistent 
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constraints. Therefore, 10 nodes have been added in the resulting BN. The 3 structurally 

consistent constraints are integrated using D-IPFP. 

  

Figure 6.8 Result after running the AddNode+Factorization method 

After applying the AddLink-Basic method, the small BNs are merged into the large 

BN in Figure 6.9. 21 links have been added in the resulting BN because there are 21 

distinct pairs of
uX  and

vX for all the , ,u vX X W  in DL . The constraints are integrated 

using D-IPFP after adding links to the existing BN. 

 

Figure 6.9 Result after running the AddLink-Basic method 
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After applying the AddLink-Prune method, the small BNs are merged into the large 

BN in Figure 6.10. 14 links have been added in the resulting BN. The constraints are 

integrated using D-IPFP after adding links to the existing BN. 

 

Figure 6.10 Result after running the AddLink-Prune method 

From the above results we can see that a large BN is constructed from the three small 

BNs after applying each of the knowledge integration methods in our framework. 

Experiments show that each of these large BNs complies with the given constraints. After 

the integration, comprehensive car insurance analysis can be performed using the large 

BN for all kinds of insurance costs, including medical cost, liability cost, as well as 

property cost. 

In this example there are no shared variables among the small BNs. If there are any, 

their marginal distributions may be inconsistent with each other. There are several 

solutions to deal with this issue. For example, a weight of trust can be assigned to each 

small BN and the marginal distribution in the small BN with higher weight will be 

adopted. Alternatively, we can first use SMOOTH to reach a compromise among the 

inconsistent marginal distributions, then apply it as a constraint during the integration. 
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As reviewed in Section 2.6, inter-subnet communication methods of MSBN can also 

be used to connect small BNs of subdomains to support probabilistic reasoning over a 

large domain. However, their communication methods impose very restrictive 

requirements on the small BNs, i.e., the shared variables among the small BNs need to be 

identical and all parents of a shared variable must appear in one subnet. If these 

requirements are met, then the small BNs can be organized into a hypertree which 

represents how they communicate with each other. The communication is done through 

exchanging beliefs of the small BNs over their shared variables, each of which needs to 

be a d-sepset. Such restrictions have limited the application of MSBN when there are 

inconsistencies among the small BNs. In contrast, our approach does not impose any 

restrictions on these small BNs. It works as long as a good set of integration constraints 

that captures the dependencies among these BNs can be obtained. This great flexibility 

allows our methods to have a wider scope of applications in automatically constructing a 

large probabilistic knowledge base from several smaller knowledge bases represented as 

BNs. 

6.3 Comparison of the AddNode and AddLink Methods 

In this section we compare the AddNode and AddLink methods based on their 

performance in integrating the three small BNs with the ten constraints in Section 6.2. 

The differences between the resulting BNs and the existing BN are summarized in Table 

6.1. From the summary we can see that the AddNode methods add extra nodes to the 

existing BN. The number of links and CPT entries added by the AddNode methods is 

usually higher than those added by the AddLink methods. 
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Table 6.1 Modifications to the existing BN by the AddNode and AddLink methods 

Method # Added Nodes # Added Links # Added CPT Entries 

AddNode-Basic 10 40 160 

AddNode+Merge 5 34 640 

AddNode+D-IPFP 8 32 108 

AddNode+Factorization 10 36 128 

AddLink-Basic 0 21 42 

AddLink-Prune 0 14 21 

 

Next we compare the time performance for the AddNode and AddLink methods. 

Figure 6.11 shows the execution time of each method when performing the integration 

task in Section 6.2. It can be seen that the execution time of AddNode+Merge is highest 

because the sizes of the CPTs for the added nodes are too large after the constraints are 

merged. The execution time of the other AddNode methods are lower than that of the 

AddLink methods. This is because the two AddLink methods involve IPFP for all 

constraints while AddNode+D-IPFP and AddNode+Factorization only involve IPFP for 

some constraints, and IPFP is the major contributing factor for the time performance of 

these methods. 
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Figure 6.11 Execution time of the AddNode and AddLink methods 

Lastly, we compare the performance of the probabilistic inference tasks for the large 

BNs merged by the AddNode and AddLink methods in Section 6.2. The inference task is 

also performed on the baseline BN shown in Figure 6.1. The first inference task is about 

belief update with three evidences: “MakeModel = true”, “RiskAversion = true” and 

“Antilock = true”. Figure 6.12 shows their inference results for task 1 for each of these 

BNs. 

 

(a) Inference result of the baseline BN. 
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(b) Inference result of the BN merged by AddNode-Basic. 

 

(c) Inference result of the BN merged by AddNode+Merge. 
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(d) Inference result of the BN merged by AddNode+D-IPFP. 

(e) Inference result of the BN merged by AddNode+Factorization. 
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(f) Inference result of the BN merged by AddLink-Basic. 

 

(g) Inference result of the BN merged by AddLink-Prune. 

Figure 6.12 Inference results of the baseline BN and the merged BNs for task 1 

As can be seen from Figure 6.12, the beliefs for the same node in the baseline BN and 

the merged BNs are very similar to each other given the three findings. However, since 

there are still some discrepancies between the baseline BN and the merged BNs, the 

beliefs for some nodes may be different when given other findings. This can be shown by 

entering findings of “True” for “Age” and “AntiTheft” for the baseline BN and all the 
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merged BNs for task 2. After the findings are entered, the baseline BN gives the belief of 

(0.795, 0.205) for “Antilock” while all the other merged BNs give the belief of (0.770, 

0.230) for this node. Figure 6.13 shows the different inference results for the baseline BN 

and the resulting BN merged by AddNode-Basic. 

 

(a) Inference result of the baseline BN. 

 

(b) Inference result of the BN merged by AddNode-Basic. 

Figure 6.13 Inference results of the baseline BN and a merged BN for task 2 
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The difference is caused by the different strengths of dependency between “Antilock” 

and “MakeModel” for the baseline BN and the merged BNs. We can enforce the strength 

of this dependency in Figure 6.13(b) to be the same as that in Figure 6.13(a) by adding an 

additional integration constraint, which is shown in Figure 6.14. Figure 6.15 shows the 

resulting BN merged by AddNode-Basic after integrating the ten integration constraints 

in Figure 6.4 together with the additional integration constraint in Figure 6.14. We can 

see that the belief for “Antilock” in Figure 6.15 is the same as that in Figure 6.13(a). 

 

Figure 6.14 One extra integration constraint for the small BNs 

 

Figure 6.15 Inference result of the merged BN by AddNode-Basic 
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Inference task 3 is to query the belief of node “Age” after entering findings of “True” 

for “MakeModel”, “RiskAversion” and “Antilock”. All merged BNs give the belief of 

(0.355, 0.645) for “Age”. We also compare the time performance of these BNs for task 3. 

Because of the fluctuation in the results when measuring the time performance, we repeat 

each inference task 100 times to get its mean, max, min and standard deviation values. 

The results of task 3 are given in Table 6.2 below. 

From the results we can see that the inference performance for each resulting BN is 

very close to each other. It is also very close to the time performance of the baseline BN. 

It may be because the junction trees generated from these BNs are very similar to each 

other. 

Table 6.2 Time performance of the baseline BN and the merged BNs for task 3  

Method Mean (ms) Max (ms) Min (ms) SD (ms) 

N/A(Baseline BN) 7.34 18.00 6.00 2.11 

AddNode-Basic 7.83 26.00 6.00 2.99 

AddNode+Merge 7.34 24.00 6.00 2.13 

AddNode+D-IPFP 7.28 16.00 6.00 1.54 

AddNode+Factorization 7.14 13.00 6.00 1.32 

AddLink-Basic 7.60 21.00 6.00 2.95 

AddLink-Prune 7.07 26.00 6.00 2.73 
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6.4 Summary 

In this chapter we applied our framework and the related methods to solve the problem of 

constructing a large BN from a set of small BNs. 

In Section 6.1 we illustrated the problem using the modified Insurance network. We 

split this BN into three small BNs, one for each kind of insurance cost. A set of 

integration constraints were generated to capture the important dependencies among these 

small BNs. The goal is to merge the small BNs into a large BN which complies with the 

integration constraints. 

In Section 6.2 we merged the small BNs into a large BN using our proposed methods. 

We first extracted the dependency information from the constraints using the InconsId 

method. Then we merged the small BNs into a large BN using both the AddNode and 

AddLink methods. The results of the Insurance network example showed that, with the 

help of the integration constraints for the missing dependencies among the small BNs, 

these BNs can be successfully merged into a large BN. 

In Section 6.3 we compared the AddNode and AddLink methods using the integration 

results in Section 6.2. It was shown that the AddLink methods usually brought fewer 

changes to the existing BN than the AddNode methods in the number of added nodes, 

added links, and added CPT entries. For the time performance of each method in this 

application, besides the AddNode+Merge method which has the highest execution time 

because the sizes of the CPTs are too large after the constraints are merged, the other 

AddNode methods have lower execution time than the AddLink methods. This is largely 

due to the heavier IPFP computation involved in the AddLink methods. The inference 

results for the baseline BN and the resulting BNs are very similar to each other for task 1. 
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The inference results showed some difference between the baseline BN and the resulting 

BN merged by the AddNode-Basic method for task 2 because of some discrepancies in 

these two BNs, which can be overcome with an additional integration constraint. The 

time performance of the probabilistic inference task for each resulting BN is very close to 

each other. It is also very close to the time performance of the baseline BN. It may be 

because the junction trees generated from these BNs are very similar to each other. 

The work reported in this chapter represents our first attempt to extend our 

framework to other knowledge base engineering problems. There are other applications 

that may be possible and worthy of exploring by extending our framework. Another area 

that needs to be investigated further is about the integration constraints, especially how 

their quality and completeness affect the quality of the merged BN. 
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7 Conclusion and Future Work 

Integrating pieces of new knowledge into an existing knowledge base is essential for 

developing and maintaining the reliability and accuracy of the knowledge base. In this 

thesis we focused on the issue of knowledge integration for probabilistic knowledge 

represented as low dimensional distributions (also called constraint) which has structural 

inconsistency with the existing knowledge base represented as a BN. Existing works 

typically solve this issue by removing the inconsistency from the constraint during the 

integration. However, when the constraint is more up-to-date or comes from a more 

reliable source, the new dependency relations it brings should be respected. In such 

situations it is necessary and beneficial to modify the structure of the existing BN so that 

the constraint, including the new dependency relations it brings, can be integrated into the 

BN in its entirety. Therefore, this thesis is set to develop and demonstrate techniques to 

completely integrate the constraint that has structural inconsistency with the BN. 

First, we established the theorem that a constraint is structurally consistent with a BN 

if and only if every dependency implied by the constraint holds in the BN structure. 

Based on this theorem, we provided a formal definition for structurally inconsistent 

constraint and developed a method named InconsId to identify structural inconsistencies 

between a BN and a set of constraints. Both theoretical analysis and experiments showed 

that the execution time of InconsId increases exponentially with the number of variables 

in the constraint and increases linearly with either the size of the BN or the number of 

constraints. 
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Second, we proposed two classes of methods, i.e., the class of AddNode methods and 

the class of AddLink methods, to overcome the identified structural inconsistencies. 

These methods are shown to be able to successfully modify the structure of the existing 

BN and in turn to successfully integrate the constraints into the BN in their entirety.  The 

class of AddNode methods overcomes the structural inconsistencies by adding nodes to 

the existing BN. Besides AddNode-Basic, we also developed several variations of it, i.e., 

AddNode+Merge, AddNode+D-IPFP and AddNode+Factorization, to balance the 

computational cost and solution quality and to address other concerns. Experiments 

showed that compared to AddNode-Basic, other variations, while gaining some 

advantages, have their execution time increase much faster with the number of 

constraints or the size of the BN. The class of AddLink methods overcomes the structural 

inconsistencies by adding links to the existing BN. Besides AddLink-Basic, we also 

developed AddLink-Prune to minimize the number of links to be added to the existing 

BN. Experiments showed that significant reduction of the number of added links may be 

achieved by the AddLink-Prune method. Experiment also showed that the execution time 

of both of the AddLink methods increase linearly with the number of constraints and 

increase exponentially with the size of the BN. 

Lastly, we applied the developed framework and the related methods to the task of 

constructing a large BN from a set of small BNs which represent its subdomains. 

Experiments showed that this problem can be formulated as our knowledge integration 

problem. With the help of a set of integration constraints which reflect the dependencies 

between variables among the small BNs, a large BN that has the smaller BNs as its 

components can be constructed using our AddNode or AddLink methods. 
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With the capability of identifying structural inconsistencies and overcoming them by 

modifying the structure of the existing BN in a principled way, our work pioneers the 

research in the area of integrating structurally inconsistent constraints with BNs. By 

lifting the structural restrictions on the inputs, our work can be applied to a wide range of 

knowledge integration problems such as KB merging. 

Besides the promising results we achieved so far, there are still several areas that can 

be investigated in the future. 

First, some of the methods in our framework can be further improved. For example, 

for the InconsId method, the execution time increases exponentially with the number of 

variables in the constraint. This can be improved by finding out how to skip some of the 

independence tests for the variables based on their connection types in the BN. For the 

AddNode methods, they can be optimized by adding substructures within or between 

constraints in order to reduce the size of the CPT for the added nodes. For the AddLink-

Prune method, for computational efficiency, currently the scope of search for the added 

links is limited to those created from the dependency list. If some heuristic information 

can be identified during the search, the scope of the candidate links can be expanded to 

all the potential links that do not exist in the given BN. For the AddNode+D-IPFP 

method, we have proved its effectiveness through the experiment in this thesis. Formal 

proof of its convergence is still evading us for now and it is worth finding it. 

Second, for the methods of overcoming structural inconsistencies, some of them can 

be combined when needed. In Section 4.2 we have shown how to combine AddNode-

Basic with AddNode+Merge when the size of the CPT for the added node is too large 

after merging all the constraints into one constraint. Similarly, these methods can be 
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combined in other ways to balance the computational cost and solution quality, as well as 

to address other concerns. For example, AddNode+Merge can be combined with 

AddNode+D-IPFP by adding only one node for the structurally inconsistent constraints 

after merging them into one constraint. AddNode+Merge can also be combined with 

AddNode+Factorization by merging the factorized structurally inconsistent constraints 

into one constraint and integrating the factorized structurally consistent constraints using 

D-IPFP. Additionally, the AddNode methods can also be combined with the AddLink 

methods when necessary. Some good strategy of how to combine these methods can be 

developed based on the specific situation of the existing BN and the set of constraints.  

Also of great interest is to develop guiding principle or heuristics for determining when to 

use the AddNode methods and when to use the AddLinks methods and when to combine 

them. 

Third, in this thesis we have only considered constraints whose variables are all in the 

existing BN. In real-world situations, it is very likely that new variables will be 

introduced by the constraints. In order to integrate constraints with variables not in the 

existing BN, the methods in our framework need to be extended. If only some of the 

variables in the constraint are not in the existing BN, we can treat the constraint as a 

structurally inconsistent constraint, and add nodes or links for it to connect the new 

variables with the existing BN. If none of the variables in the constraint is in the existing 

BN, we need to find the connection between this constraint and the existing BN through 

other constraints that have shared variables with it. Otherwise, a stand-alone BN will be 

built for this constraint after the integration. 
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Fourth, we have illustrated how to apply our framework in constructing a large BN 

from a set of small BNs with an example in Chapter 6. The small BNs in this example do 

not have any overlaps in their variables. With some enhancement to deal with the 

possible inconsistent marginal distributions for the shared variables, our framework can 

be further applied to grow a small BN into a large one when other small BNs that have 

overlaps with the existing small BN are available. To deal with the possible inconsistent 

marginal distributions for the shared variables, we can either assign a weight of trust to 

each small BN, then adopt the marginal distribution in the small BN that has the highest 

weight; or we can first use SMOOTH to reach a compromise among the inconsistent 

marginal distributions, then apply it as a constraint during the integration. 

Lastly, it is of great value if our framework can be extended to solve data science 

problems such as knowledge update with large datasets. The large number of variables 

and cases in the datasets may bring several challenges when our framework is applied. 

For example, how to effectively pre-process such big data in order to convert the datasets 

into constraints? How to parallelize our methods so distributed data-parallelism patterns 

such as MapReduce can be applied to solve the scalability issue during the knowledge 

update with large datasets? 

With the research in the above areas to be investigated, our framework and related 

methods will have better performance and greater flexibility in solving knowledge 

integration problems with BNs. It would be of great interest to see more accurate and 

more reliable knowledge models to be developed for real-world KB integration tasks 

using our framework. 
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