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Abstract— The rise of the Internet of Things (IoT) devices 
and the streaming platform has tremendously increased the 
data in motion or streaming data. It incorporates a wide variety 
of data, for example, social media posts, online gamers in-game 
activities, mobile or web application logs, online e-commerce 
transactions, financial trading, or geospatial services. Accurate 
and efficient forecasting based on real-time data is a critical part 
of the operation in areas like energy & utility consumption, 
healthcare, industrial production, supply chain, weather 
forecasting, financial trading, agriculture, etc. Statistical time 
series forecasting methods like Autoregression (AR), 
Autoregressive integrated moving average (ARIMA), and 
Vector Autoregression (VAR), face the challenge of concept 
drift in the streaming data, i.e., the properties of the stream may 
change over time. Another challenge is the efficiency of the 
system to update the Machine Learning (ML) models which are 
based on these algorithms to tackle the concept drift. In this 
paper, we propose a novel framework to tackle both of these 
challenges. The challenge of adaptability is addressed by 
applying the Lambda architecture to forecast future state based 
on three approaches simultaneously: batch (historic) data-based 
prediction, streaming (real-time) data-based prediction, and 
hybrid prediction by combining the first two. To address the 
challenge of efficiency, we implement a distributed VAR 
algorithm on top of the Apache Spark big data platform. To 
evaluate our framework, we conducted experiments on 
streaming time series forecasting with four types of data sets of 
experiments: data without drift (no drift), data with gradual 
drift, data with abrupt drift and data with mixed drift. The 
experiments show the differences of our three forecasting 
approaches in terms of accuracy and adaptability. 
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I. INTRODUCTION 

In the last few years, there has been an incredible rise in 
the number of Internet of Things (IoT) devices which 
generally produces a continuous stream of data with a 
timestamp. This calls for efficient ways to collect, process, 
and analyze the humongous amounts of data. IoT world is 
growing at a breathtaking pace, from 2 billion objects in 2006 
to a projected 200 billion by 2020 [1]. In relation to Big Data, 
we are now seeing more and more Internet of Things (IoT) 
data, which could be large in both volume and velocity that 
needs to be stored and processed efficiently [2]. Domains like 
smart manufacturing [23], smart health [24], smart 
transportation [25], smart home and autonomous locomotive 
are some of the major use cases for IoT time-series data 
forecasting. 

Time Series forecasting methods, like Autoregression 
(AR),  Auto  Regressive  Integrated  Moving  Average 

(ARIMA), and Vector Autoregression (VAR), are proven to 
be effective on traditional time-series data but face challenges 
for real-time streaming data time series forecasting. The first 
challenge is how to make the methods adaptive for the 
dynamic changes of the statistical properties of the variables, 
called concept drifting [16] in machine learning. The second 
challenge is how to make the methods scalable when facing 
large volume time series data and/or high-speed streaming 
data. 

To address the above two challenges, this paper proposes 
a novel framework for Adaptive and Efficient Streaming Time 
Series (AESTSF). The adaptability challenge is addressed by 
applying the Lambda architecture [7] to forecast future state 
based on batch (historic) data, streaming (real-time) data and 
hybrid (combining both historic and real-time predictions) 
simultaneously. To address the efficiency challenge, we 
implemented a distributed VAR algorithm using Apache 
Spark [10]. Our open-source implementation can be found at 
[18]. 

The contributions of this paper are three folds. 

• First, we propose an extensible framework which can 
be used for three time-series forecasting approaches 
based on batch and streaming data by following the 
Lambda architecture [7]. 

• Second, based on the above framework, we 
implemented an algorithm that support distributed 
Vector Auto Regression (VAR) based forecasting by 
leveraging big data platforms including Apache Spark 
[10], Apache Hive [8] and Apache Kafka [15]. 

• Third, we conducted extensive experiments to evaluate 
our algorithms on a distributed environment to measure 
the differences of the three forecasting approaches for 
different types of streaming time series data. 

The paper is organized as follows. Section II focuses on 
the background of related techniques. Section III covers the 
AESTSF framework we developed for time-series 
forecasting. Section IV covers our frame detail and 
algorithms. Section V covers the experiments, the analysis and 
results. Section VI draws our conclusion and mentions future 
research. 

II. BACKGROUND 

A. Time Series Forecasting 
A time series is a set of observations measured 

sequentially through time. These measurements may be made 
continuously through time or be taken at a discrete sets of time 
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points [3]. A forecasting method is a procedure for computing 
predictions from present and past values. As such it may 

with:  
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simply be an algorithmic rule and does not depend on an 
underlying probability model. Forecasting methods may be 
broadly classified into two types: 

a) Univariate methods where forecasts depend only on the 
present and past values of the single series being forecasted, 
possibly augmented by a function of time such as a linear 
trend. 

b) Multivariate methods where forecasts of a given 
variable depend, at least partly, on values of one or more 
additional time series variables, called predictor or 
explanatory variables. Multivariate forecasts may depend on a 
multivariate model involving more than one equation if the 
variables are jointly dependent [4]. 

B. Concept Drifting 
In streaming data mining, concept drift involves changing 

the concept of a given target. Concept could be the value (for 
regression task) or label (for classification) of the target 
variable to be predicted. Over time, data will change, and in 
predictive models that assume a static relationship between 
input and output variables, this can lead to poor and degrading 
predictive results. 

As summarized in [17, 22], there are different types of 
concept drifts including gradual drift, abrupt drift and 
reoccurring drift. In this paper, we simulated the first two 
types of concept drifts. Abrupt concept drift applies to cases 
when data shifts very rapidly. For this drift type, a common 
example is the sudden loss of a sensor data stream. Gradual 
drift is marked by slower and more gradual changes in a 
dataset as a whole. 

C. Vector Auto Regression (VAR) 
VAR is a multivariate time series forecasting model. It can 

be used when two or more time-series influence each other 
which means the relationship between the time series involved 
is bi-directional. Every variable in a VAR model has an 
equation explaining its evolution based on its own time-lagged 
values, the time-lagged values of the other variables, and an 
error term. VAR models explain the endogenous variables 
solely by their own history, apart from deterministic regresses. 
Data applied to statistical models, like kriging and VAR 
models, are generally required to satisfy weak or second-order 
stationarity. That is, neither the mean nor the variance of the 
data should vary with time and the auto-covariance is 
dependent on the time lag only [5]. 

VAR model is based on the assumption that the time series 
is available. In its basic form, a VAR consists of a set of Κ 
endogenous variables y𝑡𝑡𝑡𝑡 = (y1𝑡𝑡𝑡𝑡, . . . , y𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡, . . . , y𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡) for k = 
1, . . . , K. The VAR(p)-process is then defined as [8]: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝐴𝐴𝐴𝐴1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + ⋯ 𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝 + 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 (1) 

in which Ai are (K × K) coefficient matrices for i = 
1, . . . , p and 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 is a K-dimensional process with zero mean 
𝐸𝐸𝐸𝐸(𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 ) = 0, uncorrelated noise vector (white noise). 

A VAR(p)-process for 2 endogenous variables can be 
written as a VAR (1)-process: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝐴𝐴𝐴𝐴1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝐴𝐴𝐴𝐴2𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−2 + 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 (2) 
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where I is identity matrix. 

D. Lambda Architecture 
The Lambda architecture is proposed by Marz and Warren 

in their book [7] as a big data processing architecture for real- 
time data processing. As illustrated in Figure 1, generally, the 
Lambda architecture consists of three layers: Batch, Speed, 
and Serving. 

 

Fig. 1. Lambda Architecture high-level perspective [6]. 
 

a) Batch Layer: The batch layer stores the master copy 
of the dataset and precomputes batch views on that 
master dataset. 

b) Speed Layer: The Speed layer processes data in 
real-time. The speed layer is similar to the batch 
layer in that it produces views based on the data it 
receives. One big difference is that the speed layer 
only looks at recent data, whereas the batch layer 
looks at all the data at once. 

c) Serving Layer: The Serving layer host/store results 
from both batch view and real-time speed view. This 
layer is used for hybrid results by combining results 
from both batch view and real-time speed view. 

The Lambda architecture in full is summarized by these 
three equations: 

batch view = function (all data) 
real-time view = function (real-time view, new data) 
hybrid view = function (batch view, real-time view) 

III. ADAPTIVE AND EFFICIENT STREAMING TIME SERIES 
(AESTSF) FRAMEWORK 

In this work, we propose a novel framework AESTSF 
which applies the Lambda architecture for time series 
forecasting. This framework enables us to exploit the benefit 
of batch and stream data simultaneously. Machine Learning- 
based time series forecasting models can be trained using the 
master data stored at the batch layer and it will generate 
predictions by combining the data from the speed layer. 

As illustrated in Figure 2, our framework consists of three 
layers: Batch Layer, Speed Layer, and Serving Layer. 



 

 
 

Fig. 2. Main components of our proposed Adaptive and Efficient Streaming 
Time Series (AESTSF) framework. 

A. Batch Layer 
The batch layer stores the master immutable data which 

will be used to train ML models, in our case, we trained our 
distributed VAR model using the master dataset. Data coming 
from streams will get appended to the master database. This 
layer is also responsible for generating and storing our custom 
VAR model which will be trained using the complete dataset 
stored in the data till it’s time to train the model. We 
implemented the batch layer using Apache Hive Database. 
The Apache Hive data warehouse software facilitates reading, 
writing, and managing large datasets residing in distributed 
storage using SQL [9]. Hive was originally designed as a 
translation layer on top of Hadoop MapReduce. It exposes its 
own dialect of SQL to users and translates data manipulation 
statements (queries) to a directed acyclic graph (DAG) of 
MapReduce jobs. With an SQL interface, users do not need to 
write tedious and sometimes difficult MapReduce programs to 
manipulate data stored in Hadoop Distributed File system 
(HDFS) [10]. The following algorithm (Algorithm 1) 
illustrates the logic of the batch layer. 

 

 Algorithm 1. Batch Layer Time Series Forecasting  
Inputs: M: Time series data stream data of the current 
time window, s: time window size 
Outputs: Yb: Predicted values for the next time window 

 
Step 1: Read incoming time series stream M 

Step 2: Store M into Hive database 

Step 3: Load the pre-trained VAR model from HDFS 

Step 4: Generate predictions on the incoming data for the 
next window, namely Yb for the next s time steps 

 Step 5: Push the predictions to Serving layer via Kafka  

 
B. Speed Layer 

The speed layer deals with real-time in Spark Streaming 
Spark Streaming is an extension of the core Spark API that 
enables scalable, high-throughput, fault-tolerant stream 
processing of live data streams [8]. Data can be ingested from 

 
C. Serving Layer 

The serving layer will utilize the next window predictions 
from both batch and speed layer and generates a weighted 
average hybrid prediction for the next window. This layer 
should be responsible for setting the hyper parameters for the 
VAR model in each layer. The following algorithm 
(Algorithm 3) illustrates the logic of the serving layer. 

 

 Algorithm 3. Serving Layer Time Series Forecasting  
Inputs: Yb, Ys: Time series predictions from batch and 
speed layer respectively, 𝒘𝒘𝒘𝒘𝒃𝒃𝒃𝒃: weight for batch layer 
prediction. 
Outputs: 𝒀𝒀𝒀𝒀W: Hybrid predicted value for the next time 

 window  
Step 1: Set lag time p, next steps n for batch and 
speed layers VAR model 

Step 2: Read Yb from batch layer 
Step 3: Read Ys from speed layer 
Step 4: Calculate 𝒀𝒀𝒀𝒀𝒘𝒘𝒘𝒘 = 𝒘𝒘𝒘𝒘𝒃𝒃𝒃𝒃 ∗ 𝒀𝒀𝒀𝒀𝒃𝒃𝒃𝒃 + (𝟏𝟏𝟏𝟏 − 𝒘𝒘𝒘𝒘𝒃𝒃𝒃𝒃)𝒀𝒀𝒀𝒀𝒔𝒔𝒔𝒔 

 Step 5: Store 𝒀𝒀𝒀𝒀𝒘𝒘𝒘𝒘, 𝒀𝒀𝒀𝒀𝒃𝒃𝒃𝒃, 𝒀𝒀𝒀𝒀𝒔𝒔 𝒔𝒔 into database  

 
IV. EFFICIENT AND ADAPTIVE VECTOR AUTO REGRESSION 

(VAR) VIA SPARK AND KAFKA 

Based on our AESTSF framework proposed in the 
previous section, we implement a distributed VAR model 
using Apache Spark. Apache Spark achieves high 
performance for both batch and streaming data, using a state- 
of-the-art DAG scheduler, a query optimizer, and a physical 
execution engine [10]. 

To communicate between different layer of our lambda 
architecture we used Apache Kafka [15]. Kafka is used to push 
predictions from batch and speed layers to the serving layer, it 
was also used to send model updates to batch layer. 

To implement distributed VAR we used Spark’s MLlib 
Linear Regression and Pipeline functions. The following 
algorithm (Algorithm 4) illustrates the VAR implementation. 

many sources like Kafka, Kinesis, or TCP sockets, and can be   
processed using complex algorithms expressed with high- 
level functions like map, reduce, join, and window. Finally, 
processed data can be pushed out to filesystems, databases, 
and live dashboards. The following algorithm (Algorithm 2) 
illustrates the logic of the speed layer. 

Algorithm 2. Speed Layer Time Series Forecasting 
Inputs: M: time series data stream of the current time 
window 
Outputs: Ys: predicted value for the next time window 
Step 1: Read incoming time series stream M 
Step 2: Build a VAR model 

Step 3: Train the model against the current stream 

Step 4: Save/Persist the model to be used against next 
time window 

Step 5: Load the model trained from last time window 

Step 6: Generate predicted value for the next window, 
namely Ys for the next s time steps 

 Step 7: Push the predictions to Serving layer via Kafka  
 

 Algorithm 4. Distributed VAR  
Inputs: p time lag, K number of endogenous variables, n 
number of next windows need to be forecasted 
Outputs: n predictions for each endogenous variable 𝒚𝒚𝒚𝒚𝒕𝒕𝒕𝒕 

 



 
 

Step 1: Get incoming hyper parameter p, K, n 
Step 2: Read data and load data from master database 

Step 3: Preprocess the data to address issues like missing 
value, data format, etc. 

Step 4: Create lagged values 𝒕𝒕𝒕𝒕 − 𝟏𝟏𝟏𝟏, 𝒕𝒕𝒕𝒕 − 𝟐𝟐𝟐𝟐, . . , 𝒕𝒕𝒕𝒕 − 𝒑𝒑𝒑𝒑 for y𝑡𝑡𝑡𝑡 
Step 5: Add a constant vector for intercept 

Step 6: Assemble 𝐲𝐲𝐲𝐲𝒕𝒕𝒕𝒕−𝟏𝟏𝟏𝟏, … 𝒚𝒚𝒚𝒚𝒕𝒕𝒕𝒕−𝒑𝒑𝒑𝒑 as feature for y𝑡𝑡𝑡𝑡 
Step 7: Invoke Linear Regression (lm) function for 𝐲𝐲𝐲𝐲𝒕𝒕𝒕𝒕 
Step 8: Validate and store lm model 

Step 9: For n time steps 𝒕𝒕𝒕𝒕 + 𝟏𝟏𝟏𝟏, 𝒕𝒕𝒕𝒕 + 𝟐𝟐𝟐𝟐, . . , 𝒕𝒕𝒕𝒕 + 𝒏𝒏𝒏𝒏 repeat from 
 “Step 6”  

 
With Spark Streaming, we can reuse the same algorithm at 

batch and speed layer to process the data and forecast. 

V. EXPERIMENTS 

To evaluate our proposed framework and algorithms, in 
this section, we conduct extensive experiments to understand 
adaptability on concept drifting and forecasting accuracy of 
the three forecasting approaches (batch, speed, hybrid) using 
four types of time series datasets (no drift, gradual drift, abrupt 
drift, mixed). In the experiments, predictions are generated by 
Batch and Speed Layer simultaneously which were pushed to 
Serving Layer to assign different weights to each prediction. 

A. Datasets and Experiment System Configuration 
 

We used the following four datasets by combining actual 
and synthetic data. 

• Dataset A: Actual time series dataset which does not 
have drift. 

For dataset A, we used publicly available from an Engie 
Wind Farm of France [19]. The actual dataset has observation 
recorded every 10 minutes, we changed it to 1 second per 
observation, in order to generate high speed data stream. The 
total record number for dataset A is 101,800. The actual data 
is auto regressive in nature and does not have concept drifts. 
The dataset was not enough for us to test the drift scenarios so 
with induced gradual and abrupt drifts in the actual dataset to 
generate two new datasets listed below. 

• Dataset B: Synthetically generated gradual drift 
dataset from actual data. 

Dataset B was generated by applying following formula 

𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡) = 0.1 ∗ (Ψ1) + 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡 − 1) + 𝜀𝜀𝜀𝜀1 (3) 

𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡) = 0.1 ∗ (Ψ2) + 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡 − 1) + 𝜀𝜀𝜀𝜀2 (4) 

where 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡) and 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡) are current observations, 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡 − 1) 
and 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡 − 1) are values observed in previous time window, 
thresholds Ψ1 and Ψ2 are constants calculated by subtracting 
the maximal value by the minimal value of total observations 
of 𝑦𝑦𝑦𝑦1 and 𝑦𝑦𝑦𝑦2, and 𝜀𝜀𝜀𝜀1 and 𝜀𝜀𝜀𝜀2 are white noise. The total record 
number for dataset B is also 101,800. 

• Dataset C: Synthetically generated abrupt drift 
dataset from actual data. 

Dataset C was generated by applying following formula 

𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡) = 0.1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(Ψ1) + 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡 − 1) + 𝜀𝜀𝜀𝜀1 (5) 

𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡) = 0.1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(Ψ2) + 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡 − 1) + 𝜀𝜀𝜀𝜀2 (6) 

where 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡) and 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡) are current observations, 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡 − 1) 
and 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡 − 1) are values observed in previous time window, 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(Ψ1) and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(Ψ2) are random numbers with the threshold 
Ψ1 and Ψ2 value of total observations of 𝑦𝑦𝑦𝑦1 and 𝑦𝑦𝑦𝑦2 , and 
𝜀𝜀𝜀𝜀1 and 𝜀𝜀𝜀𝜀2 are white noise. The total record number for dataset 
C is also 101,800. 

• Dataset D: Mixed dataset with no-drift, gradual drift, 
and abrupt drift. 

Dataset D consists of 18,000 records. This dataset is a mix 
subset with no-drift, gradual drift, and abrupt drift records. Its 
training data consists of 12,000 records by taking from 
datasets A, B and C for its first, second and third 3,000 records 
respectively. For this dataset, we separate the test datasets into 
three subsets so we can measure how the trained model can 
work with different types (no-drift, gradual drift, and abrupt 
drift) of datasets. Specifically, we have a test set of 2,000 
records from datasets A, B and C respectively. 

In summary, datasets A, B and C consists of total 101,800 
records each. We split these datasets into training and test set, 
where training set consists of 100,000 records and remaining 
records was used as test set. Dataset D consists of a total of 
18,000 records, among which 12,000 for training and 6,000 
for test set. 

One parameter to be configured ahead of time in our 
experiments is the weights for service layer. Weight assigned 
to batch layer forecasts is represented as Wb and the weight 
assigned to Speed layer is (1-Wb). Table I shows the different 
weights we used for each drift type. 

 
TABLE I. SERVING LAYER WEIGHT ASSIGNMENTS IN OUR EXEPRIMENTS. 

 

Drift Type Batch Layer Prediction 
Weight (Wb) 

Speed Layer Prediction 
Weight (1-Wb) 

 
 

No Drift 

0.8 0.2 

0.5 0.5 

0.2 0.8 

 
 

Gradual 

0.8 0.2 

0.5 0.5 

0.2 0.8 

 
 

Abrupt 

0.8 0.2 

0.5 0.5 

0.2 0.8 

 

The experiment is performed at a big data cluster at the 
High-Performance Computing Facility (HPCF) [12] of the 
University of Maryland Baltimore County (UMBC). The big 
data cluster consists of eight nodes managed by the Cloudera 
Hadoop Distribution (CDH). Table II lists the details of the 
experiment environment. 



TABLE II. HARWARE AND SOFTWARE INFORMATION IN OUR 
EXPERIMENTS. 

 

System Configuration 
Hardware Software 

Cluster 8 nodes Apache Spark 2.4.0 

Memory 384 GB Apache Hive 2.1.1 

Storage 48 TB per node Apache Kafka 2.10 

Processors 36 core per node Python 3.6 

Network 10 Gbps Cloudera CDH 6.2.0 

B. Experiments 
Before starting our experiments, we analyzed our data for 

stationarity using Dickey-Fuller Test [21]. We evaluated our 
VAR model using Akaike Information Criterion (AIC) [21]. 
For our data, we get the best AIC score for lag value p = 2. 
So we performed all our experiments with VAR (2). 

For all experiments, we generated time series forecasts for 
test data records from batch, speed and serving layers. 
Forecasts from batch layer were generated by a pre-trained 
VAR model, this model was trained on the training data 
records of each dataset. At speed layer, instead of using a 
pretrained model, we train a new VAR model for each time 
window (i.e., micro batch in Spark) of size 30 seconds to 
forecast the values of next window. With the system setup, we 
receive 7 records per second on an average and about 210 
records in total for each time window. The forecasts from 
serving layer was weighted forecasts from speed and batch 
layers: serving_layer_forecast = wb * batch_layer_forecast + 
(1 - wb) * speed_layer_forecast, where value of wb is assigned 
using the weights assigned in Table I. 

We performed following four sets of experiments for no- 
drift, gradual drift, abrupt drift and mixed drift cases. For 
each experiment, we first show the differences of the three 
approaches (batch, speed and serving layer) and then 
compare the differences of the serving layer with different 
weights. 

1) No-Drift Experiment Results based on Dataset A 
In our experiments, we trained VAR(2) with two 

endogenous variables Y1 and Y2. The forecasted values of Y1 
from speed layer, batch layer and serving layer are represented 
by Y1-Sp, Y1-Bt and Y1-Wt respectively. Similarly forecasts 
for Y2 from speed layer, batch layer and serving layer are 
represented by Y2-Sp, Y2-Bt and Y2-Wt respectively. For 
better representation, we used first 100 forecasts in our charts. 
The patterns for the remaining data are similar. 

Figure 3 (a) shows actual values of Y1 against forecasted 
values Y1-Sp and Y1-Bt on data without drift. As figure 
shows, forecasts from speed and batch layers are close to the 
actual value and the graph of speed layer forecasts is almost 
covered with batch layer forecast. Figure 3 (b) shows, 
forecasts Y2-Sp and Y2-Bt are not as accurate and the speed 
and batch layer forecasts are overlapping. 

Figure 4 (a) shows actual value of Y1 against 3 different 
weights assigned to speed and batch layer forecasts. This 
shows batch layer forecasts with weight Wb = 0.8 has least 
errors. Figure 4 (b) shows similar comparison between Y2 and 
three different weight configurations. This also shows batch 
layer forecasts with weight Wb = 0.8 has least errors. 

 

 
Fig. 3. (a) No-Drift actual and forecasted values for endogenous variable 

Y1, (b) No-Drift actual and forecasted values for endogenous variable Y2. 
 
 

Fig. 4. (a). No-Drift Weighted forecasting for Y1, (b) No-Drift Weighted 
forecasting for Y2. Note: Forecasts with Wb = 0.5 and Wb= 0.2 are almost 

overlapping for all the observed values. 



2) Gradual-Drift Experiment Results based Dataset B 
Figure 5 (a) shows actual values of Y1 against forecasted 

values Y1-Sp and Y1-Bt on gradual drift data. Figure 5 (b) 
shows, actual value of Y2 against Y2-Sp and Y2-Bt. As figure 
shows, the error has increased when drift is added to the 
source data. However, the batch layer forecasts had minimum 
error for both the time series Y1 and Y2. 

Figure 6 (a) shows actual value of Y1 against 3 different 
weights assigned to speed and batch layer forecasts. This 
shows batch layer forecasts with weight wb = 0.8 has least 
errors. Figure 6 (b) shows similar comparison between Y2 and 
three different weight configurations. This also shows batch 
layer forecasts with weight wb = 0.8 has least errors. 

 

Fig. 5. (a). Gradual Drift – actual vs. forecasts for Y1, (b). Gradual Drift - 
actual vs. forecasts for Y2. 

 

 
Fig. 6. (a). Gradual Drift - Weighted forecasting for Y1, (b). Gradual 

Drift - Weighted forecasting for Y2. 

3) Abrupt-Drift Experiment Results based Dataset C 
 

 
Fig. 7. (a). Abrupt Drift – actual vs. forecasts for Y1, (b). Abrupt Drift - 

actual vs. forecasts for Y2. 
 

Figure 7 (a) shows actual values of Y1 against forecasted 
values Y1-Sp and Y1-Bt on abrupt drift data. Figure 7 (b) 
shows, actual value of Y2 against Y2-Sp and Y2-Bt. As figure 
shows, the error has increased when drift is added to the 
source data. 

Figure 8 (a) shows actual value of Y1 against 3 different 
weights assigned to speed and batch layer forecasts. This 
shows batch layer forecasts with weight Wb = 0.8 has least 
errors. Figure 8 (b) shows similar comparison between Y2 and 
three different weight configurations. This also shows batch 
layer forecasts with weight wb = 0.8 has least errors. 

Based on the above result we can say that our approach of 
hybrid prediction is working well in scenario of Abrupt Drift. 

 

Fig. 8. (a). Gradual Drift - Weighted forecasting for Y1, (b). Gradual 
Drift - Weighted forecasting for Y2. Note: Forecasts with weights wb =0.5 

and wb=0.2 are completely overlapping. 



4) Mixed Dataset Experiment Results based Dataset D 
 

In this experiment set we used mixed dataset D to train our 
VAR model for Batch layer. The training set consists of 6000 
records where each subset No-Drift, Gradual Drift and Abrupt 
Drift had 2000 records each. In this experiment we assigned 
equal weights 50-50 to batch and speed layer forecasts. The 
following chart shows comparison of actual value of Y1 
against forecasts from Y-Sp, Y-Bt and Y-Wt. 

Figure 9 shows, when the batch layer model is trained on 
mixed dataset the forecasts from batch layer had increased 
errors, whereas the forecasts from speed layer, where model is 
trained for each window/micro-batch has minimum error. We 
observed similar results in case of gradual drift represented by 
Figure 10 and in abrupt drifts represented by Figure 11. 

 

Fig. 9. (a). No-Drift – actual vs. forecasts for Y1, (b). No-Drift - actual vs. 
forecasts for Y2. Note: Forecasts from speed layer and serving layer with 

weight wb =0.5 are completely overlapping. 
 

Fig. 10. (a). Gradual Drift – actual vs. forecasts for Y1, (b). Gradual Drift - 
actual vs. forecasts for Y2. Note: Y2 is not seen from the figure because it 

completely overlaps with Y2-Sp. 

The following are the changes in the forecast due to 
Gradual Drift and Abrupt Drift. This time, we kept the equal 
weights to predictions from the batch and speed layer. Again, 
for the gradual drift scenario Y1-Sp and Y2-Sp exactly 
predicted Y1 and Y2 respectively. 

 

Fig. 11. (a). Abrupt Drift – actual vs. forecasts for Y1, (b). Abrupt Drift - 
actual vs. forecasts for Y2. 

C. Findings from Experiments 
After performing the above experiments, we compared the 
prediction errors for every endogenous variable from each 
layer. To evaluate our models, we used the Root Mean Square 
Error (RMSE) method. RMSE is a commonly used method 
for evaluating regression models. It is a standard deviation of 
prediction errors or residuals and measures the spread of 
residuals. If the RMSE error of the prediction model is lower, 
that means the model is performing better. 

 
TABLE III. RMSE SCORES FOR DATASETS A, B AND C. 

 

Dataset Speed Batch Hybrid 
(wb=0.8) 

Hybrid 
(wb=0.5) 

Hybrid 
(wb=0.2) 

A: No drift 
(Y1) 

 
0.321 

 
0.312 

 
0.312 

 
0.314 

 
0.318 

A: No drift 
(Y2) 

 
1.682 

 
1.672 

 
1.672 

 
1.675 

 
1.678 

B: Gradual 
drift (Y1) 

 
0.506 

 
0.213 

 
0.426 

 
0.319 

 
0.245 

B: Gradual 
drift (Y2) 

 
1.024 

 
0.809 

 
0.953 

 
0.869 

 
0.819 

C: Abrupt 
drift (Y1) 

 
0.889 

 
0.537 

 
0.781 

 
0.644 

 
0.556 

C: Abrupt 
drift (Y2) 

 
1.572 

 
1.490 

 
1.543 

 
1.511 

 
1.493 

 
Table III shows how our models performed in different 

scenarios for the 1,800 predicted values of datasets A, B and 
C. In the table, we have highlighted the lowest RMSE score in 
bold. Based on the RMSE score we can say the batch layer 
predictions Y-Bt and serving layer weighted prediction Y-Wt 
(with weight wb = 0.8) are equally well on forecasting the time 
series with no drift. When we induced Gradual Drift, the 



results from batch layer only has the minimum error. We 
observed similar results in Abrupt Drift. We believe that the 
reason for batch layer always performing the best is because 
its model was trained with a much large dataset (100,000 
records) in comparison with the speeding layer (210 records 
for each time window). 

Table III also shows that our serving layer hybrid 
forecasting approach always has RMSEs that are within the 
range whose boundaries are speed layer and batch layer 
results. It is reasonable because the predictions are the 
combination of the batch-based and stream-based approaches. 
Further, the results of serving layer are better if higher weights 
are assigned to the approach which performs the best. 

Table IV lists the RMSE performance for three test datasets 
for dataset D. From the table, we can see why the speed layer 
approach always has the best prediction for all. We believe 
the reason is the speed layer model is only trained by the 
records received in each time window, which is homogenous. 
In comparison, batch layer model was trained from all mixed 
heterogenous dataset, which leads to higher RMSE scores. 
For hybrid approach, its RMSE scores are in the middle like 
those in Table III because it uses results from both speed layer 
and batch layer. 

 
TABLE IV. RMSE SCORES FOR MIXED DATASET D. 

 

Dataset Speed Batch Hybrid 
(wb=0.5) 

No drift (Y1) 0.25 0.28 0.31 
No drift (Y2) 1.35 12.03 1.67 
Gradual drift (Y1) 0.00 37.76 18.88 
Gradual drift (Y2) 0.00 345.47 172.73 
Abrupt drift (Y1) 24.10 66.46 39.36 
Abrupt drift (Y2) 76.46 407.63 211.52 

 

VI. RELATED WORK 

There have been many studies on adaptive streaming data 
learning and streaming time series regression. In a similar 
study [12], predictive analysis was applied on streaming data 
using classification machine learning models. Comparatively 
we are using regression machine learning models for 
predictive analysis on time series streaming data. In [13], the 
authors developed approaches of VAR and SVAR (Structural 
Vector Auto-regression) model in Spark and on a Hadoop 
cluster and using SGD (Stochastic Gradient Descent) to 
optimize the algorithm after the data processing. Whereas in 
our paper we are implementing VAR using linear regression 
on a time series streaming data with adaptable VAR to handle 
concept drift. In [14], neural network with a feature extraction 
layer added before the convolution layer to extract 
multivariate features and handle multivariate time series data, 
as well as decreases the effect of distortion by transforming 
the sample into a denser representation. In comparison, we are 
using VAR to approach the same problem by processing batch 
and streaming data with a Lambda architecture framework. 

Our previous study in [16], proposed a hybrid learning 
approach to adapt different types of concept drifts. The study 
is a classification problem and addresses class imbalance 
challenges, whereas this study is a regression problem and our 
system is more scalable by integrating with big data systems 
like Spark. 

VII. CONCLUSIONS 

With ever-expanding IoT world and real time streaming 
application, there is a huge requirement of systems which can 
effectively process high speed big data. To improve the 

adaptability and performance of time series forecasting 
method VAR, we developed a novel framework which can 
generate improved time series forecasting by supporting 

batch-based, stream-based and hybrid time series forecasting. 
We performed experiments using autoregressive no-drift 
time series data with simulated gradual and abrupt drift 

scenarios. With our experiments we noticed that the batch 
layer did really well on all three scenarios because its model 
was trained using a much large dataset. Our proposed hybrid 
approach did well with forecasting with no drift and performs 

better than speed layer for other scenarios. To test our 
framework further, we experimented the approaches with a 

dataset with mixed no-drift, gradual and abrupt drift data. Our 
experiments show speed layer model was able to perform the 

best because its model was always trained with the 
homogenous data in its latest time window, whereas the batch 

layer with a model trained on heterogenous data had some 
forecasting errors. Again, our hybrid serving-layer 
approach’s performance is in the middle. 

For future work, we plan to study how to automatically 
learn and assign weights in our hybrid forecasting approach 
so that it can adapt to the concept drifting and achieve 
accurate forecasting without pre-defined weights. We will 
evaluate the scalability of our system by measuring its 
response times with different computing nodes. 
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