
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

A. Pandya, O. Odunsi, C. Liu, A. Cuzzocrea and J. Wang, "Adaptive and Efficient Streaming Time Series
Forecasting with Lambda Architecture and Spark," 2020 IEEE International Conference on Big Data (Big
Data), 2020, pp. 5182-5190, doi: 10.1109/BigData50022.2020.9377947

https://doi.org/10.1109/BigData50022.2020.9377947

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

https://doi.org/10.1109/BigData50022.2020.9377947
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Adaptive and Efficient Streaming Time Series Forecasting with Lambda
Architecture and Spark

Arjun Pandya1, Oluwatobiloba Odunsi1, Chen Liu2, Alfredo Cuzzocrea3, Jianwu Wang1

1 Department of Information Systems, University of Maryland Baltimore County, Baltimore, USA
2 North China University of Technology, Beijing, China

3 iDEA Lab, University of Calabria, Italy
{apandya1, oodunsi1, jianwu}@umbc.edu, liuchen@ncut.edu.cn, alfredo.cuzzocrea@unical.it

Abstract— The rise of the Internet of Things (IoT) devices
and the streaming platform has tremendously increased the
data in motion or streaming data. It incorporates a wide variety
of data, for example, social media posts, online gamers in-game
activities, mobile or web application logs, online e-commerce
transactions, financial trading, or geospatial services. Accurate
and efficient forecasting based on real-time data is a critical part
of the operation in areas like energy & utility consumption,
healthcare, industrial production, supply chain, weather
forecasting, financial trading, agriculture, etc. Statistical time
series forecasting methods like Autoregression (AR),
Autoregressive integrated moving average (ARIMA), and
Vector Autoregression (VAR), face the challenge of concept
drift in the streaming data, i.e., the properties of the stream may
change over time. Another challenge is the efficiency of the
system to update the Machine Learning (ML) models which are
based on these algorithms to tackle the concept drift. In this
paper, we propose a novel framework to tackle both of these
challenges. The challenge of adaptability is addressed by
applying the Lambda architecture to forecast future state based
on three approaches simultaneously: batch (historic) data-based
prediction, streaming (real-time) data-based prediction, and
hybrid prediction by combining the first two. To address the
challenge of efficiency, we implement a distributed VAR
algorithm on top of the Apache Spark big data platform. To
evaluate our framework, we conducted experiments on
streaming time series forecasting with four types of data sets of
experiments: data without drift (no drift), data with gradual
drift, data with abrupt drift and data with mixed drift. The
experiments show the differences of our three forecasting
approaches in terms of accuracy and adaptability.

Keywords— Time Series Forecasting, Vector Auto Regression

(VAR), Concept Drift, Lambda Architecture, Spark

I. INTRODUCTION

In the last few years, there has been an incredible rise in
the number of Internet of Things (IoT) devices which
generally produces a continuous stream of data with a
timestamp. This calls for efficient ways to collect, process,
and analyze the humongous amounts of data. IoT world is
growing at a breathtaking pace, from 2 billion objects in 2006
to a projected 200 billion by 2020 [1]. In relation to Big Data,
we are now seeing more and more Internet of Things (IoT)
data, which could be large in both volume and velocity that
needs to be stored and processed efficiently [2]. Domains like
smart manufacturing [23], smart health [24], smart
transportation [25], smart home and autonomous locomotive
are some of the major use cases for IoT time-series data
forecasting.

Time Series forecasting methods, like Autoregression
(AR), Auto Regressive Integrated Moving Average

(ARIMA), and Vector Autoregression (VAR), are proven to
be effective on traditional time-series data but face challenges
for real-time streaming data time series forecasting. The first
challenge is how to make the methods adaptive for the
dynamic changes of the statistical properties of the variables,
called concept drifting [16] in machine learning. The second
challenge is how to make the methods scalable when facing
large volume time series data and/or high-speed streaming
data.

To address the above two challenges, this paper proposes
a novel framework for Adaptive and Efficient Streaming Time
Series (AESTSF). The adaptability challenge is addressed by
applying the Lambda architecture [7] to forecast future state
based on batch (historic) data, streaming (real-time) data and
hybrid (combining both historic and real-time predictions)
simultaneously. To address the efficiency challenge, we
implemented a distributed VAR algorithm using Apache
Spark [10]. Our open-source implementation can be found at
[18].

The contributions of this paper are three folds.

• First, we propose an extensible framework which can
be used for three time-series forecasting approaches
based on batch and streaming data by following the
Lambda architecture [7].

• Second, based on the above framework, we
implemented an algorithm that support distributed
Vector Auto Regression (VAR) based forecasting by
leveraging big data platforms including Apache Spark
[10], Apache Hive [8] and Apache Kafka [15].

• Third, we conducted extensive experiments to evaluate
our algorithms on a distributed environment to measure
the differences of the three forecasting approaches for
different types of streaming time series data.

The paper is organized as follows. Section II focuses on
the background of related techniques. Section III covers the
AESTSF framework we developed for time-series
forecasting. Section IV covers our frame detail and
algorithms. Section V covers the experiments, the analysis and
results. Section VI draws our conclusion and mentions future
research.

II. BACKGROUND

A. Time Series Forecasting
A time series is a set of observations measured

sequentially through time. These measurements may be made
continuously through time or be taken at a discrete sets of time

mailto:liuchen@ncut.edu.cn
mailto:alfredo.cuzzocrea@unical.it

points [3]. A forecasting method is a procedure for computing
predictions from present and past values. As such it may

with:
�
𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡

𝐴𝐴𝐴𝐴1 𝐴𝐴𝐴𝐴2

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1

𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡

simply be an algorithmic rule and does not depend on an
underlying probability model. Forecasting methods may be
broadly classified into two types:

a) Univariate methods where forecasts depend only on the
present and past values of the single series being forecasted,
possibly augmented by a function of time such as a linear
trend.

b) Multivariate methods where forecasts of a given
variable depend, at least partly, on values of one or more
additional time series variables, called predictor or
explanatory variables. Multivariate forecasts may depend on a
multivariate model involving more than one equation if the
variables are jointly dependent [4].

B. Concept Drifting
In streaming data mining, concept drift involves changing

the concept of a given target. Concept could be the value (for
regression task) or label (for classification) of the target
variable to be predicted. Over time, data will change, and in
predictive models that assume a static relationship between
input and output variables, this can lead to poor and degrading
predictive results.

As summarized in [17, 22], there are different types of
concept drifts including gradual drift, abrupt drift and
reoccurring drift. In this paper, we simulated the first two
types of concept drifts. Abrupt concept drift applies to cases
when data shifts very rapidly. For this drift type, a common
example is the sudden loss of a sensor data stream. Gradual
drift is marked by slower and more gradual changes in a
dataset as a whole.

C. Vector Auto Regression (VAR)
VAR is a multivariate time series forecasting model. It can

be used when two or more time-series influence each other
which means the relationship between the time series involved
is bi-directional. Every variable in a VAR model has an
equation explaining its evolution based on its own time-lagged
values, the time-lagged values of the other variables, and an
error term. VAR models explain the endogenous variables
solely by their own history, apart from deterministic regresses.
Data applied to statistical models, like kriging and VAR
models, are generally required to satisfy weak or second-order
stationarity. That is, neither the mean nor the variance of the
data should vary with time and the auto-covariance is
dependent on the time lag only [5].

VAR model is based on the assumption that the time series
is available. In its basic form, a VAR consists of a set of Κ
endogenous variables y𝑡𝑡𝑡𝑡 = (y1𝑡𝑡𝑡𝑡, . . . , y𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡, . . . , y𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡) for k =
1, . . . , K. The VAR(p)-process is then defined as [8]:

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝐴𝐴𝐴𝐴1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + ⋯ 𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝 + 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 (1)

in which Ai are (K × K) coefficient matrices for i =
1, . . . , p and 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 is a K-dimensional process with zero mean
𝐸𝐸𝐸𝐸(𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡) = 0, uncorrelated noise vector (white noise).

A VAR(p)-process for 2 endogenous variables can be
written as a VAR (1)-process:

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝐴𝐴𝐴𝐴1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1 + 𝐴𝐴𝐴𝐴2𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−2 + 𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡 (2)

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−1
� = � 𝐼𝐼𝐼𝐼 0 � �𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡−2

� + � 0 �

where I is identity matrix.

D. Lambda Architecture
The Lambda architecture is proposed by Marz and Warren

in their book [7] as a big data processing architecture for real-
time data processing. As illustrated in Figure 1, generally, the
Lambda architecture consists of three layers: Batch, Speed,
and Serving.

Fig. 1. Lambda Architecture high-level perspective [6].

a) Batch Layer: The batch layer stores the master copy
of the dataset and precomputes batch views on that
master dataset.

b) Speed Layer: The Speed layer processes data in
real-time. The speed layer is similar to the batch
layer in that it produces views based on the data it
receives. One big difference is that the speed layer
only looks at recent data, whereas the batch layer
looks at all the data at once.

c) Serving Layer: The Serving layer host/store results
from both batch view and real-time speed view. This
layer is used for hybrid results by combining results
from both batch view and real-time speed view.

The Lambda architecture in full is summarized by these
three equations:

batch view = function (all data)
real-time view = function (real-time view, new data)
hybrid view = function (batch view, real-time view)

III. ADAPTIVE AND EFFICIENT STREAMING TIME SERIES
(AESTSF) FRAMEWORK

In this work, we propose a novel framework AESTSF
which applies the Lambda architecture for time series
forecasting. This framework enables us to exploit the benefit
of batch and stream data simultaneously. Machine Learning-
based time series forecasting models can be trained using the
master data stored at the batch layer and it will generate
predictions by combining the data from the speed layer.

As illustrated in Figure 2, our framework consists of three
layers: Batch Layer, Speed Layer, and Serving Layer.

Fig. 2. Main components of our proposed Adaptive and Efficient Streaming
Time Series (AESTSF) framework.

A. Batch Layer
The batch layer stores the master immutable data which

will be used to train ML models, in our case, we trained our
distributed VAR model using the master dataset. Data coming
from streams will get appended to the master database. This
layer is also responsible for generating and storing our custom
VAR model which will be trained using the complete dataset
stored in the data till it’s time to train the model. We
implemented the batch layer using Apache Hive Database.
The Apache Hive data warehouse software facilitates reading,
writing, and managing large datasets residing in distributed
storage using SQL [9]. Hive was originally designed as a
translation layer on top of Hadoop MapReduce. It exposes its
own dialect of SQL to users and translates data manipulation
statements (queries) to a directed acyclic graph (DAG) of
MapReduce jobs. With an SQL interface, users do not need to
write tedious and sometimes difficult MapReduce programs to
manipulate data stored in Hadoop Distributed File system
(HDFS) [10]. The following algorithm (Algorithm 1)
illustrates the logic of the batch layer.

 Algorithm 1. Batch Layer Time Series Forecasting
Inputs: M: Time series data stream data of the current
time window, s: time window size
Outputs: Yb: Predicted values for the next time window

Step 1: Read incoming time series stream M

Step 2: Store M into Hive database

Step 3: Load the pre-trained VAR model from HDFS

Step 4: Generate predictions on the incoming data for the
next window, namely Yb for the next s time steps

 Step 5: Push the predictions to Serving layer via Kafka

B. Speed Layer

The speed layer deals with real-time in Spark Streaming
Spark Streaming is an extension of the core Spark API that
enables scalable, high-throughput, fault-tolerant stream
processing of live data streams [8]. Data can be ingested from

C. Serving Layer

The serving layer will utilize the next window predictions
from both batch and speed layer and generates a weighted
average hybrid prediction for the next window. This layer
should be responsible for setting the hyper parameters for the
VAR model in each layer. The following algorithm
(Algorithm 3) illustrates the logic of the serving layer.

 Algorithm 3. Serving Layer Time Series Forecasting
Inputs: Yb, Ys: Time series predictions from batch and
speed layer respectively, 𝒘𝒘𝒘𝒘𝒃𝒃𝒃𝒃: weight for batch layer
prediction.
Outputs: 𝒀𝒀𝒀𝒀W: Hybrid predicted value for the next time

 window
Step 1: Set lag time p, next steps n for batch and
speed layers VAR model

Step 2: Read Yb from batch layer
Step 3: Read Ys from speed layer
Step 4: Calculate 𝒀𝒀𝒀𝒀𝒘𝒘𝒘𝒘 = 𝒘𝒘𝒘𝒘𝒃𝒃𝒃𝒃 ∗ 𝒀𝒀𝒀𝒀𝒃𝒃𝒃𝒃 + (𝟏𝟏𝟏𝟏 − 𝒘𝒘𝒘𝒘𝒃𝒃𝒃𝒃)𝒀𝒀𝒀𝒀𝒔𝒔𝒔𝒔

 Step 5: Store 𝒀𝒀𝒀𝒀𝒘𝒘𝒘𝒘, 𝒀𝒀𝒀𝒀𝒃𝒃𝒃𝒃, 𝒀𝒀𝒀𝒀𝒔𝒔 𝒔𝒔 into database

IV. EFFICIENT AND ADAPTIVE VECTOR AUTO REGRESSION

(VAR) VIA SPARK AND KAFKA

Based on our AESTSF framework proposed in the
previous section, we implement a distributed VAR model
using Apache Spark. Apache Spark achieves high
performance for both batch and streaming data, using a state-
of-the-art DAG scheduler, a query optimizer, and a physical
execution engine [10].

To communicate between different layer of our lambda
architecture we used Apache Kafka [15]. Kafka is used to push
predictions from batch and speed layers to the serving layer, it
was also used to send model updates to batch layer.

To implement distributed VAR we used Spark’s MLlib
Linear Regression and Pipeline functions. The following
algorithm (Algorithm 4) illustrates the VAR implementation.

many sources like Kafka, Kinesis, or TCP sockets, and can be
processed using complex algorithms expressed with high-
level functions like map, reduce, join, and window. Finally,
processed data can be pushed out to filesystems, databases,
and live dashboards. The following algorithm (Algorithm 2)
illustrates the logic of the speed layer.

Algorithm 2. Speed Layer Time Series Forecasting
Inputs: M: time series data stream of the current time
window
Outputs: Ys: predicted value for the next time window
Step 1: Read incoming time series stream M
Step 2: Build a VAR model

Step 3: Train the model against the current stream

Step 4: Save/Persist the model to be used against next
time window

Step 5: Load the model trained from last time window

Step 6: Generate predicted value for the next window,
namely Ys for the next s time steps

 Step 7: Push the predictions to Serving layer via Kafka

 Algorithm 4. Distributed VAR
Inputs: p time lag, K number of endogenous variables, n
number of next windows need to be forecasted
Outputs: n predictions for each endogenous variable 𝒚𝒚𝒚𝒚𝒕𝒕𝒕𝒕

Step 1: Get incoming hyper parameter p, K, n
Step 2: Read data and load data from master database

Step 3: Preprocess the data to address issues like missing
value, data format, etc.

Step 4: Create lagged values 𝒕𝒕𝒕𝒕 − 𝟏𝟏𝟏𝟏, 𝒕𝒕𝒕𝒕 − 𝟐𝟐𝟐𝟐, . . , 𝒕𝒕𝒕𝒕 − 𝒑𝒑𝒑𝒑 for y𝑡𝑡𝑡𝑡
Step 5: Add a constant vector for intercept

Step 6: Assemble 𝐲𝐲𝐲𝐲𝒕𝒕𝒕𝒕−𝟏𝟏𝟏𝟏, … 𝒚𝒚𝒚𝒚𝒕𝒕𝒕𝒕−𝒑𝒑𝒑𝒑 as feature for y𝑡𝑡𝑡𝑡
Step 7: Invoke Linear Regression (lm) function for 𝐲𝐲𝐲𝐲𝒕𝒕𝒕𝒕
Step 8: Validate and store lm model

Step 9: For n time steps 𝒕𝒕𝒕𝒕 + 𝟏𝟏𝟏𝟏, 𝒕𝒕𝒕𝒕 + 𝟐𝟐𝟐𝟐, . . , 𝒕𝒕𝒕𝒕 + 𝒏𝒏𝒏𝒏 repeat from
 “Step 6”

With Spark Streaming, we can reuse the same algorithm at

batch and speed layer to process the data and forecast.

V. EXPERIMENTS

To evaluate our proposed framework and algorithms, in
this section, we conduct extensive experiments to understand
adaptability on concept drifting and forecasting accuracy of
the three forecasting approaches (batch, speed, hybrid) using
four types of time series datasets (no drift, gradual drift, abrupt
drift, mixed). In the experiments, predictions are generated by
Batch and Speed Layer simultaneously which were pushed to
Serving Layer to assign different weights to each prediction.

A. Datasets and Experiment System Configuration

We used the following four datasets by combining actual
and synthetic data.

• Dataset A: Actual time series dataset which does not
have drift.

For dataset A, we used publicly available from an Engie
Wind Farm of France [19]. The actual dataset has observation
recorded every 10 minutes, we changed it to 1 second per
observation, in order to generate high speed data stream. The
total record number for dataset A is 101,800. The actual data
is auto regressive in nature and does not have concept drifts.
The dataset was not enough for us to test the drift scenarios so
with induced gradual and abrupt drifts in the actual dataset to
generate two new datasets listed below.

• Dataset B: Synthetically generated gradual drift
dataset from actual data.

Dataset B was generated by applying following formula

𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡) = 0.1 ∗ (Ψ1) + 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡 − 1) + 𝜀𝜀𝜀𝜀1 (3)

𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡) = 0.1 ∗ (Ψ2) + 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡 − 1) + 𝜀𝜀𝜀𝜀2 (4)

where 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡) and 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡) are current observations, 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡 − 1)
and 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡 − 1) are values observed in previous time window,
thresholds Ψ1 and Ψ2 are constants calculated by subtracting
the maximal value by the minimal value of total observations
of 𝑦𝑦𝑦𝑦1 and 𝑦𝑦𝑦𝑦2, and 𝜀𝜀𝜀𝜀1 and 𝜀𝜀𝜀𝜀2 are white noise. The total record
number for dataset B is also 101,800.

• Dataset C: Synthetically generated abrupt drift
dataset from actual data.

Dataset C was generated by applying following formula

𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡) = 0.1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(Ψ1) + 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡 − 1) + 𝜀𝜀𝜀𝜀1 (5)

𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡) = 0.1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(Ψ2) + 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡 − 1) + 𝜀𝜀𝜀𝜀2 (6)

where 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡) and 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡) are current observations, 𝑦𝑦𝑦𝑦1(𝑡𝑡𝑡𝑡 − 1)
and 𝑦𝑦𝑦𝑦2(𝑡𝑡𝑡𝑡 − 1) are values observed in previous time window,
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(Ψ1) and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(Ψ2) are random numbers with the threshold
Ψ1 and Ψ2 value of total observations of 𝑦𝑦𝑦𝑦1 and 𝑦𝑦𝑦𝑦2 , and
𝜀𝜀𝜀𝜀1 and 𝜀𝜀𝜀𝜀2 are white noise. The total record number for dataset
C is also 101,800.

• Dataset D: Mixed dataset with no-drift, gradual drift,
and abrupt drift.

Dataset D consists of 18,000 records. This dataset is a mix
subset with no-drift, gradual drift, and abrupt drift records. Its
training data consists of 12,000 records by taking from
datasets A, B and C for its first, second and third 3,000 records
respectively. For this dataset, we separate the test datasets into
three subsets so we can measure how the trained model can
work with different types (no-drift, gradual drift, and abrupt
drift) of datasets. Specifically, we have a test set of 2,000
records from datasets A, B and C respectively.

In summary, datasets A, B and C consists of total 101,800
records each. We split these datasets into training and test set,
where training set consists of 100,000 records and remaining
records was used as test set. Dataset D consists of a total of
18,000 records, among which 12,000 for training and 6,000
for test set.

One parameter to be configured ahead of time in our
experiments is the weights for service layer. Weight assigned
to batch layer forecasts is represented as Wb and the weight
assigned to Speed layer is (1-Wb). Table I shows the different
weights we used for each drift type.

TABLE I. SERVING LAYER WEIGHT ASSIGNMENTS IN OUR EXEPRIMENTS.

Drift Type Batch Layer Prediction
Weight (Wb)

Speed Layer Prediction
Weight (1-Wb)

No Drift

0.8 0.2

0.5 0.5

0.2 0.8

Gradual

0.8 0.2

0.5 0.5

0.2 0.8

Abrupt

0.8 0.2

0.5 0.5

0.2 0.8

The experiment is performed at a big data cluster at the
High-Performance Computing Facility (HPCF) [12] of the
University of Maryland Baltimore County (UMBC). The big
data cluster consists of eight nodes managed by the Cloudera
Hadoop Distribution (CDH). Table II lists the details of the
experiment environment.

TABLE II. HARWARE AND SOFTWARE INFORMATION IN OUR
EXPERIMENTS.

System Configuration
Hardware Software

Cluster 8 nodes Apache Spark 2.4.0

Memory 384 GB Apache Hive 2.1.1

Storage 48 TB per node Apache Kafka 2.10

Processors 36 core per node Python 3.6

Network 10 Gbps Cloudera CDH 6.2.0

B. Experiments
Before starting our experiments, we analyzed our data for

stationarity using Dickey-Fuller Test [21]. We evaluated our
VAR model using Akaike Information Criterion (AIC) [21].
For our data, we get the best AIC score for lag value p = 2.
So we performed all our experiments with VAR (2).

For all experiments, we generated time series forecasts for
test data records from batch, speed and serving layers.
Forecasts from batch layer were generated by a pre-trained
VAR model, this model was trained on the training data
records of each dataset. At speed layer, instead of using a
pretrained model, we train a new VAR model for each time
window (i.e., micro batch in Spark) of size 30 seconds to
forecast the values of next window. With the system setup, we
receive 7 records per second on an average and about 210
records in total for each time window. The forecasts from
serving layer was weighted forecasts from speed and batch
layers: serving_layer_forecast = wb * batch_layer_forecast +
(1 - wb) * speed_layer_forecast, where value of wb is assigned
using the weights assigned in Table I.

We performed following four sets of experiments for no-
drift, gradual drift, abrupt drift and mixed drift cases. For
each experiment, we first show the differences of the three
approaches (batch, speed and serving layer) and then
compare the differences of the serving layer with different
weights.

1) No-Drift Experiment Results based on Dataset A
In our experiments, we trained VAR(2) with two

endogenous variables Y1 and Y2. The forecasted values of Y1
from speed layer, batch layer and serving layer are represented
by Y1-Sp, Y1-Bt and Y1-Wt respectively. Similarly forecasts
for Y2 from speed layer, batch layer and serving layer are
represented by Y2-Sp, Y2-Bt and Y2-Wt respectively. For
better representation, we used first 100 forecasts in our charts.
The patterns for the remaining data are similar.

Figure 3 (a) shows actual values of Y1 against forecasted
values Y1-Sp and Y1-Bt on data without drift. As figure
shows, forecasts from speed and batch layers are close to the
actual value and the graph of speed layer forecasts is almost
covered with batch layer forecast. Figure 3 (b) shows,
forecasts Y2-Sp and Y2-Bt are not as accurate and the speed
and batch layer forecasts are overlapping.

Figure 4 (a) shows actual value of Y1 against 3 different
weights assigned to speed and batch layer forecasts. This
shows batch layer forecasts with weight Wb = 0.8 has least
errors. Figure 4 (b) shows similar comparison between Y2 and
three different weight configurations. This also shows batch
layer forecasts with weight Wb = 0.8 has least errors.

Fig. 3. (a) No-Drift actual and forecasted values for endogenous variable

Y1, (b) No-Drift actual and forecasted values for endogenous variable Y2.

Fig. 4. (a). No-Drift Weighted forecasting for Y1, (b) No-Drift Weighted
forecasting for Y2. Note: Forecasts with Wb = 0.5 and Wb= 0.2 are almost

overlapping for all the observed values.

2) Gradual-Drift Experiment Results based Dataset B
Figure 5 (a) shows actual values of Y1 against forecasted

values Y1-Sp and Y1-Bt on gradual drift data. Figure 5 (b)
shows, actual value of Y2 against Y2-Sp and Y2-Bt. As figure
shows, the error has increased when drift is added to the
source data. However, the batch layer forecasts had minimum
error for both the time series Y1 and Y2.

Figure 6 (a) shows actual value of Y1 against 3 different
weights assigned to speed and batch layer forecasts. This
shows batch layer forecasts with weight wb = 0.8 has least
errors. Figure 6 (b) shows similar comparison between Y2 and
three different weight configurations. This also shows batch
layer forecasts with weight wb = 0.8 has least errors.

Fig. 5. (a). Gradual Drift – actual vs. forecasts for Y1, (b). Gradual Drift -
actual vs. forecasts for Y2.

Fig. 6. (a). Gradual Drift - Weighted forecasting for Y1, (b). Gradual

Drift - Weighted forecasting for Y2.

3) Abrupt-Drift Experiment Results based Dataset C

Fig. 7. (a). Abrupt Drift – actual vs. forecasts for Y1, (b). Abrupt Drift -

actual vs. forecasts for Y2.

Figure 7 (a) shows actual values of Y1 against forecasted
values Y1-Sp and Y1-Bt on abrupt drift data. Figure 7 (b)
shows, actual value of Y2 against Y2-Sp and Y2-Bt. As figure
shows, the error has increased when drift is added to the
source data.

Figure 8 (a) shows actual value of Y1 against 3 different
weights assigned to speed and batch layer forecasts. This
shows batch layer forecasts with weight Wb = 0.8 has least
errors. Figure 8 (b) shows similar comparison between Y2 and
three different weight configurations. This also shows batch
layer forecasts with weight wb = 0.8 has least errors.

Based on the above result we can say that our approach of
hybrid prediction is working well in scenario of Abrupt Drift.

Fig. 8. (a). Gradual Drift - Weighted forecasting for Y1, (b). Gradual
Drift - Weighted forecasting for Y2. Note: Forecasts with weights wb =0.5

and wb=0.2 are completely overlapping.

4) Mixed Dataset Experiment Results based Dataset D

In this experiment set we used mixed dataset D to train our
VAR model for Batch layer. The training set consists of 6000
records where each subset No-Drift, Gradual Drift and Abrupt
Drift had 2000 records each. In this experiment we assigned
equal weights 50-50 to batch and speed layer forecasts. The
following chart shows comparison of actual value of Y1
against forecasts from Y-Sp, Y-Bt and Y-Wt.

Figure 9 shows, when the batch layer model is trained on
mixed dataset the forecasts from batch layer had increased
errors, whereas the forecasts from speed layer, where model is
trained for each window/micro-batch has minimum error. We
observed similar results in case of gradual drift represented by
Figure 10 and in abrupt drifts represented by Figure 11.

Fig. 9. (a). No-Drift – actual vs. forecasts for Y1, (b). No-Drift - actual vs.
forecasts for Y2. Note: Forecasts from speed layer and serving layer with

weight wb =0.5 are completely overlapping.

Fig. 10. (a). Gradual Drift – actual vs. forecasts for Y1, (b). Gradual Drift -
actual vs. forecasts for Y2. Note: Y2 is not seen from the figure because it

completely overlaps with Y2-Sp.

The following are the changes in the forecast due to
Gradual Drift and Abrupt Drift. This time, we kept the equal
weights to predictions from the batch and speed layer. Again,
for the gradual drift scenario Y1-Sp and Y2-Sp exactly
predicted Y1 and Y2 respectively.

Fig. 11. (a). Abrupt Drift – actual vs. forecasts for Y1, (b). Abrupt Drift -
actual vs. forecasts for Y2.

C. Findings from Experiments
After performing the above experiments, we compared the
prediction errors for every endogenous variable from each
layer. To evaluate our models, we used the Root Mean Square
Error (RMSE) method. RMSE is a commonly used method
for evaluating regression models. It is a standard deviation of
prediction errors or residuals and measures the spread of
residuals. If the RMSE error of the prediction model is lower,
that means the model is performing better.

TABLE III. RMSE SCORES FOR DATASETS A, B AND C.

Dataset Speed Batch Hybrid
(wb=0.8)

Hybrid
(wb=0.5)

Hybrid
(wb=0.2)

A: No drift
(Y1)

0.321

0.312

0.312

0.314

0.318

A: No drift
(Y2)

1.682

1.672

1.672

1.675

1.678

B: Gradual
drift (Y1)

0.506

0.213

0.426

0.319

0.245

B: Gradual
drift (Y2)

1.024

0.809

0.953

0.869

0.819

C: Abrupt
drift (Y1)

0.889

0.537

0.781

0.644

0.556

C: Abrupt
drift (Y2)

1.572

1.490

1.543

1.511

1.493

Table III shows how our models performed in different

scenarios for the 1,800 predicted values of datasets A, B and
C. In the table, we have highlighted the lowest RMSE score in
bold. Based on the RMSE score we can say the batch layer
predictions Y-Bt and serving layer weighted prediction Y-Wt
(with weight wb = 0.8) are equally well on forecasting the time
series with no drift. When we induced Gradual Drift, the

results from batch layer only has the minimum error. We
observed similar results in Abrupt Drift. We believe that the
reason for batch layer always performing the best is because
its model was trained with a much large dataset (100,000
records) in comparison with the speeding layer (210 records
for each time window).

Table III also shows that our serving layer hybrid
forecasting approach always has RMSEs that are within the
range whose boundaries are speed layer and batch layer
results. It is reasonable because the predictions are the
combination of the batch-based and stream-based approaches.
Further, the results of serving layer are better if higher weights
are assigned to the approach which performs the best.

Table IV lists the RMSE performance for three test datasets
for dataset D. From the table, we can see why the speed layer
approach always has the best prediction for all. We believe
the reason is the speed layer model is only trained by the
records received in each time window, which is homogenous.
In comparison, batch layer model was trained from all mixed
heterogenous dataset, which leads to higher RMSE scores.
For hybrid approach, its RMSE scores are in the middle like
those in Table III because it uses results from both speed layer
and batch layer.

TABLE IV. RMSE SCORES FOR MIXED DATASET D.

Dataset Speed Batch Hybrid
(wb=0.5)

No drift (Y1) 0.25 0.28 0.31
No drift (Y2) 1.35 12.03 1.67
Gradual drift (Y1) 0.00 37.76 18.88
Gradual drift (Y2) 0.00 345.47 172.73
Abrupt drift (Y1) 24.10 66.46 39.36
Abrupt drift (Y2) 76.46 407.63 211.52

VI. RELATED WORK

There have been many studies on adaptive streaming data
learning and streaming time series regression. In a similar
study [12], predictive analysis was applied on streaming data
using classification machine learning models. Comparatively
we are using regression machine learning models for
predictive analysis on time series streaming data. In [13], the
authors developed approaches of VAR and SVAR (Structural
Vector Auto-regression) model in Spark and on a Hadoop
cluster and using SGD (Stochastic Gradient Descent) to
optimize the algorithm after the data processing. Whereas in
our paper we are implementing VAR using linear regression
on a time series streaming data with adaptable VAR to handle
concept drift. In [14], neural network with a feature extraction
layer added before the convolution layer to extract
multivariate features and handle multivariate time series data,
as well as decreases the effect of distortion by transforming
the sample into a denser representation. In comparison, we are
using VAR to approach the same problem by processing batch
and streaming data with a Lambda architecture framework.

Our previous study in [16], proposed a hybrid learning
approach to adapt different types of concept drifts. The study
is a classification problem and addresses class imbalance
challenges, whereas this study is a regression problem and our
system is more scalable by integrating with big data systems
like Spark.

VII. CONCLUSIONS

With ever-expanding IoT world and real time streaming
application, there is a huge requirement of systems which can
effectively process high speed big data. To improve the

adaptability and performance of time series forecasting
method VAR, we developed a novel framework which can
generate improved time series forecasting by supporting

batch-based, stream-based and hybrid time series forecasting.
We performed experiments using autoregressive no-drift
time series data with simulated gradual and abrupt drift

scenarios. With our experiments we noticed that the batch
layer did really well on all three scenarios because its model
was trained using a much large dataset. Our proposed hybrid
approach did well with forecasting with no drift and performs

better than speed layer for other scenarios. To test our
framework further, we experimented the approaches with a

dataset with mixed no-drift, gradual and abrupt drift data. Our
experiments show speed layer model was able to perform the

best because its model was always trained with the
homogenous data in its latest time window, whereas the batch

layer with a model trained on heterogenous data had some
forecasting errors. Again, our hybrid serving-layer
approach’s performance is in the middle.

For future work, we plan to study how to automatically
learn and assign weights in our hybrid forecasting approach
so that it can adapt to the concept drifting and achieve
accurate forecasting without pre-defined weights. We will
evaluate the scalability of our system by measuring its
response times with different computing nodes.

REFERENCES
[1] Intel website. https://www.intel.com/content/www/us/en/internet-of-

things/infographics/guide-to-iot.html Accessed: 2020-09-17
[2] Arjun Pandya, Chaitanya Kulkarni, Kunal Mali, and Jianwu Wang. An

Open Source Cloud-Based NoSQL and NewSQL Database
Benchmarking Platform for IoT Data. In Proceedings of International
Symposium on Benchmarking, Measuring and Optimization (Bench
2018), pp. 65-77. Springer, Cham, 2018.

[3] Chatfield C. Time-series forecasting. CRC press; 2000 Oct 25.
[4] G.P. Nason, Stationary and non-stationary time series, Chapter 11 of

Statistics in Volcanology, (H.M. Mader, S.G. Coles, C.B. Connor, and
L.J. Connor, eds.), Bath: Geological Society, 2006

[5] The Lambda Achitecture, http://lambda-architecture.net Accessed:
2020-09-17

[6] Marz N, Warren J. Big Data: Principles and best practices of scalable
real-time data systems. New York; Manning Publications Co.; 2015.
pp.14-20

[7] Enders W, Sandler T. The Effectiveness of Antiterrorism Policies: A
Vector-Autoregression-Intervention Analysis[J]. American Political
Science Review, 1993, 87(04): 829-844

[8] Apache Hive. https://hive.apache.org Accessed: 2020-09-17
[9] Huai, Yin, Ashutosh Chauhan, Alan Gates, Gunther Hagleitner, Eric

N. Hanson, Owen O'Malley, Jitendra Pandey, Yuan Yuan, Rubao Lee,
and Xiaodong Zhang. Major technical advancements in apache hive."
In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pp. 1235-1246. 2014.

[10] Homepage — Apache Spark Project. http://spark.apache.org, 2020.
Accessed: 2020-09-17.

[11] The UMBC High Performance Computing Facility (HPCF).
https://hpcf. umbc.edu. Accessed: 2020-09-17.

[12] Nair LR, Shetty SD, Shetty SD. Applying spark based machine
learning model on streaming big data for health status prediction.
Computers & Electrical Engineering. 2018 Jan 1; 65:393-9.

[13] Li T, Li X, Zhang X. The Design and Implementation of Vector
Autoregressive Model and Structural Vector Autoregressive Model
Based on Spark. In 2017 3rd International Conference on Big Data

https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
http://lambda-architecture.net/
https://hive.apache.org/
http://spark.apache.org/

Computing and Communications (BIGCOM) 2017 Aug 10 (pp. 386-
394). IEEE.

[14] Pang N, Yin F, Zhang X, Zhao X. A robust approach for multivariate
time series forecasting. In Proceedings of the Eighth International
Symposium on Information and Communication Technology 2017 Dec
7 (pp. 106-113).

[15] Apache Kafka. https://kafka.apache.org Accessed: 2020-09-17
[16] Wenbin Zhang, Jianwu Wang. A Hybrid Learning Framework for

Imbalanced Stream Classification, In Proceedings of the 2017 IEEE
6th International Congress on Big Data (BigData Congress 2017),
pages 480-487.

[17] Baier L, Hofmann M, Kühl N, Mohr M, Satzger G. Handling Concept
Drifts in Regression Problems--the Error Intersection Approach. arXiv
preprint arXiv:2004.00438. 2020 Apr 1.

[18] The Adaptive and Efficient Streaming Time Series Framwork
(AESTSF). https://github.com/big-data-lab-umbc/time-series-analysis,
Accessed: 2020-09-17.

[19] The Wind Farm Dataset: https://opendata-
renewables.engie.com/explore/dataset/01c55756-5cd6-4f60-9f63-
2d771bb25a1a/information Accessed: 2020-09-17.

[20] Cheung YW, Lai KS. Lag order and critical values of the augmented
Dickey–Fuller test. Journal of Business & Economic Statistics.

[21] Richards SA, Whittingham MJ, Stephens PA. Model selection and
model averaging in behavioural ecology: the utility of the IT-AIC
framework. Behavioral Ecology and Sociobiology. 2011 Jan

[22] A. Bifet, G. Holmes, R. Kirkby and B. Pfahringer. Data Stream Mining:
A Practical Approach. Tech. rep. University of Waikato, 2011.

[23] Jianwu Wang, Chen Liu, Meiling Zhu, Pei Guo and Yapeng Hu. Sensor
Data based System-level Anomaly Prediction for Smart Manufacturing.
In Proceedings of the 2018 IEEE 8th International Congress on Big
Data (BigData Congress 2018), pages 158-165, IEEE, 2018.

[24] Jianwu Wang, Zhichuan Huang, Wenbin Zhang, Ankita Patil, Ketan
Patil, Ting Zhu, Eric J. Shiroma, Mitchell A. Schepps, and Tamara B.
Harris. Wearable sensor based human posture recognition. In 2016
IEEE International Conference on Big Data (Big Data), pp. 3432-3438.
IEEE, 2016.

[25] Zhuofeng Zhao, Weilong Ding, Jianwu Wang, and Yanbo Han. A
hybrid processing system for large-scale traffic sensor data. IEEE
Access 3 (2015): 2341-2351.

https://kafka.apache.org/
https://github.com/big-data-lab-umbc/time-series-analysis
https://opendata-renewables.engie.com/explore/dataset/01c55756-5cd6-4f60-9f63-2d771bb25a1a/information
https://opendata-renewables.engie.com/explore/dataset/01c55756-5cd6-4f60-9f63-2d771bb25a1a/information
https://opendata-renewables.engie.com/explore/dataset/01c55756-5cd6-4f60-9f63-2d771bb25a1a/information

	Arjun Pandya1, Oluwatobiloba Odunsi1, Chen Liu2, Alfredo Cuzzocrea3, Jianwu Wang1

