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ABSTRACT

Title of dissertation: DEVELOPING A COMPUTATIONAL
MODEL OF NEURAL NETWORKS INTO
A LEARNING MACHINE

Bryce Mackey-Williams Carey,
Doctor of Philosophy, 2017

Dissertation directed by: Professor James Lo
Department of Mathematics & Statistics

The purpose of this dissertation work is to contribute to the development of a

biologically plausible model of neural networks into a learning machine. Temporal

hierarchical probabilistic associative memory (THPAM) is a functional model of

biological neural networks which performs a variant of supervised and unsupervised

Hebbian learning to store information in the synapses, uses dendritic trees to encode

information, and communicates information via spike trains. THPAM can be viewed

as a recurrent hierarchical network of processing units, neuronal compartments that

serve as pattern recognizers. This work proposes supplemental developments, a

parallel programming implementation, and several benchmark results pertaining to

the processing unit architecture.

Supplemental theories and mechanisms pertaining to the processing unit ar-

chitecture are contributed in this dissertation. These contributions serve to confirm

propositions contained in original publications, enable alternative constructions of

the processing unit generalization component, and allow for an alternative general-



ization mechanism. The new generalization mechanism has a unique application in

efficiently learning data clusters centered at a target input vector.

Orthogonal expansion of a vector in the processing unit is an exponential func-

tion of the dimension of the vector. Although there are ways to avoid vectors with

a large dimension, a parallel programming implementation proposed in this work

is utilized to somewhat alleviate the severe limitations imposed by this complex-

ity on serial machines. The scalability of the parallel program is examined on the

maya cluster of the UMBC High Performance Computing Facility. The parallelized

processing unit implementation is beneficial in reducing the run time of sufficiently

large fixed problem sizes from several hours to a few seconds.

The performance of the processing unit as a pattern recognizer is demonstrated

on sample data sets obtained from the UCI Machine Learning Repository. These

data sets independently contained categorical data, missing data, and real-valued

data. Several data encoding techniques are performed and examined in order to best

suit the predictive performance of the processing unit on the data sets considered.

Differences in performance between particular encoding methods are thoroughly

examined and discussed in relation to the processing unit mechanisms, and the

effects hyperparameter adjustments are precisely considered.
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Chapter 1

Introduction

1.1 Motivation

Backpropagation based artificial neural networks (ANNs), namely multilayer

perceptrons, convolutional neural networks, and deep neural networks, are at present

the leading technologies in machine learning and artificial intelligence research and

application, commonly used as the most reliable tools for pattern recognition, classi-

fication, function approximation, and signal processing. These ANNs can be adapted

to learn and perform a variety of specific tasks via its loose imitation of a func-

tional cluster of biological neurons connected by axons and dendrites with modifi-

able strengths or weights. These weights are adjusted to reduce an overall perfor-

mance error in the output of the neural network architecture by means of iteration

and back propagation, among other customized procedures, involving sophisticated

mathematical techniques from differentiation and optimization.

Although backpropagation based ANNs are a valuable and mature technology

with numerous applications, there is an discernible lack of evidence in support of a

biological equivalent to back propagation within natural neural networks. Biological

neural networks serve as inspiration in their development, but the objective of these

ANNs is not necessarily to replicate nature but rather to serve as engineered utilities

suitable for solving classes of problems which were once considered intractable.
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Temporal hierarchical probabilistic associative memory (THPAM) is a func-

tional model of biological neural networks which is meant to retain biological plau-

sibility as natural neural networks are presently understood. The model features

entirely automated learning mechanisms without the use of iterative data cycling,

differentiation, or optimization. Except for the mechanism of encoding inputs by

dendrites, the mechanisms in THPAM are justified with findings reported in biolog-

ical literature. This model may serve as an initial attempt to faithfully replicate the

functions of natural neural networks, and further biological findings may substanti-

ate THPAM and offer opportunities in its future development to fully capture the

functionality of the biological brain.

This dissertation research is motivated by the established theory pertaining to

the processing unit architecture, a pattern recognizer which is postulated to com-

prise a recurrent hierarchical network of processing units that constitute THPAM.

This work contains additional theoretical contributions toward the development of

the processing unit, provides an original parallelized implementation of the process-

ing unit architecture, and establishes initial benchmarks involving the application

of the processing unit towards sample data sets. These efforts in understanding,

implementing, and testing the processing unit will serve as a foundation in further

establishing the theory of THPAM and its eventual realization as a coherent learning

machine.
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1.2 Thesis Statement

This dissertation proposes several theoretical additions promoting the research

and development of the THPAM processing unit. Additionally, this work provides a

parallelized implementation of the processing unit architecture, which is integral in

the application of the processing unit towards data sets. Finally, this paper reports

experimental results of the processing unit applied to sample data sets comprised

of different data types in order to provide initial benchmarks, explanations, and

suggestions for best practices in future work.

1.3 Contributions

The main contributions of this dissertation are the following:

• Demonstrated that the following property holds for ternary vectors x and z

of the same dimension, with the orthogonal expansion function Φ: Φ(x ◦ z) =

Φ(x)◦Φ(z), where ◦ denotes the entrywise product. See Theorem 3 in Section

3.2.

• Developed an efficient method of constructing particular masking matrices,

which are used in generalization. See equations 3.1 and 3.2 in Sections 3.3 and

3.4, respectively.

• Proposed an alternative generalization scheme with entry flipping, which can

additionally be used to efficiently learn data clusters within a specified Ham-

ming distance from a central point. See Section 3.4.
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• Developed a parallelized implementation of the processing unit architecture

and examined its scalability with varying problem size and number of parallel

processes used. See Chapter 4.

• Produced initial performance benchmarks of the processing unit applied to

different data types with several input encodings, and provided explanations

and suggestions for best practices. See Chapter 5.

1.4 Thesis Outline

The dissertation is organized in the following manner. Chapter 2 introduces

the relevant background material necessary to perform this research, namely the

architecture and machinations of the THPAM processing unit. Chapter 3 presents

additional theory submitted as original contributions in this work. Chapter 4 dis-

cusses a parallelized version of the processing unit implementation and examines its

scalability as the problem size and number of parallel processes vary. Chapter 5

reports the results of several experiments involving the application of the processing

unit towards different types of data with different data encoding schemes. Chapter

6 concludes the dissertation and outlines opportunities for future work.
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Chapter 2

Background and Related Work

2.1 Overview

This chapter summarizes the theory of the THPAM processing unit architec-

ture as it relates to the work conducted for this dissertation. Few original publi-

cations exist describing more deeply the processing unit and its role in the overall

model, mechanisms which remain unused in this work, and propositions regarding

the hierarchical structure of processing units comprising THPAM [13, 14, 15]. As

such, selected theories are explained thoroughly by examples or proofs in order to

compose a coherent document, but finer reasonings should be sought in the original

publications. None of the material presented in this chapter is claimed to be original

work as part of this dissertation submission, and all original contributions discussed

in the subsequent chapters are based on the material provided herein. Some no-

tational differences are employed in order to present this background material in a

more accessible manner for the intended audience.

Section 2.2 describes the processing unit structure, its internal representation

for input vectors, and its procedures for storing learned information. Section 2.3

describes the procedure of extracting stored information from the processing unit

structure in order to generate output predictions on target inputs. The generaliza-

tion mechanism involving entry masking is also discussed in detail.
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2.2 Processing Unit Structure

2.2.1 Orthogonal Expansion

The following definition is provided in order to avoid ambiguity in using par-

ticular terms throughout this dissertation.

Definition 1.

• A binary vector is one whose entries all belong to the set {0, 1}.

• A bipolar vector is one whose entries all belong to the set {−1, 1}.

• A ternary vector is one whose entries all belong to the set {−1, 0, 1}.

Note that binary and bipolar vectors are also ternary vectors. THPAM pri-

marily involves interactions between orthogonal expansions of ternary vectors from

coding theory [22]. As the name suggests, the orthogonal expansion is a ternary

vector encoding designed to induce orthogonality between vectors which differ in a

particular manner. To introduce this concept, we first visit an example involving

the orthogonal expansion of bipolar vectors.

Example 1. Let x = ( x1 x2 )T and z = ( z1 z2 )T be bipolar vectors. Construct

orthogonal expansions Φ(x) and Φ(z) of x and z, respectively, to be

Φ(x) =

(
1 x1 x2 x1x2

)T

Φ(z) =

(
1 z1 z2 z1z2

)T

Then

(Φ(x))TΦ(z) = 1 + x1z1 + x2z2 + x1x2z1z2 = (1 + x1z1)(1 + x2z2).
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Note that (Φ(x))TΦ(x) = 22 = 4. If x 6= z, then there exists xi and zi such that

xi 6= zi for some i = 1, 2. Since x and z are bipolar, it must be the case that

xi = −zi, so 1 + xizi = 1 − xixi = 1 − 1 = 0, resulting in (Φ(x))TΦ(z) = 0. Note

that this orthogonality between Φ(x) and Φ(z) is not guaranteed if either vector is

permitted to be ternary, since entries consisting of zero in either vector do not cause

the inner product to be zero.

The following is the general definition of the orthogonal expansion for ternary

vectors.

Definition 2 (Orthogonal Expansion). Let x = ( x1 x2 ... xn )T be a ternary vector.

The orthogonal expansion of x, denoted Φ(x) where Φ : {−1, 0, 1}n → {−1, 0, 1}2n ,

is produced recursively as follows:

Φ1(x) =

 1

x1

 ,

Φ2(x) =

 Φ1(x)

x2Φ1(x)

 ,

...

Φi(x) =

 Φi−1(x)

xiΦi−1(x)

 ,

...

Φ(x) = Φn(x) =

 Φn−1(x)

xnΦn−1(x)

 .

(2.1)
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Producing the orthogonal expansion has algorithmic complexity O(2n), which

is intractable even for modest values of input dimension n. This curse of dimen-

sionality imposes a severe limitation on the practicality of a single processing unit.

Although this dissertation focuses on the application of a single processing unit,

THPAM proposes that multiple processing units are assigned to observe subsets of

the input, effectively alleviating this dimensionality issue.

The subsequent theorem summarizes important properties regarding the inner

products of orthogonal expansions.

Theorem 1. Let a = ( a1 a2 ... an )T and b = ( b1 b2 ... bn )T be ternary vectors. The

inner product of their orthogonal expansions can be expressed as

(Φ(a))TΦ(b) =
n∏

i=1

(1 + aibi),

which has the following properties:

1. If akbk = −1 for some k ∈ {1, . . . , n}, then (Φ(a))TΦ(b) = 0,

2. If akbk = 0 for some k ∈ {1, . . . , n}, then (Φ(a))TΦ(b) =
∏n

i=1,i 6=k(1 + aibi),

3. If (Φ(a))TΦ(b) 6= 0, then (Φ(a))TΦ(b) = 2aTb,

4. If a and b are bipolar, then (Φ(a))TΦ(b) = 0 if a 6= b, and (Φ(a))TΦ(b) = 2n

if a = b.

Proof. A proof by induction can be used to demonstrate that for all j ∈ {1, . . . , n},

(Φj(a))TΦj(b) =

j∏
i=1

(1 + ajbj).
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(Base Step): Clearly, (Φ1(a))TΦ1(b) = 1 + a1b1.

(Inductive Step): Suppose (Φj(a))TΦj(b) =
∏j

i=1(1 + aibi) for j ∈ {1, . . . , n − 1}.

Then by Definition 2,

(Φj+1(a))TΦj+1(b) =

 Φj(a)

aj+1Φj(a)


T  Φj(b)

bj+1Φj(b)


= (Φj(a))TΦj(b) + aj+1bj+1(Φj(a))TΦj(b))

= (1 + aj+1bj+1)(Φj(a))TΦj(b)

=

j+1∏
i=1

(1 + aibi)

The properties follow via simple inspection.

In summary, two expansions are orthogonal if their base vectors are bipolar

and unequal. More generally, the expansions are orthogonal if their base vectors are

ternary and at least one pair of corresponding entries produces a negative product.

An entry of zero in either vector effectively ignores the corresponding entry in the

other vector, and the inner product of the orthogonal expansions is computed as if

that entry was never present. If two orthogonal expansions are not orthogonal, then

their inner product produces a power of two with the exponent equal to the inner

product of the base vectors.

2.2.2 Correlation Learning

The processing unit learns in a manner akin to the Hebbian learning rule [7]

as defined below.
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Definition 3. A processing unit is a pair (D,C)n,m with D of dimension m × 2n

and C of dimension 2n constructed according to the following formulas on bipolar

pairs {(x1,y1), (x2,y2), . . . , (xN ,yN)}, with x n-dimensional and y m-dimensional:

D =
N∑
i=1

yi(Φ(xi))
T ,

C =
N∑
i=1

(Φ(xi))
T .

Matrix D and vector C are called the expansion correlation matrices. Particularly,

the processing unit is updated according to the following learning rule on bipolar

pair (x,y):

D← D + y(Φ(x))T ,

C← C + (Φ(x))T .

Matrix D stores the outer products of the input orthogonal expansions with

their corresponding labels, and vector C stores the input orthogonal expansions.

The utility of this storage scheme is presented in the next section.

2.3 Prediction and Generalization

2.3.1 Empirical Probability

The following theorem demonstrates a method of extracting information from

a processing unit in order to predict the label of a target input vector.

Theorem 2. Let (D,C)n,m be a processing unit that has performed covariance and

accumulation learning on the bipolar pairs {(x1,y1), (x2,y2), . . . , (xN ,yN)}. Let z

10



be an n-dimensional bipolar vector. If CΦ(z) 6= 0 then

DΦ(z)

CΦ(z)
=

∑N
i=1, xi=z yi

|{xi : xi = z}|
. (2.2)

Proof. By applying Theorem 1,

DΦ(z)

CΦ(z)
=

∑N
i=1 yi(Φ(xi))

TΦ(z)∑N
i=1(Φ(xi))TΦ(z)

=
2n
∑N

i=1, xi=z yi

2n
∑N

i=1, xi=z 1

=

∑N
i=1, xi=z yi

|{xi : xi = z}|
.

This completes the proof.

With a target input, the processing unit is capable of producing an average

over the labels learned with input vectors equivalent to the target. This average

would be an exact label providing that no contradictions are present among the

learned input and label pairs. Regardless, each entry in this average will reside

within the interval [−1, 1], which can then be converted to a bipolar vector via

thresholding techniques. Alternatively, this average can be regarded as a type of

probability about whether a label entry is positive or negative for a target input.

Definition 4. Let (D,C)n,m be a processing unit. The empirical probability of

n-dimensional bipolar input z, denoted ρ(z) : {−1, 1}n → [0, 1]m, is defined as

ρ(z) =


1
2

(
DΦ(z)
CΦ(z)

+ e
)

if CΦ(z) 6= 0,

1
2
e if CΦ(z) = 0,

(2.3)

where e denotes the m-dimensional vector of all ones.

11



The empirical probability is simply an affine transformation of the average

label produced in Theorem 2 to a vector whose entries all reside within interval

[0, 1]. This can be used in combination with a pseudorandom number generator to

construct a strictly bipolar label.

A glaring deficiency of this form of the empirical probability construction is

that it lacks the ability to generalize. The empirical probability on an unlearned

target input will always produce a vector with 0.5 in every entry, meaning no learned

information could be used in predicting the output label. This is generally unac-

ceptable in machine learning for good reasons: slight deviations in data should not

completely discount the ability of a model to generate an educated prediction, and

most practical problems have potentially enormous or infinite feature spaces that

cannot be realistically covered by all of the training inputs. Thus, a generalization

mechanism is required for the processing unit, which is discussed next.

2.3.2 Masking Matrix

In order for a processing unit to generalize on a target input vector, the inner

products between its orthogonal expansion and the learned orthogonal expansions

must be altered to produce nonzero results for learned vectors which are similar,

but not necessarily equal, to the target vector. The goal of generalization is to

produce educated predictions on unlearned inputs. This requires a mechanism to

relax the strict orthogonality of the expansions of bipolar vectors. Recall the second

and third properties from Theorem 1, which essentially state that any zero entries

12



in either of two ternary vectors effectively skip both corresponding entries when

computing the inner product of their orthogonal expansions. An automatic method

of replacing particular entries in target vector with zeros would thereby produce

a nontrivial empirical probability vector, providing the processing unit has been

sufficiently trained. The next example demonstrates such a method.

Example 2. Let x = ( x1 x2 x3 )T and z = ( z1 z2 z3 )T , with x1 6= z1, x2 = z2, and

x3 = z3. Then (Φ(x))TΦ(z) = 0, and we wish to alter this inner product to produce

a nonzero value by skipping z1. Entry z1 can be removed from z by performing the

product

diag


0

1

1




z1

z2

z3

 =


0 0 0

0 1 0

0 0 1




z1

z2

z3

 =


0

z2

z3

 =


0

x2

x3

 ,

then computing the orthogonal expansion of the resulting vector, but this will be

costly and inefficient to maintain the original inputs and repeatedly produce these

orthogonal expansions when needed. Instead, it can be demonstrated that the above

equality is holds between orthogonal expansions, meaning

diag

Φ


0

1

1



Φ


z1

z2

z3

 = Φ


0

z2

z3

 = Φ


0

x2

x3

 ,

and by Theorem 1,

(Φ(x))Tdiag

Φ


0

1

1



Φ(z) =

Φ


x1

x2

x3





T

Φ


0

x2

x3

 = 22 = 4,
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accomplishing the objective without revisiting the original vectors x and z.

The following proposition generalizes the process observed in Example 2.

Proposition 1. Let z be a bipolar vector and let {i1, i2, . . . , ij} be a set of indices

on z. Then

diag(Φ(ei01,i
0
2,...,i

0
j
))Φ(z) = Φ(zi01,i

0
2,...,i

0
j
),

where zi01,i
0
2,...,i

0
j

and ei01,i
0
2,...,i

0
j

respectively denote vectors z and e with zeros replacing

their entries on the specified index set. This procedure of replacing target vector

entries with zeros via its orthogonal expansion is called entry masking.

A formal proof of a more general version of this proposition is provided in the

next chapter. For now, we visit an example in which the proposition is applied to

perform several entry maskings at once.

Example 3. Let z = ( z1 z2 z3 )T . Then by Proposition 1,

diag

Φ


1

1

1

+ Φ


0

1

1

+ Φ


1

0

1

+ Φ


1

1

0



Φ(z) =

Φ


z1

z2

z3

+ Φ


0

z2

z3

+ Φ


z1

0

z3

+ Φ


z1

z2

0

 ,

producing a sum of Φ(z) and all of its entry maskings in which one entry is masked.
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With 3-dimensional bipolar vector x, this can be used in the bilinear form

(Φ(x))Tdiag

Φ


1

1

1

+ Φ


0

1

1

+ Φ


1

0

1

+ Φ


1

1

0



Φ(z),

which would be nonzero providing d(x, z) ≤ 1 in Hamming distance.

This leads into the generalization mechanism of the processing unit.

Definition 5 (Masking Matrix). A matrix Ml is a masking matrix if it is of the

form

Ml = diag

Φ(e) +
l∑

j=1

n∑
ij=j

· · ·
i3−1∑
i2=2

i2−1∑
i1=1

αi1,i2,...,ijΦ(ei01,i
0
2,...,i

0
j
)

 ,

where all αi1,i2,...,ij > 0 are scalar weights, e denotes the n-dimensional vector of

all ones, and ei01,i
0
2,...,i

0
j

denotes the n-dimensional vector of all ones except with

zeros at indices {i1, i2, . . . , ij}. Parameter l is called the masking level, denoting the

maximum number of input vector entries to be replaced with zeros.

Masking level l is also the maximum Hamming distance d(x, z) permitted to

produce (Φ(x))TMlΦ(z) 6= 0. Weights αi1,i2,...,ij are usually expected to be some

decreasing function of j, the index with respect to the masking level. The purpose

of this is to give more weight towards the masking of fewer entries relative to the

masking of many entries. We typically set αi1,i2,...,ij = 2−wj for some exponential

weight w ≥ 0. Increasing w results in larger relative weights between masking

levels. For example, w = 1 gives weight 1
2

for a masking of one entry and weight

1
4

for a masking of two entries, resulting in a factor of two difference between these

weights. Alternatively, w = 2 gives weight 1
4

for a maskings of one entry and weight

15



1
16

for a masking of two entries, resulting in a factor of 4 difference between these

weights. Without the weights, or equivalently with w = 0, the masking matrix

has an inherent favoring of little or no entry masking as demonstrated in the next

example.

Example 4. Let x = ( x1 x2 x3 )T and z = ( z1 z2 z3 )T be bipolar with x1 6= z1, x2 = z2,

and x3 = z3. Let

M1 = diag

Φ


1

1

1

+ Φ


0

1

1

+ Φ


1

0

1

+ Φ


1

1

0



 ,

be a masking matrix with l = 1 and w = 0. Then by Proposition 1 and Theorem 1,

(Φ(x))TM1Φ(x)

=

Φ


x1

x2

x3





T Φ


x1

x2

x3

+ Φ


0

x2

x3

+ Φ


x1

0

x3

+ Φ


x1

x2

0




= 23 + 22 + 22 + 22 = 20,

and

(Φ(z))TM1Φ(x)

=

Φ


z1

z2

z3





T Φ


x1

x2

x3

+ Φ


0

x2

x3

+ Φ


x1

0

x3

+ Φ


x1

x2

0




= 0 + 22 + 0 + 0 = 4.
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If x and z were learned with labels yx and yz, respectively, then

(yx(Φ(x))T + yz(Φ(z))T )M1Φ(x)

(Φ(x) + Φ(z))TM1Φ(x)
=

20yx + 4yz

24
,

giving more relative weight to yx than yz in the label prediction on target vector x.

Example 4 demonstrates that even without weights applied to the entry mask-

ings, the masking matrix retains an inherent weighting that favors the masking of

fewer input entries. However, the weights are important in amplifying this effect

to better adapt the processing unit performance to the application at hand. Both

exponential weight w and masking level l can be adjusted as hyperparameters.

Note that the masking matrix construction effectively involves the generation

of all combinations of entry maskings up to l masked entries. This has algorithmic

complexity O(2n
∑l

i=0

(
n
i

)
), or O(4n) if l = n, which is substantially expensive if

n and l are sufficiently large. Hence, it is expected that l � n to avoid this.

The next chapter introduces an alternative masking matrix construction with more

reasonable algorithmic complexity but removes the masking level as an adjustable

hyperparameter.

As hinted at in Example 4, the masking matrix fulfills its role within the

empirical probability formula. Finally, this establishes the generalization mechanism

of the processing unit architecture.

Definition 6. Let (D,C)n,m be a processing unit. The empirical probability with

respect to masking matrix Ml of n-dimensional bipolar input z, denoted ρ(z,Ml), is
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defined as

ρ(z,Ml) =


1
2

(
DMlΦ(z)
CMlΦ(z)

+ e
)

if CMlΦ(z) 6= 0,

1
2
e if CMlΦ(z) = 0.

(2.4)

This concludes the background description of the THPAM processing unit

architecture.

2.4 Summary

This chapter includes a succinct description of the THPAM processing unit

to provide the audience with sufficient background material to understand the re-

maining content of this dissertation. As noted before, the background description is

not exhaustive, as there are remaining components within the original publications

that remain unused in this work. Refer to these for more detailed explanations and

ideas for future work related to THPAM.

In summary, bipolar input and label pairs are stored within the processing unit

expansion correlation matrices via a procedure akin to the Hebbian learning rule.

The inputs themselves are not actually stored, but rather their representation as

orthogonal expansions are stored. The storage scheme and the multiplicative prop-

erties of the orthogonal expansions are utilized to extract learned information for

label predictions on target bipolar input vectors. Label predictions can be equated

to an average, or weighted average with generalization, over the labels learned in

association with input vectors which equate to the target vector. An additional

proposed multiplicative property of orthogonal expansions is utilized to construct a
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generalization mechanism by way of entry masking, hiding target vector entries in

order to include the labels of similar learned inputs in the label prediction of the

target vector.
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Chapter 3

Theoretical Additions

3.1 Overview

This chapter specifies any additional theories pertaining to the THPAM pro-

cessing unit, submitted as original contributions in this work. A more general ver-

sion of the multiplicative property introduced in Proposition 1 is proved in Section

3.2, which has several applications. The property can be used to construct par-

ticular masking matrices in an alternative manner with somewhat more reasonable

algorithmic complexity, but at the expense of removing the masking level as an

adjustable hyperparameter. This alternative masking matrix construction is pre-

sented in Section 3.3. In Section 3.4, an alternative generalization mechanism is

proposed in which target bipolar vector entries are flipped via orthogonal expan-

sions instead of masked in order to include the learned labels of similar vectors in

the empirical probability. Section 3.5 demonstrates a unique application for the

entry flipping mechanism in the update rule of the expansion correlation matrices

to learn data clusters within a specified Hamming distance from an input vector in

a single learning rendition rather than an amount of executions proportional to the

number of vectors belonging to the data cluster. Section 3.6 shows that the entry

flipping mechanism can also be used to equate the empirical probability formula to a

weighted average over the training set without the use of the orthogonal expansion.
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This can be used to simulate the performance of the THPAM processing unit on

data sets that are too large in input size to be reasonably encoded by the orthogonal

expansion with modern computer architectures.

3.2 Multiplication of Orthogonal Expansions

The property discussed herein is a more general version of Proposition 1 intro-

duced in the previous chapter. Proposition 1 stated that the multiplicative act of

replacing elements in a vector with zeros is preserved over the orthogonal expansion,

meaning entry masking can occur via entrywise multiplication between orthogonal

expansions rather than between the original vectors. This is important because

the THPAM processing unit stores and operates on orthogonal expansions rather

than the original vectors. Entry masking enables the THPAM processing unit to

generalize when producing label predictions, permitting similar learned vectors to

contribute nontrivially towards the label prediction of a target input. The pro-

posed theorem demonstrates that the property invoked in entry masking also exists

between any two ternary vectors rather than only between a binary vector and a

bipolar vector.

Theorem 3. Let a = ( a1 a2 ... an )T and b = ( b1 b2 ... bn )T be ternary vectors. Then,

Φ(a ◦ b) = Φ(a) ◦ Φ(b),

where a ◦ b is the entrywise product operation between vectors a and b.
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Proof. A proof by induction can be used to demonstrate that

Φi(a ◦ b) = Φi(a) ◦ Φi(b)

for all i ∈ {1, 2, . . . , n}.

(Base Step): Clearly, Φ1(a ◦ b) = Φ1(a) ◦ Φ1(b) = ( 1 a1b1 )T .

(Inductive Step): Suppose that for i ∈ {1, 2, . . . , n− 1},

Φi(a ◦ b) = Φi(a) ◦ Φi(b).

Then by Definition 2,

Φi+1(a ◦ b) =

 Φi(a ◦ b)

ai+1bi+1Φi(a ◦ b)

 =

 Φi(a) ◦ Φi(b)

ai+1bi+1Φi(a) ◦ Φi(b)



=

 Φi(a)

ai+1Φi(a)

 ◦
 Φi(b)

bi+1Φi(b)


= Φi+1(a) ◦ Φi+1(b).

This completes the proof.

Theorem 3 demonstrates that the orthogonal expansion of an entrywise prod-

uct between two ternary vectors is equivalent to the entrywise product of their

respective orthogonal expansions. This verifies that entry masking via orthogonal

expansion is equivalent to masking entries in the original vector and subsequently

computing its orthogonal expansion. However, this result is more general in that

this underlying relationship is not exclusive to the process of entry masking but

also applicable between any pair of ternary vectors. The remaining contents of this
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chapter make extensive use of Theorem 3 in devising several tools relating to the

processing unit architecture.

3.3 Alternative Masking Matrix Construction

Theorem 3 can be used to devise an alternative method of constructing mask-

ing matrices. To introduce this approach, we first visit an example pertaining to

the masking of multiple entries of a bipolar vector via orthogonal expansions.

Example 5. Let x = ( x1 x2 x3 )T be a bipolar vector, and suppose we wish to mask

to its last two entries via its orthogonal expansion. The usual way to approach this

would be to perform the product

diag

Φ


1

0

0



Φ


x1

x2

x3

 = Φ


x1

0

0

 ,

but an alternative way would be to apply two single entry masks in succession, as in

the product

diag

Φ


1

0

1



 diag

Φ


1

1

0



Φ


x1

x2

x3

 = diag

Φ


1

0

1



Φ


x1

x2

0



= Φ


x1

0

0

 .
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Computationally, this doubles the resources required to produce the desired result,

but there is an additional interpretation which leads to less computational expense.

According to the general definition of the masking matrix in Definition 5, the three

maskings Φ
(

1
0
1

)
, Φ

(
1
1
0

)
, and Φ

(
1
0
0

)
would all be produced individually. Alterna-

tively, Φ
(

1
0
1

)
and Φ

(
1
1
0

)
could be individually generated, and their entrywise product

can be used to generate Φ
(

1
0
0

)
, as in

Φ


1

0

1

 ◦ Φ


1

1

0

 = Φ


1

0

0

 .

The algorithmic complexity of masking matrix construction remains unaltered

in Example 5 due to the low masking level that was considered. However, should

one desire a masking matrix consisting of all possible combinations of entry masks,

this property must be utilized to reduce the computational expense. The following

corollary summarizes the procedure of multiplying two entry maskings to create a

new entry masking.

Corollary 1. Let ei01,i
0
2,...,i

0
r

and ej01 ,j
0
2 ,...,j

0
s

be the n-dimensional vectors of all ones,

except with zeros at indices {i1, i2, . . . , ir} and {j1, j2, . . . , js}, respectively. Let

{k1, k2, . . . , kq} = {i1, i2, . . . , ir} ∪ {j1, j2, . . . , js}. Then

Φ(ei01,i
0
2,...,i

0
r
) ◦ Φ(ej01 ,j

0
2 ,...,j

0
s
) = Φ(ek01 ,k

0
2 ,...,k

0
q
)
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Proof. By Theorem 3,

Φ(ei01,i
0
2,...,i

0
r
) ◦ Φ(ej01 ,j

0
2 ,...,j

0
s
) = Φ(ei01,i

0
2,...,i

0
r
◦ ej01 ,j

0
2 ,...,j

0
s
)

= Φ(ek01 ,k
0
2 ,...,k

0
q
)

This completes the proof.

Corollary 1 demonstrates more extensively that the product of two masking

matrices produces yet another masking matrix which includes all entry maskings

contained in the original matrices in addition to new entry maskings. The presence

of the identity masking Φ(e) in every masking matrix plays a significant role in this.

For example, if masking matrices diag(Φ(e) + Φ(e10)) and diag(Φ(e) + Φ(e20)) are

given, then their product

diag(Φ(e) + Φ(e10))diag(Φ(e) + Φ(e20)) = diag(Φ(e) + Φ(e10) + Φ(e20) + Φ(e10,20)),

is yet another masking matrix containing the original maskings Φ(110) and Φ(120)

as well as their combination Φ(110,20). This property can be used to more efficiently

generate a masking matrix with masking level l equal to the input dimension n in

the following manner:

Mn =
n∏

i=1

diag (Φ(e) + αiΦ(ei0)) , (3.1)

where αi > 0 are scalar weights, and e and ei0 are defined as before. Typically,

αi = 2−w for all i, where parameter w is an adjustable exponential weight. The

algorithmic complexity of generating this masking matrix is O(n2n), which remains

intractable but is preferable to the O(4n) complexity involved in following the orig-

inal definition to generate a masking matrix with masking level l = n. However,

25



there are some disadvantages to this alternative construction. There is less freedom

in choosing the weights associated with the different combinations of maskings in the

underlying formula, since any combination of masks would have a weighting strictly

proportional to the product of the involved individual entry masks. For example, if

the first three entries in a vector are being masked, then the weight associated with

this mask must be α1α2α3 rather than a custom weight α1,2,3 afforded in the orig-

inal masking matrix formula. Furthermore, this is strictly a masking matrix with

masking level l = n and cannot be otherwise, so it lacks the freedom of adjusting

the masking level as a hyperparameter. This is usually of little concern providing

w is sufficiently large, as experimentally demonstrated in Chapter 5.

3.4 Alternative Generalization with Entry Flipping

Theorem 3 can also be used to devise an alternative generalization method

to entry masking. Instead of masking differing vector entries in order to relate a

target input to similar learned vectors, these entries could be flipped like a switch

as is an inherent mechanism of bipolar and binary variables. The objective of entry

masking was to produce a nonzero inner product of the orthogonal expansions of

two similar vectors by replacing their differing entries with zeros, thereby removing

those entries from the inner product and relaxing the orthogonality between these

expansions. A comparable result can be achieved by extracting each pair of differing

entries and flipping the value of one entry in each pair. For example, if x and z

are bipolar and equal except for a distortion at their kth entries, i.e. xk 6= zk, then
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they can be made equivalent by replacing zk with −zk. To introduce this approach,

we first visit an example in which entry flipping is used to produce a nonzero inner

product between the orthogonal expansions of two different bipolar vectors.

Example 6. Let x = ( x1 x2 x3 )T and z = ( z1 z2 z3 )T be bipolar, with x1 6= z1,

x2 = z2, and x3 = z3. Then (Φ(x))TΦ(z) = 0, and we wish to alter this inner product

to produce a nonzero value by flipping the value of z1 via orthogonal expansions.

Using the original vectors, this can be accomplished by performing the product

diag


−1

1

1




z1

z2

z3

 =


−1 0 0

0 1 0

0 0 1




z1

z2

z3

 =


−z1

z2

z3

 = x.

By Theorem 3,

diag

Φ


−1

1

1



Φ


z1

z2

z3

 = Φ


−1

1

1

 ◦ Φ


z1

z2

z3

 = Φ


−z1

z2

z3

 = Φ(x),

and by Theorem 1,

(Φ(x))Tdiag

Φ


−1

1

1



Φ(z) = (Φ(x))TΦ(x) = 23 = 8,

which accomplishes the objective via orthogonal expansions.

Notice that the entry flipping procedure is closely related to that of entry

masking. In fact, this example is nearly the same as Example 2 exemplifying entry
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masking. The notable difference is that entry maskings use zeros to hide corre-

sponding entries in a target vector, whereas the entry flipping matrix uses negatives

to flip the corresponding entries in a target vector from positive to negative or vice

versa. A matrix similar to a masking matrix can thereby be used as an alternative

generalization mechanism to entry masking.

Definition 7 (Flipping Matrix). A matrix Bl is a flipping matrix if it is of the form

Bl = diag

Φ(e) +
l∑

j=1

n∑
ij=j

· · ·
i3−1∑
i2=2

i2−1∑
i1=1

αi1,i2,...,ijΦ(ei1− ,i2− ,...,ij−
)

 ,

where all αi1,i2,...,ij > 0 are scalar weights, e denotes the n-dimensional vector of

all ones, and ei1− ,i2− ,...,ij−
denotes the n-dimensional vector of all ones except with

negatives at indices {i1, i2, . . . , ij}. Parameter l denotes the maximum number of

input vector entries to be flipped.

Typically, we set αi1,i2,...,ij = 2−wj where parameter w is an adjustable expo-

nential weight. Like with the masking matrix, l is also the maximum Hamming

distance d(x, z) permitted to produce (Φ(x))TBlΦ(z) 6= 0. The flipping matrix in

Definition 7 follows the same structure of the masking matrix in Definition 5, except

for the use of negatives in place of zeros. Thus, constructing the flipping matrix in

this manner has the same algorithmic complexity of O(2n
∑l

i=0

(
n
i

)
) and O(4n) when

l = n. However, just as with the masking matrix, there is a construction method

with O(n2n) complexity to produce a flipping matrix with l = n, thanks to Theorem

3:

Bn =
n∏

i=1

diag (Φ(e) + αiΦ(ei−)) , (3.2)
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where αi > 0 are scalar weights, and e and ei− are defined as before. Like the

alternative masking matrix construction, this manner of construction restricts the

freedom of the individual selection of weights for each combination of entry flippings.

It also removes the freedom to adjust l as a hyperparameter. Typically, we set

αi = 2−w for all i, where parameter w is an adjustable exponential weight.

There is a notable difference between the bilinear forms (Φ(x))TMlΦ(z) and

(Φ(x))TBlΦ(z). We previously observed in Example 4 that without any entry mask-

ing weights, i.e. w = 0, the masking matrix retains an inherent weighting mechanism

favoring fewer masked entries. This is because there are often many ways to perform

entry masking on Φ(z) to achieve a nonzero inner product with Φ(x). All of the

entries in z that differ from those in x would necessarily have to be masked, but

any of the remaining entries in z could also be masked in any combination to con-

tribute nontrivially to (Φ(x))TMlΦ(z), providing l > d(x, z). Conversely, the entry

flipping matrix contains at most one entry flipping which contributes nontrivially

to the value of (Φ(x))TBlΦ(z). All of the entries in z which differ from those in x

must be flipped to avoid orthogonality, but the flipping of any remaining entries will

reintroduce orthogonality. This behavior is summarized in the below lemma.

Lemma 1. Let x and z be n-dimensional bipolar vectors. Let Bl be a general flipping

matrix with l ≥ d(x, z) in Hamming distance. Then

(Φ(x))TBlΦ(z) =


2n if x = z,

αi1,i2,...,ik2n if x 6= z,

where k = d(x, z).

29



Proof. If x 6= z, then there are entries xi1 , xi2 , . . . xik in x and entries zi1 , zi2 , . . . zik in

z such that xij 6= zij for j = 1, 2, . . . , k, where k = d(x, z). Since x and z are bipolar,

xij = −zij for j = 1, 2, . . . , k. Then there is a unique bipolar vector ei−1 ,i−2 ,...,i−k
such

that

x = ei−1 ,i−2 ,...,i−k
◦ z.

By Theorem 3,

Φ(x) = Φ(ei−1 ,i−2 ,...,i−k
) ◦ Φ(z) = diag(Φ(ei−1 ,i−2 ,...,i−k

))Φ(z),

where Φ(1i−1 ,i−2 ,...,i−k
) is included in the linear combination along the diagonal of Bl

with weight αi1,i2,...,ik . Then by Theorem 1,

(Φ(x))TBlΦ(z) = (Φ(x))Tdiag(Φ(e) + α1Φ(e1−) + α2Φ(e2−) + . . .

+ αi1,i2,...,ikΦ(ei−1 ,i−2 ,...,i−k
) + . . .+ αi1,i2,...,ilΦ(ei−1 ,i−2 ,...,i−l

))Φ(z)

= (Φ(x))Tdiag(Φ(e))Φ(z) + α1(Φ(x))Tdiag(Φ(e1−))Φ(z) + . . .

+ αi1,i2,...,ik(Φ(x))Tdiag(Φ(ei−1 ,i−2 ,...,i−k
))Φ(z) + . . .

+ αi1,i2,...,il(Φ(x))Tdiag(Φ(ei−1 ,i−2 ,...,i−l
))Φ(z)

= 0 + . . .+ αi1,i2,...,ik(Φ(x))Tdiag(Φ(ei−1 ,i−2 ,...,i−k
))Φ(z) + 0 + . . .+ 0

= αi1,i2,...,ik(Φ(x))TΦ(x)

= αi1,i2,...,ik2n

Alternatively, if x = z then

(Φ(x))TBlΦ(z) = (Φ(x))TΦ(x) = 2n.

This completes the proof.
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Lemma 1 establishes that the exact value of (Φ(x))TBlΦ(z) with l ≥ d(x, z)

is always proportional only to 2n and the weight associated with the unique entry

flipping needed to produce Φ(x) from Φ(z). This also demonstrates the important

distinction between the masking and flipping matrices, namely that several combina-

tions of entry maskings in Ml can contribute nontrivially to (Φ(x))TMlΦ(z) whereas

at most one entry flipping in Bl contributes nontrivially to (Φ(x))TBlΦ(z). This

distinction provides some unique use cases for entry flipping, which are introduced

ahead.

3.5 Efficient Learning of Data Clusters

The entry flipping matrix presents a unique application towards the learning

phase of the processing unit architecture. To introduce this application, we first visit

an example pertaining to the product of an entry flipping matrix with an orthogonal

expansion of a bipolar vector.

Example 7. Let B1 be the entry flipping matrix for input dimension n = 3 with

masking level l = 1 and exponential weight w = 0, specifically,

B1 = diag

Φ


1

1

1

+ Φ


−1

1

1

+ Φ


1

−1

1

+ Φ


1

1

−1



 .
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Let x = ( x1 x2 x3 )T be a bipolar input vector. Then by invoking Theorem 3,

B1Φ(x) = diag

Φ


1

1

1

+ Φ


−1

1

1

+ Φ


1

−1

1

+ Φ


1

1

−1



Φ


x1

x2

x3



= Φ


x1

x2

x3

+ Φ


−x1

x2

x3

+ Φ


x1

−x2

x3

+ Φ


x1

x2

−x3

 ,

which is the sum of the orthogonal expansions of x and each vector within a unit of

Hamming distance away from x. If the masking level were l = 2, then the same terms

above would be produced along with the orthogonal expansions of the vectors at two

Hamming distance units away from x. Suppose that x and the vectors within unit

Hamming distance from x must be learned with the same bipolar label y. Normally,

this would require four separate learning renditions to update processing unit (D,C)

with

D← D + y

Φ


x1

x2

x3





T

+ y

Φ


−x1

x2

x3





T

+ y

Φ


x1

−x2

x3





T

+ y

Φ


x1

x2

−x3





T

,
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and

C← C +

Φ


x1

x2

x3

+ Φ


−x1

x2

x3

+ Φ


x1

−x2

x3

+ Φ


x1

x2

−x3





T

,

but the same result is produced by performing

D← D + y(B1Φ(x))T ,

C← C + (B1Φ(x))T ,

in a single learning phase.

The procedure in Example 7 can be extended to any input size and any mask-

ing level. In general, if the expansion correlation matrices are to be updated in

processing unit (D,C)n,m on bipolar pair (x,y) along with vectors within l units of

Hamming distance from x, then this can be accomplished by updating the processing

unit with

D← D + y(BlΦ(x))T ,

C← C + (BlΦ(x))T .

This has algorithmic complexity O(m2n), which is a preferable alternative to the

O(m2n
∑l

i=0

(
n
i

)
) complexity of performing separate learning renditions.

3.6 Simulating the Processing Unit on Large Inputs

The O(2n) complexity of the orthogonal expansion imposes a severe limitation

on the input size n to be reasonably processed on common computer architectures.
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The anticipated yearly improvements to processing power and memory access on

traditional architectures are insufficient in satisfying the resource demand of expo-

nentially complex algorithms in a meaningful way. Future architectures could prove

promising for THPAM if there is a compatible processing unit implementation. The

advent of quantum computing boasts linear running time on some exponentially

complex problems, which could substantially reduce the run time of a compatible

processing unit program. Quantum computing is currently immature in its develop-

ment, so this option remains unavailable at this time. For now, Lemma 1 provides

one method of circumventing the orthogonal expansion by equating the empirical

probability formula to a weighted average over the learned output vectors, as pro-

posed in the next corollary.

Corollary 2. Let (D,C)n,m be a processing unit trained on bipolar pairs

{(x1,y1), (x2,y2), . . . , (xN ,yN)}, and let z be an n-dimensional bipolar vector. Let

Bn be the entry flipping matrix

Bn =
n∏

i=1

diag (Φ(e) + αΦ(ei−)) ,

where α > 0. Then

DBnΦ(z)

CBnΦ(z)
=

∑N
i=1 α

d(xi,z)yi∑N
i=1 α

d(xi,z)
, (3.3)

where d(·, ·) is the Hamming distance metric.
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Proof. By Lemma 1,

DBnΦ(z)

CBnΦ(z)
=

∑N
i=1 yi(Φ(xi))

TBnΦ(z)∑N
i=1(Φ(xi))TBnΦ(z)

=

∑N
i=1 2nαd(xi,z)yi∑N
i=1 2nαd(xi,z)

=

∑N
i=1 α

d(xi,z)yi∑N
i=1 α

d(xi,z)

This completes the proof.

Corollary 2 provides a manner for simulating the performance of a THPAM

processing unit without the use of orthogonal expansions. The empirical probability

formula is reduced to a weighted average over the training labels, with the weights

determined by the Hamming distance between the learned inputs and the target

vector. This is useful when applying the processing unit to data sets with input size

large enough to cause the orthogonal expansion to be intractable. However, this

cannot be used for online learning since this weighted average requires storage of the

entire data set in order to compute the hamming distances between a target vector

and each of the trained vectors. Additional training inputs require proportionally

more storage space and processing time in generating predictions on target vectors.

The benefit of fixed storage size granted by the processing unit expansion correlation

matrices is lost. Nevertheless, Corollary 2 is a useful result for purposes of simulation

and analysis.
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3.7 Summary

This concludes the presentation of original theoretical findings relating to the

THPAM processing unit architecture. All of these contributions rely on Theorem 3

in varying extent, which demonstrates that the entrywise product between ternary

vectors is preserved under the orthogonal expansion. This result has utility in devis-

ing an alternative masking matrix construction and the alternative generalization

mechanism of entry flipping. Entry flipping can be uniquely applied in the process-

ing unit learning phase in order to efficiently learn data clusters within a specified

Hamming distance from a central bipolar input. Entry flipping can also be used to

reduce the empirical probability formula to a weighted average that does not contain

orthogonal expansions, which cannot be used for online learning but can be used for

experimental purposes.

36



Chapter 4

Programming Implementation

4.1 Overview

This chapter describes the programming implementation and computer hard-

ware utilized in demonstrating and examining the performance of the THPAM pro-

cessing unit on sample datasets. The processing unit is implemented as a parallel

C program with MPI architecture suitable for communication among multiple par-

allel processes. This approach is relatively straightforward for some components of

the model which mostly involve matrix algebra, which is readily parallelizable with

introductory knowledge in parallel computing [18]. However, the parallelization of

some core functionality is less intuitive and requires careful explanation, particularly

the orthogonal expansion implementation. Although the orthogonal expansion en-

coding of n-dimensional ternary vectors into 2n-dimensional ternary vectors imposes

a severe bound on the acceptable size of the input vectors subject to the orthogonal

expansion due to computer memory and processing limitations, the use of parallel

computing remains invaluable in pushing against these limitations and permitting

somewhat larger input vector dimensions than possible with a serial program.

Section 4.2 carefully describes the orthogonal expansion implementation, which

is integral to the other processing unit mechanisms. Section 4.3 briefly describes the

correlation learning implementation. Section 4.4 thoroughly details two programs
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for masking matrix construction, the first following the general masking matrix

definition and the second following the alternative approach introduced in Section

3.3. Finally, Section 4.5 describes the implementation for constructing the empirical

probability on a target input. A performance study examining the scalability of the

parallel program is summarized in Section 4.6. Section 4.7 examines the capabil-

ity of the processing unit as a pattern recognizer on a small handcrafted example

involving the ten numerical digits.

The hardware used in the computational studies is part of the UMBC High

Performance Computing Facility (HPCF). The facility is supported by the U.S.

National Science Foundation through the MRI program (grant nos. CNS–0821258

and CNS–1228778) and the SCREMS program (grant no. DMS–0821311), with ad-

ditional substantial support from the University of Maryland, Baltimore County

(UMBC). See hpcf.umbc.edu for more information on HPCF and the projects us-

ing its resources.

4.2 Orthogonal Expansion

The THPAM processing unit model is fundamentally constructed based on the

interactions between orthogonal expansions detailed in Theorem 1. All information

is stored and retrieved according to these interactions, so the orthogonal expan-

sion implementation is to be described first. Note that the original description in

Definition 2 provides an obvious recursive method of constructing the orthogonal

expansion. The following is a C programming function of this recursive method
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expressed iteratively.

void orthogonalExpansion(

int inputSize ,

int input[],

int expansion [])

{

int inputIndex;

int expansionIndex;

int shiftSize = 1;

expansion [0] = 1;

for (inputIndex = 0; inputIndex < inputSize; inputIndex ++) {

for (expansionIndex = shiftSize; expansionIndex < (2 * shiftSize );

expansionIndex ++) {

expansion[expansionIndex] =

input[inputIndex] * expansion[expansionIndex - shiftSize ];

}

shiftSize *= 2;

}

}

The first entry in the expansion is always 1, and the subsequent elements are

produced by looping through each input vector entry and performing a product

between that entry and all of the previously stored entries in the orthogonal expan-

sion, as seen within the innermost for loop within the code. In order to parallelize

this method it must be altered so that the single task of producing the orthogonal

expansion can be split into multiple tasks which can be computed independently.

Presented as is, it is unclear that such a division of labor can be achieved consid-

ering the construction of an orthogonal expansion is inherently recursive even when

expressed in this iterative manner. It is true that each subsequent entry in the

orthogonal expansion is dependent on all of the preceding entries, but this can still

be divided into independent tasks with some expense of repetitive computation and

some creative liberty in the orthogonal expansion construction.

Example 8. Let x = ( x1 x2 x3 )T . Then the orthogonal expansion of x is

Φ(x) =

(
1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3

)T

.
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We wish to divide as much of the construction of Φ(x) into two equal and indepen-

dent tasks. Let us assume that a small portion of this procedure has been completed

to produce Φ1(x) = ( 1 x1 )T so that two entries of the orthogonal expansion are now

available. Split these two entries and continue the expansion procedure as follows:

(
1

)T

−→
(

1 x2

)T

−→
(

1 x2 x3 x2x3

)T

,(
x1

)T

−→
(
x1 x1x2

)T

−→
(
x1 x1x2 x1x3 x1x2x3

)T

.

Concatenate these vectors to produce

(
1 x2 x3 x2x3 x1 x1x2 x1x3 x1x2x3

)T

,

which is nothing more than a permutation of Φ(x). Note that the subtasks of con-

structing the two halves of the concatenated vector could be completed independently

of each other providing the initial two entries of the orthogonal expansion are avail-

able.

The fact that the procedure in Example 8 produces a permutation of the

orthogonal expansion rather than the literal orthogonal expansion has consequences

which are minor but should be observed. Since orthogonal expansions interact

with each other only via scalar addition and inner products within the processing

unit architecture, the order of the expansion entries is inconsequential providing

the order remains consistent among all the permuted expansions. This can be

easily achieved with parallel processing by always starting with a blank processing

unit when altering the number of computer processes being used. Otherwise if a

processing unit in a saved state is being migrated to a new parallel machine with
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a different number of computer processes, the columns of its expansion matrices

must be appropriately permuted to correctly interact with any newly constructed

orthogonal expansions. It is insufficient to simply concatenate and store all the local

portions of the expansion correlation matrices in the manner exemplified with the

orthogonal expansion in Example 8.

Below is a parallel implementation of the orthogonal expansion in which each

parallel process is responsible for maintaining its own local orthogonal expansion

sub-vector, denoted l_expansion, of dimension 2n

p
where n is the input size and p

is the number of parallel processes. These sub-vectors are never concatenated into a

single expansion within the program since this is an unnecessary cost. Instead, each

computer processor is also responsible for its own local expansion correlation sub-

matrices whose entries correspond with those of their local orthogonal expansion

sub-vectors. The next section discusses this in greater detail.

void parallelOrthogonalExpansion(

int inputSize ,

int input[],

int l_expansion [],

int processId ,

int numProcesses)

{

int inputIndex;

int expansionIndex;

int shiftSize = 1;

int exponent = (int)log2(( double)numProcesses );

int p_expansion[numProcesses ];

orthogonalExpansion(exponent , input , p_expansion );

l_expansion [0] = p_expansion[processId ];

for (inputIndex = exponent; inputIndex < inputSize; inputIndex ++) {

for (expansionIndex = shiftSize; expansionIndex < (2 * shiftSize );

expansionIndex ++) {

l_expansion[expansionIndex] =

input[inputIndex] * l_expansion[expansionIndex - shiftSize ];

}

shiftSize *= 2;

}

}

As is common in parallel programming, the parallelized orthogonal expansion
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is very similar to its serial counterpart. Customarily, any variables which denote a

local partition of some greater quantity are concatenated with an l_ in their names,

as seen in l_expansion. The variable p_expansion is similarly branded with a p_ to

denote a partially completed orthogonal expansion which serves as a small founda-

tion on which to produce the remaining pieces of the expansion independently. It is

necessary that the number of parallel processes used to run this program be a power

of two, as in 1, 2, 4, 8, 16, and so on. This is required because partial orthogonal

expansion p_expansion always contains a number of entries equivalent to a power

of two, and each of these entries must be assigned to a unique computer process as

a seed with which to compute their local orthogonal expansions independently.

4.3 Correlation Learning

Recall that the expansion correlation matrices of a processing unit (D,C)n,m

are updated with bipolar pair (x,y), where x is n-dimensional and y ism-dimensional,

via the following learning rule:

D← D + y(Φ(x))T ,

C← C + (Φ(x))T .

This is straightforward matrix algebra which is readily parallelizable providing the

orthogonal expansion is available. Since the orthogonal expansions are permuted

and locally stored according to the number of parallel processes in use, some equal

liberty must be practiced in assigning the local portions of the expansion correlation

matrices to the computer processes. Fortunately, this issue is somewhat negligible
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providing any processing units in saved states are always loaded onto the same num-

ber of parallel processes as before, or otherwise a blank processing unit is used for

each program run. Since the expansion correlation matrices D and C are zero prior

to any learning, it can be assumed that each parallel process already possesses its

correct local portions of these matrices that align with their local portions of the

orthogonal expansion vectors. Thus, each of p parallel process should construct a

local zero matrix l_D of dimension m× 2n

p
and a local zero vector l_C of dimension

2n

p
. The following is a portable parallel program for updating the local expansion

correlation matrices l_D and l_C, but the algebraic operations could also be appro-

priately handled by calls to a linear algebra software library with some tweaking to

the datatypes of l_D and l_C.

void parallelLearning(

int inputSize ,

int outputSize ,

int l_expansionSize ,

int input[inputSize],

int output[outputSize],

int l_D[outputSize ][ l_expansionSize],

int l_C[l_expansionSize],

int processId ,

int numProcesses)

{

int inputIndex;

int outputIndex;

int l_expansionIndex;

int l_expansion[l_expansionSize ];

parallelOrthogonalExpansion(inputSize , input , l_expansion ,

processId , numProcesses );

for (l_expansionIndex = 0; l_expansionIndex < l_expansionSize;

l_expansionIndex ++) {

l_C[l_expansionIndex] += l_expansion[l_expansionIndex ];

}

for (outputIndex = 0; outputIndex < outputSize; outputIndex ++) {

for (l_expansionIndex = 0; l_expansionIndex < l_expansionSize;

l_expansionIndex ++) {

l_D[outputIndex ][ l_expansionIndex] +=

output[outputIndex] * l_expansion[l_expansionIndex ];

}

}

}
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4.4 Masking Matrix

As observed in Definition 5, the masking matrix is a diagonal matrix whose di-

agonal consists of a linear combination of several orthogonal expansions called entry

maskings. Only the diagonal values need to be stored, and the masking matrix can

be readily parallelized upon the earlier parallelization of the orthogonal expansion.

The masking matrix construction requires knowledge of which orthogonal expan-

sions must be included along its diagonal. Recall that the original masking matrix

definition comprised of all combinations of entry maskings up to some specified

masking level. Construction of these entry maskings amounts to looping through

each set within of the power set P ({1, 2, . . . , n}) of size less than or equal to the

masking level, and using these sets as index sets with which to set particular en-

tries in e to be zero. Each of the resulting vectors is then orthogonally expanded

and summed with some specified weight multiple. We implement the typical entry

masking weights αi1,i2,...,ij = 2−wj where j is the masking level index and w is a

specified exponential weight. The following is a parallel C program based on this

masking matrix construction. Each computer process is expected to possess a local

portion of the masking matrix, denoted l_M.

void parallelMaskingMatrix(

int inputSize ,

int l_expansionSize ,

double l_M[l_expansionSize],

int levelSize ,

double weight ,

int processId ,

int numProcesses)

{

int inputIndex;

int l_expansionIndex;

int input[inputSize ];

int l_expansion[l_expansionSize ];

int zeroIndices[levelSize + 1];

int levelIndex = 0;
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for (l_expansionIndex = 0; l_expansionIndex < l_expansionSize;

l_expansionIndex ++) {

l_M[l_expansionIndex] = 1.0;

}

for (inputIndex = 0; inputIndex < inputSize; inputIndex ++) {

input[inputIndex] = 1;

}

levelWeights [0] = 1.0;

levelWeights [1] = pow(0.5, (( double)weight ));

for (levelIndex = 2; levelIndex < (levelSize + 1); levelIndex ++) {

levelWeights[levelIndex] = levelWeights [1] * levelWeights[levelIndex -1];

}

levelIndex = 0;

zeroIndices [0] = -1;

while (( levelIndex > 1) || (zeroIndices[levelIndex] < (inputSize - 1))) {

if (zeroIndices[levelIndex] < (inputSize - 1)) {

if (levelIndex < levelSize) {

levelIndex ++;

zeroIndices[levelIndex] = zeroIndices[levelIndex - 1] + 1;

} else {

zeroIndices[levelIndex ]++;

}

} else {

levelIndex --;

zeroIndices[levelIndex ]++;

}

for (inputIndex = 1; inputIndex < levelIndex + 1; inputIndex ++) {

input[zeroIndices[inputIndex ]] = 0;

}

parallelOrthogonalExpansion(inputSize , input , l_expansion ,

processId , numProcesses );

for (l_expansionIndex = 0; l_expansionIndex < l_expansionSize;

l_expansionIndex ++) {

l_M[l_expansionIndex] += levelWeights[levelIndex]

* (( double)l_expansion[l_expansionIndex ]);

}

for (inputIndex = 1; inputIndex < levelIndex + 1; inputIndex ++) {

input[zeroIndices[inputIndex ]] = 1;

}

}

}

In the program, the while loop steps through each combination of entry mask-

ings up to a maximum masking level of levelSize provided as input. A vector of

indices, zeroIndices, records the current combination of input entries which should

be set to 0. When this is achieved, each process constructs a local orthogonal ex-

pansion l_expansion of vector input and applies a specified scalar multiple while

adding it to the local masking matrix diagonal. The while loop is broken when

there are no remaining entry maskings which are less than or equal to the specified

45



masking level. Note that this program can be slightly tweaked to instead produce

a flipping matrix by setting indices to −1 instead of 0 on the indices contained in

zeroIndices.

If there is need of a masking matrix with masking level l = n, then the

construction method discussed in Section 3.3 should be utilized instead because of

the preferable algorithmic complexity. The following is a parallel C program for

performing this. We implement the typical entry masking weight αi = 2−w for all i

where w is again a specified exponential weight.

void parallelFullMaskingMatrix(

int inputSize ,

int l_expansionSize ,

double l_M[l_expansionSize],

double weight ,

int processId ,

int numProcesses)

{

int inputIndex;

int l_expansionIndex;

int input[inputSize ];

int l_expansion[l_expansionSize ];

double levelWeight = pow(0.5, (( double)weight ));

for (l_expansionIndex = 0; l_expansionIndex < l_expansionSize;

l_expansionIndex ++) {

l_M[l_expansionIndex] = 1.0;

}

for (inputIndex = 0; inputIndex < inputSize; inputIndex ++) {

input[inputIndex] = 1;

}

for (inputIndex = 0; inputIndex < inputSize; inputIndex ++) {

input[inputIndex] = 0;

parallelOrthogonalExpansion(inputSize , input , l_expansion ,

processId , numProcesses );

for (l_expansionIndex = 0; l_expansionIndex < l_expansionSize;

l_expansionIndex ++) {

l_M[l_expansionIndex] *= (1.0 +

levelWeight * (( double)l_expansion[l_expansionIndex ]));

}

input[inputIndex] = 1;

}

}

This program is structurally similar to the previous masking matrix program,

but it is simpler since only n single entry maskings need to be produced. Thus,

the third for loop simply replaces one entry in vector input with 0, produces
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its orthogonal expansion, and updates the local masking matrix with the formula

specified in Section 3.3. This is repeated until all entries in input have been replaced

with 0, one at a time. Like the previous masking matrix program, this can be slightly

altered to instead produce a flipping matrix by replacing each entry in input with

−1 rather than 0 in each iteration of the third for loop.

4.5 Empirical Probability

As with the previous functions, the empirical probability can be readily im-

plemented as a parallel program due to its components mostly consisting of matrix

algebra, providing the parallelized implementation of the orthogonal expansion dis-

cussed earlier. Recall the formulation of the empirical probability of bipolar input

x with masking matrix Ml, introduced in Definition 6:

ρ(x,Ml) =


1
2

(
DMlΦ(x)
CMlΦ(x)

+ e
)

if CMlΦ(x) 6= 0,

1
2
e if CMlΦ(x) = 0.

The following is a parallel C program implementation for producing the empirical

probability of a target input.

void parallelEmpiricalProbability(

int inputSize ,

int outputSize ,

int l_expansionSize ,

int input[inputSize],

double output[outputSize],

double l_M[l_expansionSize],

int l_D[outputSize ][ l_expansionSize],

int l_C[l_expansionSize],

int processId ,

int numProcesses)

{

int inputIndex;

int outputIndex;

int l_expansionIndex;

int l_expansion[l_expansionSize ];

double p_c;

double c;
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double p_output[outputSize ];

p_c = 0.0;

for (outputIndex = 0; outputIndex < outputSize; outputIndex ++) {

p_output[outputIndex] = 0.0;

}

parallelOrthogonalExpansion(inputSize , input , l_expansion ,

processId , numProcesses );

for (l_expansionIndex = 0; l_expansionIndex < l_expansionSize;

l_expansionIndex ++) {

p_c += l_M[l_expansionIndex] * (( double )(l_C[l_expansionIndex]

* l_expansion[l_expansionIndex ]));

}

MPI_Allreduce (&p_c , &c, 1, MPI_DOUBLE , MPI_SUM , MPI_COMM_WORLD );

if (c < pow(0.5, (( double)inputSize ))) {

for (outputIndex = 0; outputIndex < outputSize; outputIndex ++) {

output[outputIndex] = 0.5;

}

} else {

for (outputIndex = 0; outputIndex < outputSize; outputIndex ++) {

for (l_expansionIndex = 0; l_expansionIndex < l_expansionSize;

l_expansionIndex ++) {

p_output[outputIndex] += l_M[l_expansionIndex]

* (( double )(l_D[outputIndex ][ l_expansionIndex]

* l_expansion[l_expansionIndex ]));

}

}

MPI_Allreduce(p_output , output , outputSize ,

MPI_DOUBLE , MPI_SUM , MPI_COMM_WORLD );

for (outputIndex = 0; outputIndex < outputSize; outputIndex ++) {

output[outputIndex] = 0.5 * (output[outputIndex] / c + 1.0);

}

}

}

In this implementation, the value of CMlΦ(x) is computed first in order

to determine whether or not DMlΦ(x) must be computed. Each parallel pro-

cess computes a partial value of CMlΦ(x) using its local variables l_C, l_M, and

l_expansion, which is then stored in p_c. The entire value is the sum of all the

p_c variables possessed by each parallel process, so a call to MPI_Allreduce is used

to compute and store this sum in variable c. If c is 0, then the empirical probability

vector output should simply contain 0.5 in each of its entries. Otherwise, DMlΦ(x)

must be computed next. This is computed in a manner similar to determining c,

but a vector of dimension m is produced rather than a scalar. The vector p_output

is used to store the partial values produced of the product of the local variables l_D,
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l_M, and l_expansion. The entire value is the sum of all the p_output variables

possessed by each parallel process, so another call to MPI_Allreduce is used to

compute and store this sum in variable output. Vector output is then algebraically

adjusted to reflect the remaining structure of the empirical probability formula.

4.6 Performance Studies on maya with Intel MPI

A study was conducted to examine the scalability of the parallel processing

unit implementation discussed thoroughly in this chapter. The purpose of this is to

inspect the utility of this parallel program via the speedup and efficiency observed

in employing more parallel processes to execute the processing unit functions on

fixed input sizes. This study was performed on the maya cluster of the UMBC High

Performance Computing Facility. Similar scalability studies on other problems have

been reported [10, 9, 19, 6], and these were used as guides with which to conduct

this study on the parallelized processing unit.

The UMBC High Performance Computing Facility (HPCF) is the community-

based, interdisciplinary core facility for scientific computing and research on parallel

algorithms at UMBC. Started in 2008 by more than 20 researchers from ten academic

departments and research centers from all three colleges, it is supported by faculty

contributions, federal grants, and the UMBC administration. The facility is open

to UMBC researchers at no charge. Researchers can contribute funding for long-

term priority access. System administration is provided by the UMBC Division of

Information Technology, and users have access to consulting support provided by
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dedicated full-time graduate assistants. See hpcf.umbc.edu for more information on

HPCF and the projects using its resources.

The current machine in HPCF is the distributed-memory cluster maya with

over 300 nodes. The newest components of the cluster are the 72 nodes with two

eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB memory that in-

clude 19 hybrid nodes with two high-end NVIDIA K20 GPUs (graphics processing

units) designed for scientific computing and 19 hybrid nodes with two cutting-edge

60-core Intel Xeon Phi 5110P accelerators. These new nodes are connected along

with the 84 nodes with two quad-core 2.6 GHz Intel Nehalem X5550 CPUs and 24

GB memory by a high-speed quad-data rate (QDR) InfiniBand network for research

on parallel algorithms. The remaining 168 nodes with two quad-core 2.8 GHz Intel

Nehalem X5560 CPUs and 24 GB memory are designed for fastest number crunch-

ing and connected by a dual-data rate (DDR) InfiniBand network. All nodes are

connected via InfiniBand to a central storage of more than 750 TB.

All results are based on the Intel implementation of MPI. Table 4.1 lists the

wall clock times (a), observed speedup (b), and observed efficiency (c) measured

with a parallel processing unit performing correlation learning on 10,000 training

instances for fixed input size n and number of parallel processes p used. The values

of n ranged from 26 to 30 in increments of 1, and the values of p ranged from 1 to

512, doubling with each increment. The compute nodes of the maya cluster used in

this study each comprise two eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs

and 64 GB memory. Wall clock times pertaining to 1, 2, 4, 8, and 16 processes were

all obtained from a single cluster node, whereas times pertaining to greater process
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usage were obtained from multiple cluster nodes, exclusively using all 16 processes

per node. If Tp(n) denotes the wall clock time of a performance study conducted with

input size n and p parallel processes, then quantity Sp(n) = T1(n)/Tp(n) measures

the speedup of the program from 1 to p processes. The optimal speedup is Sp(n) = p,

or plainly that a program of a fixed problem size using p parallel processes should

ideally be p times as fast. The efficiency Ep(n) = Sp(n)/p measures the closeness

of the speedup to the optimum value, which itself is optimal when Ep(n) = 1. This

optimal behavior of speedup and efficiency for a fixed problem size is known as

strong scalability of parallel code.

Comparing most of the adjacent columns in the wall clock time data of Table

4.1 (a) indicates that utilizing twice as many parallel processors roughly reduces

the run time by a factor of two, except notably when comparing columns p = 4,

p = 8, and p = 16. These particular wall clock times cause the overall trend of

the observed speedup Sp to deviate significantly from the optimal value Sp(n) =

p. This is recorded in Table 4.1 (b), which lists the respective observed speedup

from 1 to p processes for each problem size. Figure 4.1 visualizes the observed

speedup and efficiency to more easily convey comparisons between these quantities

and their optimal values. The suboptimal speedup that takes occurs in p = 4,

p = 8, and p = 16 can be attributed to a few factors. Foremost, the orthogonal

expansion program is not fully parallelized since a sufficient amount of the expansion

must be constructed in serial so that each parallel process may have an assigned

seed value with which to compute their remaining local portions of the expansion.

Additionally, the orthogonal expansion program may not make effective use of the
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CPU cache since its recursive nature requires several revisits to the earlier expansion

entries. These shortcomings become exaggerated when training over 10,000 data

instances, with each rendition of correlation learning requiring the construction of

a new orthogonal expansion. Note that the run times for 32, 64, 128, and 256

processes return to the ideal factor of two speedup when comparing the adjacent

columns. This can be attributed to the greater availability of CPU cache memory by

means of utilizing more computing nodes. The distribution of labor onto multiple

compute nodes produces local problems which more easily fit into the cache, leading

to fewer cache misses and improved run time. Despite the more ideal performance for

32, 64, and 256 processes, the overall observed speedups and efficiencies (c) remain

suboptimal due to the portion of the orthogonal expansion program which could

not be parallelized. Although the observed speedups and efficiencies are far from

ideal overall, the parallelized processing unit program retains value in dramatically

reducing the run time from several hours to a few minutes for large input sizes when

utilizing a sufficient amount of parallel processes.

The performance study is repeated in Table 4.2 and accompanying Figure 4.2

in which the scalability of the empirical probability function is examined over 10,000

target vectors. Comparing these results with those of correlation learning in Table

4.1, it is evident that the parallelized empirical probability program suffers from sim-

ilar issues with suboptimal speedup and efficiency due to the orthogonal expansion

program. Again, a rough speedup factor of two can be observed when comparing

adjacent wall clock time columns for 32, 64, 128, 256, and 512 processes, but this is

not the case for 4, 8, and 16 processes which hinder the overall observed speedup and
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efficiency. Construction of the empirical probability generally takes more time to

perform than correlation learning due to the greater amount computation involved

and, more substantially, the fact that this function requires communication among

the processes whereas correlation learning does not. This is unavoidable since the

local variables must be combined to produce a coherent empirical probability vector

with which to generate label predictions. Despite this and the suboptimal observa-

tions of speedup and efficiency, it remains evident that the parallelized processing

unit retains value in dramatically reducing the run time of sufficiently large problems

from several hours to a few minutes with the utilization of more parallel processes.
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4.7 Digit Recognition Example

In this section, the performance of the processing unit program in pattern

recognition is demonstrated via a small example involving visual depictions of the

ten numerical digits. The digits can be represented with 5 × 3 bipolar matrices in

which 1 is used to “write” the digit and −1 denotes blank space. Figure 4.3 displays

the bipolar representations of each numeral as a color map, imitating the digits

as they appear on common digital clocks. For demonstration, a processing unit is

trained on these ten matrices provided as vectors in column-major ordering. The

associated output are 10-dimensional bipolar vectors in which each entry corresponds

with the identity of the digit from 0 through 9. So the matrix depiction of zero

would be learned with an output vector consisting of all negative values except for

a positive value in the first entry. This manner of output encoding will produce

empirical probability vectors in which each entry denotes the probability that the

target input is identified as the corresponding numeral.

Table 4.3 lists the empirical probability vectors produced on each of the ten

5 × 3 bipolar visualizations of the numerical digits. The processing unit had prior

training to recognize each digit, and the empirical probabilities are produced using

masking matrix generalization with maximum masking level l = 15 and masking

level weights 2−wj where j = 0, 1, 2, . . . , l. For comparison purposes, hyperparameter

w is set to zero so that all masking level weights are effectively 1. Each row of Table

4.3 corresponds with the target input that is provided for empirical probability

construction, and each column corresponds with an entry in the empirical probability
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Figure 4.3: Color map of the numerical digits visually represented in
5× 3 bipolar matrices.

vector respective to each of the ten digit classes. For example, the input depicting

0 has probability 0.5969 of being correctly classified as numeral 0 and probability

0.0003 of being incorrectly classified as numeral 1. Based on the table organization,

probabilities of correct classification are along the table diagonal and all other entries

are probabilities of incorrect classifications. Overall, the diagonal entries are greater

in magnitude when compared with other entries in their respective rows, but these

other entries clearly indicate some uncertainty which occurs naturally with entry

masking generalization. Recall that entry masking attempts to ignore distortions

that exist between the target input vector and the set of learned vectors in order to

generalize. The masking matrix inherently favors lower level entry maskings without

the need for masking level weights, effectively giving more weight to learned vectors

which are nearer in Hamming distance to the target vector. This role of Hamming

distance can be clearly observed in the empirical probabilities along the columns of

Table 4.3. For example, the second highest entry for row 0 is 0.1990 corresponding
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with the digit class 8. This being the second highest entry is sensible because the

5× 3 bipolar inputs depicting 0 and 8 are one unit of Hamming distance away from

each other, whereas the distances between the visualizations of 0 and all the other

digits are greater than 1. Regardless, it would be preferable to push the probabilities

of correct classification closer to 1 and all others closer to 0.

Table 4.4 repeats the correlation learning and empirical probability construc-

tion on the 5×3 bipolar digit visualizations, this time with hyperparameter w = 10.

This increase in w effectively increases the weight of lower level entry maskings

relative to higher level entry maskings. As anticipated, this produces the desired

result of increasing the probabilities of correct classifications seen along the table

diagonal and decreasing all other probabilities associated with incorrect classifica-

tions. Small errors remain, such as the 0.0005 probability of incorrectly classifying

input 0 as digit 8. These erroneous probabilities can be further decreased by further

increasing w.
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4.8 Summary

A parallel implementation of the THPAM processing unit architecture was

proposed and thoroughly discussed in this chapter. The processing unit was im-

plemented as a C program with MPI for communication between parallel pro-

cesses. The processing unit correlation learning and empirical probability mech-

anisms mostly involve matrix algebra computations which are readily parallelizable.

However, all of the processing unit mechanisms rely on the construction of the or-

thogonal expansions of input vectors. One method of parallelizing the orthogonal

expansion was proposed, but this was not fully parallelizable and required some

creative liberty in distributing the orthogonal expansion entries among the parallel

processes. Unfortunately, the unparallelized portion of the orthogonal expansion

requires computation proportional to the number of parallel processes in use, since

a sufficient amount of the expansion must be constructed to assign an initial seed

value to each parallel process with which to construct the remaining local expansion

entries.

A scalability study of the learning and decovariance retrieval mechanisms was

conducted on the UMBC HPCF maya cluster. The observed speedup and efficiency

from 1 to p processes were determined to be suboptimal due to the lack of a fully par-

allelized orthogonal expansion procedure, but parallel processing still dramatically

reduces the run time of these processing unit mechanisms for sufficiently large input

sizes. Although the exponential complexity of the orthogonal expansion imposes a

severe limitation on the input size, parallel computing allows us to push the input
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size beyond what would be acceptable with a serial computer. Lastly, the capability

of the processing unit as a pattern recognizer was demonstrated on a small example

involving visual depictions of the numerical digits.
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Chapter 5

Experiments

5.1 Overview

This chapter includes reports on several experiments used to examine the per-

formance of the THPAM processing unit architecture in classification. The data sets

utilized in these experiments were obtained from the University of California Irvine

(UCI) Machine Learning Repository [12], which hosts numerous databases and re-

search tools for the empirical analysis of learning algorithms. For each data set

featured in this work, multiple data encoding methods are used in order to present

the data in a manner suitable for processing by the processing unit. Some encod-

ing methods are more appropriate than others, and these reports attempt to offer

explanations and recommendations for best practices. At the time of this writing,

computational experiments on the THPAM processing unit have not yet been pub-

lished, so this work also serves as an initial benchmark as this learning algorithm

becomes more theoretically mature. These experiments provide key insights that

may prove useful in future work.

The considered data sets are not provided with distinct training and test sub-

sets, and there is no official standard for evaluating algorithm performance on these

data sets. Leave-one-out cross-validation is selected to measure the performance of

the processing unit on each data set and with each examined data set encoding. In
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this measure, the processing unit is trained on the entire data set except for one

data instance on which the predictive accuracy is tested. This procedure is repeated

until all of the data instances have been used for testing and a final accuracy rating

can thereby be computed. This measure is selected because it provides a complete

result with which the processing unit performance can be definitively compared on

the different encoding techniques examined herein. The supervised processing unit

constructed for these studies is deterministic in nature, providing some specified

rules on breaking ties in classification. It is also inexpensive to perform leave-

one-out cross-validation using this supervised processing unit since data instances

previously learned by the processing unit can be easily removed for validation and

subsequently relearned. This is generally untrue for most learning algorithms, with

which leave-one-out cross-validation is actually very expensive to perform in relation

to other validation measures.

In general, k-fold cross-validation or repeated k-fold cross-validation are used

in related publications, where k is usually set to 5 or 10. In addition to examining the

processing unit performance with varying encoding methods and hyperparameter

values, select repeated stratified 10-fold cross-validation results are also reported for

each of the data sets considered herein. With some historical 10-fold cross-validation

results reported on other known learning algorithms, we can observe how well the

processing unit measures up to the competition at this early stage in its realization

as a learning machine. For each data set considered herein, the results of other

learning algorithms reported in some related publications are summarized for the

purpose of comparison.

66



Section 5.2 reports the processing unit performance on a categorical data set

with three different input encoding methods to examine how category rank can be

interpreted by the processing unit via input vectors. In Section 5.3, the performance

of the processing unit is tested on a binary data set with missing values. Section

5.4 describes an encoding method for real-valued data, with which the processing

unit performance can be improved via a custom entry masking weighting strategy

to account for the relative significance of the input entries.

5.2 UCI Car Evaluation Data Set

The UCI Car Evaluation data set [2] consists of categorical measures of car

acceptability based on pricing and technical characteristics. Each car is evaluated

according to six categorical features listed in Table 5.1 with their respective potential

values. The data set is exhaustive, consisting of 1728 unique data instances which

cover all possible input combinations within the feature space. Car acceptability

is labeled with four possible classes listed in Table 5.2 alongside their respective

class distributions among the data instances. The classes are unevenly represented

with the majority class constituting 70.0231% of the entire data set. This should

be considered the lowest bound for the predictive accuracy of a learning algorithm

trained on this data, since a rudimentary algorithm could blindly guess the majority

class to achieve this performance.

In order to apply the THPAM processing unit to this categorical database,

the feature inputs and class outputs must be properly encoded into bipolar vectors
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suitable for processing. Herein, we investigate three candidate encoding techniques

while also examining the impact of hyperparameter adjustments in the competing

generalization methods of entry masking and entry flipping. The performance met-

ric utilized in these experiments is leave-one-out cross-validation. Class labels are

encoded as one-hot bipolar vectors, where each class is assigned a distinct output

entry which is positive for a given data instance if and only if that instance belongs

to the corresponding class. Class predictions are generated by producing the empir-

ical probability then selecting the class associated with the entry that has largest

probability relative to the other entries. Any ties are broken by selecting the class

which has greater representation in the instance data. For example, if the empirical

probability of a target input vector indicates a classification of the acceptable and

good classes in equal measure, then acceptable is selected as the prediction since

this class has greater distribution among the data instances.

Table 5.1: Car Evaluation data features and their respective categorical values.

Feature Values

buying price very high, high, medium, low
maintenance cost very high, high, medium, low
number of doors 2, 3, 4, 5 or more
occupancy 2, 4, more
luggage boot size small, medium, big
safety low, medium, high
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Table 5.2: Car Evaluation data classes and their respective distributions among the
instance data.

Class # of instances % of instances

unacceptable 1210 70.0231%
acceptable 384 22.2222%
good 69 3.9931%
very good 65 3.7616%

total 1728

5.2.1 Bipolar Encoding

We first examine a commonly used categorical data encoding technique which

simply attempts to uniquely represent all the possible feature values with the fewest

number of binary or bipolar entries. For example, a feature which has 4 possible

values requires at least log2(4) = 2 entries to be fully encoded. This is a straight-

forward method which imposes the least demand on computer resources, but it can

inadequately account for any underlying relationships between the feature values.

This fact is better observed after analyzing the performance involving each of the

three encoding techniques considered in these experiments on the Car Evaluation

data set. For now we focus solely on this encoding technique. Table 5.3 lists the car

features and their corresponding categorical values, each value paired with a bipolar

vector encoding used in these experiments. Each of the six features requires at least

two bipolar entries to completely represent their potential values, producing a total

input size of twelve entries.

Table 5.4 lists the observed leave-one-out cross-validation accuracy ratings

with varying hyperparameter adjustments pertaining to the entry masking (a) and
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Table 5.3: Car Evaluation data features and their respective categorical values, each
value paired with a bipolar encoding using the fewest possible bits.

Feature Values

buying price {very high :
(

1 1
)
}, {high :

(
1 −1

)
},

{medium :
(
−1 1

)
}, {low :

(
−1 −1

)
}

maintenance cost {very high :
(

1 1
)
}, {high :

(
1 −1

)
},

{medium :
(
−1 1

)
}, {low :

(
−1 −1

)
}

number of doors {5 more :
(

1 1
)
}, {4 :

(
1 −1

)
},

{3 :
(
−1 1

)
}, {2 :

(
−1 −1

)
}

occupancy {more :
(

1 1
)
}, {4 :

(
1 −1

)
},

{2 :
(
−1 −1

)
}

luggage boot size {big :
(

1 1
)
}, {medium :

(
1 −1

)
},

{small :
(
−1 −1

)
}

safety {high :
(

1 1
)
}, {medium :

(
−1 1

)
},

{low :
(
−1 −1

)
}

entry flipping (b) generalization techniques. The table columns correspond with

the masking level l, the maximum number of input entries allowed to be masked or

flipped in order to relate an input vector with a learned vector when constructing

the empirical probability. The table rows correspond with the exponential weight

w of the entry masking weight 2−wj, where j denotes the number of masked entries

from 0 to masking level l. Larger w produces more relative weight on lower level

entry maskings than higher level maskings.

The entire column for l = 0 of Table 5.4 reports accuracy ratings of 70.0231%,

equal to the distribution of the majority class. This is because the masking level

of l = 0 produces masking and flipping matrices equivalent to the identity matrix,

meaning no generalization is being performed. In this case, the THPAM processing
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unit is simply guessing the majority class. The adjacent column for l = 1 allows

generalization up to a hamming distance of one, which dramatically improves per-

formance up to 95.8912%. This accuracy appears in every row because there are

no learned vectors of hamming distance zero with which to relate to a given test

vector. As stated in the data set description, the Car Evaluation set is exhaustive

and each training instance is distinct, so a test vector held out of training would

have no training instance of hamming distance zero with which to compare to. The

value of hyperparameter w is thereby irrelevant at this masking level for this par-

ticular data set. The columns with l ≥ 2 demonstrate the importance of selecting

sufficiently large exponential weight w in order to counterbalance the increase in

masking level, especially evident in rows with w ≤ 1. Comparing adjacent columns

of these rows indicates a steady decline towards an accuracy rating equivalent to

the majority class distribution. This is expected since the increase in masking level

allows for each test vector to be compared with an increasingly larger subset of

the training data, eventually including all of the training data in predictions when

the masking level is equivalent to the input size. An insufficiently large w fails to

counterbalance the unequal representation of the majority class, giving this class

more relative weight by sheer numbers. Comparing adjacent rows indicates that

larger w effectively corrects this uneven distribution, giving more relative weight

to learned vectors which are nearer in Hamming distance to the test vector. All

masking levels of l ≥ 2 are capable of achieving the maximum leave-one-out cross-

validation accuracy of 96.1227% providing that w is large enough, as observed in

the rows with w ≥ 4 for the masking matrix and the row with w = 5 for the flipping
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matrix. This behavior is visualized for both the masking matrix and flipping matrix

generalization mechanisms in Figure 5.1 (a) and (b), respectively. These figures plot

the cross-validation accuracy by masking level l for w = 0, w = 1, and w = 6 to

more clearly demonstrate the trend toward maximum test accuracy for any l as w

is made sufficiently large.

Comparing the cross-validation accuracies of entry masking generalization (a)

and entry flipping generalization (b) in Table 5.4 indicates some notable differences

in performance between these techniques. Masking generalization always achieves

equal or greater test accuracy than entry flipping generalization for the same combi-

nation of hyperparameter values. This is due to the inherent behavior of the masking

matrix to give more relative weight to learned vectors which are nearer in hamming

distance to the target test vector. This is separate from the masking level weights

2−wj, as demonstrated in Example 4. The inherent weighting of the masking matrix

works in conjunction with the level weights, whereas the flipping matrix has no in-

herent weighting and must rely solely on masking level weights to achieve the desired

weighting scheme. The accuracies of these generalization methods are significantly

different when w ≤ 3, with the masking matrix outperforming the flipping matrix.

However, both techniques trend toward the same accuracy maximum of 96.1227% as

w is made sufficiently large. Figure 5.2 visualizes this trend for both generalization

mechanisms with masking level l equal to the input dimension n = 12. This plots

the test accuracy by the exponential weight w, demonstrating that although the

masking matrix outperforms the flipping matrix for small w, both mechanisms tend

toward the same maximum test accuracy.
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A glaring fault of this bipolar encoding of the input data is that the processing

unit generalizes based on the hamming distance metric, but these encodings create

erroneous hamming distance relations between the different feature categories. For

example, the buying price feature has categories very high, high, and medium

encoded with ( 1 1 ), ( 1 −1 ), and ( −1 1 ), respectively, implying that very high is

equidistant to high and medium. In processing unit generalization this means that,

with all else equal, a test vector with buying price value of very high will be

compared to learned vectors with high and medium values with equal weight, even

though the vector with value high should sensibly have more comparative weight

as it is closer in quantity to very high. This could be changed by rearranging the

encodings, but the same problem will inevitably appear in another set of categories.

Minimal feature encoding fails to capture the natural order implied by some feature

categories, a point that will be more clearly conveyed in the experiments ahead

involving alternative encoding schemes.
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Figure 5.2: Learning curves of a processing unit applied to bipolar en-
coded Car Evaluation data by exponential weight w with masking level
l = 12. Accuracy ratings are shown for entry masking generalization
and entry flipping generalization. Quantity w denotes the exponent of
the masking level weight 2−wj, where j denotes the number of masked
entries from 0 to masking level l.

5.2.2 One-hot Encoding

Another commonly used categorical data encoding technique is one-hot encod-

ing, in which each feature is encoded into a binary or bipolar vector of size equivalent

to the number of categorical values of that feature. Each entry in the encoding corre-

sponds to a particular feature value, and the entry is positive if and only if the data

instance has that particular feature value. For example, the buying price feature

values could be one-hot encoded with ( 1 −1 −1 −1 ) for very high, ( −1 1 −1 −1 ) for

high, ( −1 −1 1 −1 ) for medium, and ( −1 −1 −1 1 ) for low. Consequently, an input size

of 21 is required to fully encode the Car Evaluation features in this manner. This
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encoding method requires as many input entries as there are categories among all

the features in the data set, so it is the opposite of bipolar encoding in the sense

that one-hot encoding demands significantly more computer memory. However, an

advantage of one-hot encoding is that it entirely ignores any ordering that might

exist among the different categories of a feature. The Hamming distance between

any two feature categories is always 2, as observed in the example above for the

buying price feature. As will be demonstrated experimentally, this is a slight im-

provement on the erroneous categorical ordering imposed by bipolar encoding, but

the implied categorical ordering remains disregarded.

The leave-one-out cross-validation experiment is repeated and summarized

in Table 5.5 with one-hot encoded input vectors with the entry masking (a) and

entry flipping (b) generalization mechanisms. Again, the table columns and rows

are parameterized by masking level l and exponential weight w, respectively. Only

accuracy ratings associated with even masking level values are reported due to the

fact that each one-hot encoded feature category is a Hamming distance of two away

from the other feature categories. Since there are six features, the masking level

should be twelve at most. As observed in the previous experiment, a masking

level of l = 0 results in no performed generalization, forcing the processing unit to

guess the majority class with 70.0231% accuracy. The column with masking level

l = 2 records significant improvement in the processing unit predictive accuracy,

with a rating of 93.6921%. This does not compete with the maximum recorded

cross-validation accuracy of 96.1227% obtained in the previous experiment involving

bipolar encoding. The columns with l ≥ 8 and l ≥ 2 for entry masking and entry
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flipping, respectively, again demonstrate the importance of selecting sufficiently large

exponential weight w in order to counterbalance the increase in masking level. With

w ≤ 1, a gradual decline in accuracy can be observed as l increases, due to this

effectively increasing the subset of learned vectors with which the test vectors may be

compared to. Thus, the accuracies along these rows tend towards the majority class

distribution with entry flipping generalization, but comparatively the respective

accuracies with entry masking generalization do not decline as much. This can be

attributed to the inherent weighting mechanism that exists in the masking matrix

and the evidential fact that one-hot input encoding appears to be better suited for

the processing unit. Regardless, all masking levels of l ≥ 2 are capable of achieving

the maximum leave-one-out cross-validation accuracy of 93.6921% providing that

w is large enough, as observed in the rows with w ≥ 2 for entry masking and the

rows with w ≥ 3 for entry flipping. This trend towards the maximum observed

accuracy is plotted in Figure 5.3 with entry masking (a) and entry flipping (b)

generalization for w = 0, w = 1, and w = 5. Figure 5.4 plots a comparison of

performance between the entry masking and entry flipping mechanisms, indicating

again that entry masking may be preferable when w is small, but both generalization

techniques achieve similar performance when w is made sufficiently large.

The implied ordering of the feature categories remains incorrectly accounted

for with the one-hot feature encoded inputs. One-hot encoding assumes that all

categories are equidistant from each other, so a buying price feature value of

very high can be compared to values high, medium, and low with equal weight

under generalization. The next section examines a more sensible encoding scheme
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that better captures the implied ordering of these feature values.

Table 5.5: Leave-one-out cross-validation accuracies on one-hot encoded Car Eval-
uation data by masking level and masking level weight. Quantity w denotes the
exponent of the masking level weight 2−wj, where j denotes the number of masked
entries from 0 to masking level l.

(a) Accuracy ratings with entry masking generalization
w l = 0 l = 2 l = 4 l = 6 l = 8 l = 10 l = 12

0 70.0231 93.6921 93.6921 93.6921 91.1458 89.1204 85.1852
1 70.0231 93.6921 93.6921 93.6921 93.6921 92.8241 92.7662
2 70.0231 93.6921 93.6921 93.6921 93.6921 93.6921 93.6921
3 70.0231 93.6921 93.6921 93.6921 93.6921 93.6921 93.6921
4 70.0231 93.6921 93.6921 93.6921 93.6921 93.6921 93.6921
5 70.0231 93.6921 93.6921 93.6921 93.6921 93.6921 93.6921

(b) Accuracy ratings with entry flipping generalization
w l = 0 l = 2 l = 4 l = 6 l = 8 l = 10 l = 12

0 70.0231 93.6921 77.0833 70.0231 70.0231 70.0231 70.0231
1 70.0231 93.6921 84.8380 75.2315 71.1806 70.1389 70.1389
2 70.0231 93.6921 91.3773 90.8565 90.7407 90.7407 90.7407
3 70.0231 93.6921 93.6921 93.6921 93.6921 93.6921 93.6921
4 70.0231 93.6921 93.6921 93.6921 93.6921 93.6921 93.6921
5 70.0231 93.6921 93.6921 93.6921 93.6921 93.6921 93.6921
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Figure 5.4: Learning curves of a processing unit applied to one-hot en-
coded Car Evaluation data by exponential weight w with masking level
l = 21. Accuracy ratings are shown for entry masking generalization
and entry flipping generalization. Quantity w denotes the exponent of
the masking level weight 2−wj, where j denotes the number of masked
entries from 0 to masking level l.

5.2.3 Temperature Encoding

This final encoding technique attempts to represent the feature categories in

a manner which preserves their implicit ordering with respect to the Hamming

distance metric [16]. To exemplify this, we return to the buying price feature of

the Car Evaluation data set. In performing generalization on a test vector with a

buying price of value very high, it is sensible to give more comparative weight to

learned vectors with value high than those with value medium, and learned vectors

with value low should receive even smaller weight. The implied order is that low <

medium < high < very high, but this order was not preserved among the pairwise
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hamming distances in the bipolar and one-hot encoding methods.

Table 5.6 lists the Car Evaluation features and their corresponding categorical

values paired with temperature encodings. Observe that the implied ordering of the

feature categories is preserved in the pairwise hamming distance ordering for the en-

codings. For example, the encoding for the very high value of the buying price

feature is one unit away from high, two units away from medium, and three units

away from low. Likewise, this behavior can be observed in the selected encoding

of the remaining features in the table. A total input dimension of 15 is required

to sufficiently encode the feature space in this manner, imposing less demand on

computational resources than one-hot encoding but not quite to the same extent as

bipolar encoding. This temperature encoding is expected to better suit the process-

ing unit performance due to the more effective capturing of the categorical rankings

in a manner perceivable by the processing unit.

The usual leave-one-out cross-validation experiment is repeated in Table 5.7

on the temperature encoded Car Evaluation data set with entry masking general-

ization (a) and entry flipping generalization (b). The accuracy ratings are again

parameterized by masking level l and exponential weight w. As noted in the previ-

ous experiments, no generalization occurs when l = 0 so the processing unit guesses

the majority class with accuracy equal to the class distribution. The column with

masking level l = 1 records significant improvement in the processing unit predic-

tive accuracy, with a rating of 97.3958% regardless of the choice of w. This is the

maximum observed accuracy for this experiment, handily defeating the maximum

accuracies observed with the bipolar and one-hot encoding methods. This supports
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Table 5.6: Car Evaluation data features and their respective categorical values,
each value paired with a temperature encoding meant to capture the implied value
ordering.

Feature Values

buying price {very high :
(

1 1 1
)
}, {high :

(
−1 1 1

)
},

{medium :
(
−1 −1 1

)
}, {low :

(
−1 −1 −1

)
}

maintenance cost {very high :
(

1 1 1
)
}, {high :

(
−1 1 1

)
},

{medium :
(
−1 −1 1

)
}, {low :

(
−1 −1 −1

)
}

number of doors {2 :
(

1 1 1
)
}, {3 :

(
−1 1 1

)
},

{4 :
(
−1 −1 1

)
}, {5 more :

(
−1 −1 −1

)
}

occupancy {2 :
(

1 1
)
}, {4 :

(
−1 1

)
},

{more :
(
−1 −1

)
}

luggage boot size {small :
(

1 1
)
}, {medium :

(
−1 1

)
},

{big :
(
−1 −1

)
}

safety {low :
(

1 1
)
}, {medium :

(
−1 1

)
},

{high :
(
−1 −1

)
}

the notion that the previously considered encoding methods are ill-suited at cap-

turing the inherent relationships between the feature values in a manner detectable

by the processing unit architecture. However, notice that the selected values of w

are significantly larger in scale than those utilized in the previous experiments. It

took very large w for masking levels l > 1 to achieve the maximum observed accu-

racy for both generalization mechanisms. This may be attributed to the encoding

method since this behavior was not previously observed. The majority class has

substantial representation, comprising 1210 of the 1728 data instances, whereas two

other classes are represented by only 69 and 65 data instances. It may be the case

that with l ≥ 2 some target test vectors from these underrepresented classes are

close enough in Hamming distance to a substantial amount of training instances
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belonging to the majority class, and these vectors are thereby erroneously classi-

fied accordingly. Large exponential weight w is required to strip these vectors away

from the majority class to be correctly classified. This behavior may not have been

detected in the previous experiments since the accuracy ratings were significantly

lower and the processing unit may have been misclassifying these edge cases regard-

less of the hyperparameter settings. Figure 5.5 plots the trend towards maximum

observed accuracy as w increases with entry masking (a) and entry flipping (b).

Figure 5.6 plots a comparison of performance between the entry masking and entry

flipping mechanisms, indicating that both generalization techniques achieve compa-

rable performance when w is sufficiently large.

It is evident that temperature encoding better suits the processing unit perfor-

mance on the Car Evaluation data set, but the bipolar and one-hot encodings should

not be completely discounted. Some data sets may contain categorical features that

have no implied ordering, and it would be erroneous to impose some manufactured

Hamming distance relations where none are warranted. In such cases, it would be

wise to consider one of the earlier encoding techniques, especially one-hot encoding

since all of the feature categories will be pairwise equidistant. Some data sets may

call for a combination of these encodings depending on the behavior of the features

involved. As such, these experimental studies should serve as flexible suggestions

rather than rigid commands.
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Figure 5.6: Learning curves of a processing unit applied to temperature
encoded Car Evaluation data by exponential weight w with masking level
l = 15. Accuracy ratings are shown for entry masking generalization and
entry flipping generalization. Quantity w denotes the exponent of the
masking level weight 2−wj, where j denotes the number of masked entries
from 0 to masking level l.

5.2.4 Comparison with Historical Results

In this experiment, 10-fold cross-validation is used to produce a sample mean

accuracy rating with which to compare to known historical results reported in other

publications. Several well-known learning algorithms have been applied to the Car

Evaluation data set and reported in other publications for comparison, analysis, and

development. Using 10 times repeated 10-fold cross-validation, the C4.5 and C5

decision tree algorithms are reported to achieve accuracy ratings of 92.2± 2.2% and

92.2 ± 2.1%, respectively [23]. The Waikato Environment for Knowledge Analysis

(WEKA) [3, 17] implementation of the Naive Bayes classifier is reported to achieve
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85.706% 10-fold cross-validation accuracy [20]. The same publication also reports a

10-fold cross-validation accuracy rating of 99.537% using the WEKA implementation

of the multilayer perceptron.

With the execution of 10-fold cross-validation, stratified sampling is used to

partition the 1728 Car Evaluation data instances into 10 subsets of roughly equal

size. The processing unit is trained on 9 of the 10 subsets and tested on the remaining

subset. This procedure is iterated 10 times so that each subset serves as a test set.

The 10 test set accuracies are then averaged to produce a sample 10-fold cross-

validation accuracy rating. This sample accuracy is dependent on the partitioning

of the data, so the 10-fold cross-validation procedure is repeated 1,000 times in order

to produce a more stable overall mean accuracy rating. Stratified sampling is used

to ensure that the partitions contain roughly the same class distributions.

The processing unit is configured according to the prior experiments examining

the influence of the hyperparameters on the observed leave-one-out cross-validation

accuracy ratings. The maximum reported leave-one-out cross-validation accuracy

is 97.3958% with the temperature encodings and masking matrix configuration dis-

cussed in Section 5.2.3. This is achieved with multiple values of masking level l

and exponential weight w, but l = 15 and w = 30 are selected for this experiment.

Figure 5.7 depicts a histogram plot of the 1,000 observed 10-fold cross-validation

accuracy ratings. The histogram bars have width 0.1 and height proportional to the

frequency of the accuracy ratings. Table 5.8 summarizes some statistical measures

reported in this experiment.

It is evident that the processing unit outperforms the aforementioned historical
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Figure 5.7: Histogram plot of the 1,000 stratified 10-fold cross-validation
accuracy ratings of the THPAM processing unit applied to the Car Eval-
uation data set. The bar heights are proportional to the frequency of
the observed accuracies, and the bar widths are 0.1. The input encoding
scheme discussed in Section 5.2.3 is used, and masking generalization is
utilized with l = 15 and w = 30.

results pertaining to the C4.5 and C5 decision trees and the Naive Bayes classifier,

but the reported multilayer perceptron accuracy of 99.537% remains out of reach.

This result is reproducible with WEKA version 3.8.1, which automatically constructs

a multilayer perceptron consisting of 21 input nodes, 12 hidden nodes, and 4 output

nodes when applied to the Car Evaluation data set. The 21 input nodes correspond

with the 21 total input feature values, and the 4 output nodes correspond with

the 4 class labels. On a machine running macOS version 10.12.4 with 16GB 1866

MHz PC3-14900 LPDDR3 memory and a 2.0 GHz dual-core Intel Core i5 Skylake

(6360U) with 4 MB L3 cache, the default WEKA version 3.8.1 implementation of

the multilayer perceptron performs 500 iterations to learn the entire training set

over 4.33 seconds. A serial implementation of THPAM in C running on the same
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Table 5.8: Summary statistics of the 1,000 stratified 10-fold cross-validation accu-
racy ratings of the THPAM processing unit applied to the Car Evaluation data
set. The input encoding scheme discussed in Section 5.2.3 is used, and masking
generalization is utilized with l = 15 and w = 30.

Statistic Accuracy (%)

Mean 96.7023± 0.2975
Maximum 97.6273
Minimum 95.5440
Mode 96.7014

hardware requires only a single iteration to learn the data set over 0.07 seconds.

It should be noted that the default 10-fold cross-validation procedure in WEKA

is non-repeating and utilizes a default seed to partition the data unless otherwise

specified. Thus, there remains some discrepancy between the historical results and

the processing unit performance herein, though the historical results cannot be

completely discounted.

Although the present realization of the processing unit does not achieve a per-

formance result comparable to that of the multilayer perceptron, there is a strong

possibility that the processing unit can achieve such a performance with further re-

search development. In Section 5.4 it is demonstrated that although the processing

unit cannot currently detect the relative significance of features when performing

classification, it is possible to manually implement feature weights within the con-

struction of the masking matrix in order to improve performance. An automatic

method of manufacturing these feature weights within the masking matrix is desir-

able and promising.
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5.3 UCI Congressional Voting Records Data Set

The UCI Congressional Voting Records data set [21] consists of binary voting

histories of elected representatives in the 98th US congress on key issues identified by

the Congressional Quarterly Almanac. There are 16 features, each of which identify

whether the corresponding representative voted yay or nay on the respective bill.

Although the features are binary, there is technically a third category denoting an

unknown position due to abstention. The data set is not exhaustive, and there

are some repeated data instances. The voting histories are used to predict the

party membership of each representative, whether they be democrat or republican.

Table 5.9 lists these classes and their distributions among the instance data. Of the

435 data instances, the majority class is democrat with 61.3793% representation,

which should be the lower bound on the accuracy of a learning algorithm on this

data set since a rudimentary algorithm could blindly guess this class.

Table 5.9: Congressional Voting data set classes and their respective distributions
among the instance data.

Class # of instances % of instances

democrat 267 61.3793%
republican 168 38.6207%

total 435

We again examine the performance of the THPAM processing unit on this data

set with different encoding methods. The data is not provided with distinct training

and testing sets. Leave-one-out cross-validation is again selected as the performance

measure used to evaluate the processing unit under the different encoding methods.
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Class labels are represented using one-hot bipolar vectors. Class predictions are

generated by producing the empirical probability then selecting the class associated

with the entry that has greatest probability relative to the other entries. Any ties

are broken by selecting the class which has greater representation in the instance

data.

5.3.1 Temperature Encoding

In this experiment we treat the unknown or missing votes as a third class,

making the data set features ternary rather than binary. In encoding these features,

we utilize the temperature encoding procedure previously determined to be the

most suitable representation of the Car Evaluation data set for the processing unit

performance. Table 5.10 lists suitable encodings that were selected for each of

the feature values. In this arrangement, it is assumed that any unknown values

should be equidistant in Hamming distance from both the yay and nay values since

abstention is implied to be not a vote for nor a vote against anything. The distance

from unknown to the other two values is thereby constructed to be 1. The distance

between values yay and nay should therefore be greater than 1, so these encodings

are constructed to be a distance of 2 from each other. All of the 16 features are

encoded in this same manner, so the bipolar inputs will be of dimension 32. A

single computer processor is certainly too limited to perform this experiment with

a processing unit on this input size, and this is even brushing against the user

limitations on the UMBC HPCF parallel computing cluster. Nevertheless, some
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results are obtainable with some patience and opportunity.

Table 5.10: Congressional Voting data features and their respective categorical val-
ues, each value paired with a temperature encoding meant to capture the implied
value ordering.

Value Encoding

yay
(

1 1
)

nay
(
−1 −1

)
unknown

(
1 −1

)

Table 5.11 lists the observed leave-one-out cross-validation accuracies on the

temperature encoded Congressional Voting data set with entry masking (a) and

entry flipping (b). The accuracy ratings are parameterized by masking level l and

exponential weight w. Due to the high dimensionality of the encoded inputs, only

a few select values of l were involved in this study, namely 0 ≤ l ≤ 3 and l =

32. Masking level l = 32 is achievable with the alternative method of masking

matrix construction introduced in Section 3.3. Additional masking levels could not

be used in this study due to the time complexity of the general masking matrix

formula, requiring more parallel computing resources than users are allotted on

UMBC HPCF. Regardless, these few results are useful for comparison purposes

with the second encoding method discussed later.

Recall the earlier note that the data set contains some repeated data instances.

As such, the predictive accuracy without generalization, i.e. l = 0, is reported as

77.0115% rather than the 61.3793% corresponding with the majority class distribu-

tion. With so few masking level values considered, it is difficult to identify which

value of l would produce an optimal accuracy other than l = n = 32. Based on pre-
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vious experiments it may be reasonable to assume that an optimal or near optimal

accuracy is attainable with l = n providing w is suitably selected. The maximum

accuracy observed in this experiment is 93.1034%, which should be optimal or near

optimal since this performance remains stable with l = 32 and increasing w. It

is apparent that adjustments in the exponential weight have little influence on the

performance for this data set, except when l = 32 and likely other masking levels

which were not considered. This can be attributed to the fact that the accuracies

are ever increasing with the reported masking level values, so an optimal value of

l after which these accuracies begin to decrease was not identified. The role of the

exponential weight is to prevent such a decrease, but this has no impact on the lower

masking level values at which the accuracy could be improved by raising the masking

level. This is true only until w is selected to be exceedingly large, at which point the

lower level entry maskings will have more relative weight than the higher level entry

maskings, regardless of the choice of l. Still, the exponential weight remains useful

for optimizing the performance with l = 32. Figure 5.8 plots the test accuracies

by the masking levels for selected exponential weights w = 0, w = 1, and w = 5

with entry masking (a) and entry flipping (b). The trend towards the maximum

observed accuracy can be identified only with masking level l = 32. Figure 5.9 plots

this trend in a comparison between entry masking and entry flipping performance

when l = 32, which indicates that both generalization mechanisms achieve similar

performance when w is sufficiently large.
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Table 5.11: Leave-one-out cross-validation accuracies on temperature encoded Con-
gressional Voting data by masking level and masking level weight. Quantity w
denotes the exponent of the masking level weight 2−wj, where j denotes the number
of masked entries from 0 to masking level l.

(a) Accuracy ratings with entry masking generalization
w l = 0 l = 1 l = 2 l = 3 . . . l = 32

0 77.0115 82.5287 87.8161 90.1149 92.8736
1 77.0115 82.5287 87.8161 90.1149 92.1839
2 77.0115 82.5287 87.8161 90.1149 . . . 93.1034
3 77.0115 82.5287 87.8161 90.1149 93.1034
4 77.0115 82.5287 87.8161 90.1149 93.1034
5 77.0115 82.5287 87.8161 90.1149 93.1034

(b) Accuracy ratings with entry flipping generalization
w l = 0 l = 1 l = 2 l = 3 . . . l = 32

0 77.0115 82.5287 87.8161 90.1149 61.3793
1 77.0115 82.5287 87.8161 90.1149 92.4138
2 77.0115 82.5287 87.8161 90.1149 . . . 92.6437
3 77.0115 82.5287 87.8161 90.1149 93.1034
4 77.0115 82.5287 87.8161 90.1149 93.1034
5 77.0115 82.5287 87.8161 90.1149 93.1034
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Figure 5.9: Learning curves of a processing unit applied to tempera-
ture encoded Congressional Voting data by exponential weight w with
masking level l = 32. Accuracy ratings are shown for entry masking
generalization and entry flipping generalization. Quantity w denotes the
exponent of the masking level weight 2−wj, where j denotes the number
of masked entries from 0 to masking level l.

5.3.2 Ternary Encoding

In this experiment, we examine an alternative method of handling unknown

or missing data rather than treating it as a separate class equidistant from the other

classes. Begin with the assumption that the presented voting features are strictly

the binary values of yay or nay, each of which can be encoded with a single bipolar

entry of 1 for yay and −1 for nay. A missing entry could be either yay or nay in

equal measure, so one option for handling the unknown entry is to learn two distinct

data instances, one with +1 as the missing entry and the other with −1. However,

this becomes untenable when considering that some instances contain many missing
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values. A training instance containing k missing values would require the training of

2k different vectors to accommodate the missing values in this manner. Additionally,

this poses a problem when producing the empirical probability on a target vector

containing missing values. It is challenging to conceive of a method that would

generate fair predictions in this scenario.

A second option that accomplishes the above ideas without exponential blowup

is to relax the bipolar constraint on the input vectors. The THPAM processing unit

extracts meaning from the values 1 and −1, but technically 0 has a particular mean-

ing as well. Numeral 0 plays a vital role in entry masking, wherein a replacement of

zero means that the entry value should be ignored or hidden in order to obtain more

information using the other unmasked entries. This procedure of hiding certain en-

tries in favor of others can be extended to the original input vectors when particular

entries are missing or unknown. If a feature entry is missing, then it would be prefer-

able to ignore that feature in an attempt to produce an accurate prediction based

on the other known feature entries. This must occur in the input vector encodings

rather than in entry masking generalization because the masking matrices cannot be

used to detect whether or not a specific feature is missing. Thus for this experiment,

we encode the data set instances by using 1 to denote yay, −1 to denote nay, and

0 to denote an unknown value. This results in an input dimension of 16, which is a

reduction by half in comparison to the 32-dimensional encodings used the previous

experiment. This input dimension is far more reasonable for testing the processing

unit program on a serial machine.

Table 5.12 lists the results of the leave-one-out cross-validation study with
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varying masking level l and exponential weight w. Table 5.12 (a) shows results of

using entry masking generalization. When w = 0 the accuracy reaches a maximum

of 93.5632% with l = 5, which gradually diminishes as l increases further. The

results change slightly as w is adjusted. With w = 1 and w = 2 a slight decline

in accuracy can be observed for most values of l, except notably with l = 2 which

increases towards a maximum accuracy of 93.5632% at w = 3. With w = 3 and

w = 4 the accuracy ratings generally increase towards the overall maximum recorded

accuracy of 93.7931% for l ≥ 4. This accuracy is achievable for most values of l

when w = 4, suggesting that this value is optimal of the values considered. As w

increases further, the accuracies decline well below the maximum observed value.

This is likely because a masking level of at least l = 4 or l = 5 is optimal for this data

set, but the increase in w raises the weights of the lower level entry maskings relative

to the higher level entry maskings. As such, w must not only be sufficiently large

but also carefully selected to avoid this overfitting of the training data. Masking

up to the maximum masking level of 16 entries is also capable of achieving the

optimal accuracy at w = 4, demonstrating that masking up to all the input entries

is appropriate providing w is suitably selected.

As expected based on the previous experiments, the results of entry flipping

generalization in Table 5.12 (b) are generally worse than those of entry masking,

since entry flipping does not inherently favor lower masking levels without w being

appropriately chosen. However, both generalization schemes tend toward the same

maximum accuracy rating of 93.7931%, but this occurs at a slightly larger w = 5

in comparison to the optimal accuracy achieved with entry masking at w = 4.
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Like with entry masking, choosing w to be too large causes a decrease in accuracy

from the maximum, since this adjustment increases the relative weights of the lower

level entry maskings which are not optimal for this data set. Figure 5.10 plots the

accuracies by the masking level for selected values of w with entry masking (a) and

entry flipping (b). The benefit of carefully adjusting w can be more clearly observed,

as each trend line gradually stabilizes toward optimal accuracy with increasing w

up to a point. The choice of exponential weight is especially important with entry

flipping since the increase in masking level causes a trend towards the distribution of

the majority class when w = 0. Nevertheless, the entry masking and entry flipping

generalization methods are capable of performing approximately on par with each

other if w is made large enough, as evidenced in Figure 5.11.

The processing unit architecture achieves overall better performance with this

ternary encoding method compared to the earlier examined temperature encoding

method in which missing values were treated as a separate class. The maximum

recorded accuracy of 93.7931% is slightly better than the maximum 93.1034% ob-

served in the preceding experiment. Of substantial note is that this greater per-

formance is achieved while utilizing far fewer input entries, making this encoding

method much more favorable in both respects of performance and efficiency. This

experiment should serve as a suggestion to relax the bipolar restriction on inputs

whenever missing data may be anticipated.
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Figure 5.11: Learning curves of a processing unit applied to ternary en-
coded Congressional Voting data by exponential weight w with masking
level l = 16. Accuracy ratings are shown for entry masking generaliza-
tion and entry flipping generalization. Quantity w denotes the exponent
of the masking level weight 2−wj, where j denotes the number of masked
entries from 0 to masking level l.

5.3.3 Comparison with Historical Results

In this experiment, 10-fold cross-validation is again used to produce a sample

mean accuracy rating with which to compare to the performance of other known

learning algorithms reported in other work. With 10 times repeated 10-fold cross-

validation, the WEKA implementations of the J48 decision tree and Naive Bayes al-

gorithms are reported to achieve mean accuracies of 96.46±0.17% and 90.18±0.07%,

respectively [1]. The default WEKA version 3.8.1 implementation of the multilayer

perceptron achieves a 10-fold cross-validation accuracy of 94.71%, configured with

16 input nodes, 9 hidden nodes, and 2 output nodes. This result is obtained with
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the default seed value for partitioning the data set into 10 stratified folds.

The processing unit is configured according to the prior experiments examining

the influence of the hyperparameters on the observed leave-one-out cross-validation

accuracy ratings. The maximum reported leave-one-out cross-validation accuracy

is 93.7931% with the ternary input encodings and masking matrix configuration

discussed in Section 5.3.2. This is achieved with multiple values of masking level l

and exponential weight w, but l = 16 and w = 4 are selected for this experiment.

Figure 5.12 depicts a histogram plot of the 1,000 observed 10-fold cross-validation

accuracy ratings. The histogram bars have width 0.25 and height proportional to the

frequency of the accuracy ratings. Table 5.13 summarizes some statistical measures

reported in this experiment.

Figure 5.12: Histogram plot of the 1,000 stratified 10-fold cross-
validation accuracy ratings of the THPAM processing unit applied to
the Congressional Voting data set. The bar heights are proportional to
the frequency of the observed accuracies, and the bar widths are 0.25.
The input encoding scheme discussed in Section 5.3.2 is used, and mask-
ing generalization is utilized with l = 16 and w = 4.
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Table 5.13: Summary statistics of the 1,000 stratified 10-fold cross-validation ac-
curacy ratings of the THPAM processing unit applied to the Congressional Voting
data set. The input encoding scheme discussed in Section 5.3.2 is used, and masking
generalization is utilized with l = 16 and w = 4.

Statistic Accuracy (%)

Mean 93.3301± 0.3868
Maximum 94.4828
Minimum 91.9540
Mode 93.3333

The processing unit is capable of outperforming the Naive Bayes algorithm,

and the best reported performance of 94.4828% approaches that of the multilayer

perceptron performance. On a machine running macOS version 10.12.4 with 16GB

1866 MHz PC3-14900 LPDDR3 memory and a 2.0 GHz dual-core Intel Core i5

Skylake (6360U) with 4 MB L3 cache, the default WEKA version 3.8.1 implementa-

tion of the multilayer perceptron performs 500 iterations to learn the entire training

set over 0.68 seconds. A serial implementation of THPAM in C running on the

same hardware requires only a single iteration to learn the data set over 0.03 sec-

onds. Similar to the Car Evaluation data set performance, there is opportunity

for improvement and the results are promising in these initial benchmark studies.

The generalization capability of the processing unit can be improved by devising

an automatic method of selecting masking matrix weights according to the relative

significance of the input features in determining the class labels. The performance

of the J48 decision tree algorithm shows that such a mechanism would be critical in

the performance on this data set. This decision tree is constructed according to the

relative information gain of splitting the data set based on the feature values, giving
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precedence to features which are most influential in determining the class labels.

Such a procedure is manually demonstrated to be possible via the masking matrix

weights as discussed in the next section pertaining to the UCI Iris data set.

5.4 UCI Iris Data Set

The UCI Iris data set [5] consists of real-valued measurements regarding se-

lect characteristics of iris plants. These characteristics include sepal length, sepal

width, petal length, and petal width, all provided in centimeters, which are used

in classification of the iris plant types. There are three classes, namely iris setosa,

iris versicolour, and iris virginica, all of which are distributed equally among

the 150 data set instances. Therefore, there is no majority class and the lower

bound on predictive accuracy is 33.3333% with random guessing. The presence of

real-valued data poses a challenge for applying the THPAM processing unit since

real-valued data is not as conveniently represented in a binary or bipolar encod-

ing. Nevertheless, an attempt at this is made in this work, and though the method

may be unconventional, there is a novel way of constructing the entry masking and

flipping matrices to better suit the circumstance of this experiment.

Table 5.14 lists each of the data set features, their minimum and maximum

values, and the number of values that are possible for each feature. Although the

data is real-valued, only two significant digits are reported and the range of poten-

tial values is not substantial. This is advantageous in producing an input encoding

suitable for the processing unit. For each feature, we rank the values in increasing

106



Table 5.14: Iris data features, their minimum and maximum values, and the number
of possible feature values.

Feature Minimum value Maximum value Number of values

sepal length 4.3 7.9 37
sepal width 2.0 4.4 25
petal length 1.0 6.9 60
petal width 0.1 2.5 25

order. For example, the minimum value of 4.3 for the sepal length feature would

have rank 0, and the maximum value of 7.9 would have rank 36. The assigned

numeric ranks are then encoded into their standard binary representation, except

zeros are replaced with negatives to produce bipolar encoded vectors. These bipo-

lar encodings increase in significance from left to right, where the leftmost entry

represents 20 = 1 and the rightmost entry represents 24 = 16 or 25 = 32 depend-

ing on the number of ranks required to entirely represent the feature. Given the

number of possible values of each feature listed in Table 5.14, the sepal length

and petal length features require 6 bits of representation, and the sepal width

and petal width features require 5 bits of representation. Thus, a total bipolar

input size of 22 entries is necessary to encode the data set instances in this manner.

This input size is too large for a serial processing unit program to process within a

reasonable amount of time, but the execution of the parallelized implementation of

the processing unit on a parallel computing cluster suffices to overcome this burden

with relative ease.

Similar to the previously examined data sets, the Iris data set lacks distinct

training and testing sets, so leave-one-out cross-validation is selected to measure
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the performance of the processing unit. The three class labels are represented with

one-hot encoded bipolar vectors, and class predictions are produced by constructing

the empirical probability then selecting the class associated with the entry that has

greatest probability relative to the other entries. Any ties are broken by choosing

a class in the following order: first iris virginica, second iris versicolour,

and third iris setosa. Since there is no majority class, breaking ties in this order

may not be better than any other order, but having any such order is beneficial

for producing consistent results. The subsequent subsections each examine the per-

formance of the processing unit on the aforementioned bipolar encoding of the Iris

data set, with a distinct difference to be discussed.

5.4.1 Bipolar Encoding

In this experiment, the processing unit performance is measured on the bipolar

encoding of the data instances in the usual manner. Table 5.15 lists the results of

this experiment with varying exponential weight w and masking level l with entry

masking (a) and entry flipping (b) generalization methods. The results reveal some

unusual behaviors pertaining to the adjustments of the hyperparameters. Overall,

it appears that increasing w has little impact on the performance, and sometimes

the performance declines as observed with masking level l = 22. The performance

appears to be best when w = 0, removing the masking level weights entirely. This

is especially notable with entry flipping generalization (b) which has no inherent

favoring of lower masking levels. The maximum observed accuracy of 93.3333% is
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achieved only with entry flipping generalization with l = 6 and l = 7 with very

little or no exponential weight. Masking matrix generalization fails to achieve the

same maximum accuracy with the hyperparameter values considered in this exper-

iment. Figure 5.13 plots trend lines of the test accuracy over the masking level for

some select values of w with entry masking (a) and entry flipping (b). The plots

more clearly show that nonzero w appears to do more harm than good, except of

course with the entry flipping matrix when l is fairly large. Figure 5.14 compares

the performance of entry masking with entry flipping when l = 22 with varying

exponential weight, showing that with both methods achieve similar performance

when w is sufficiently large, even if this parameter may be detrimental for this data

set encoding.

The unusual findings in this experiment may be attributed to the encoding

method used. In machine learning and data analysis, it is generally expected that

some data features may have more significance than others in data classification.

This is clearly true for the bipolar encoding used herein, since the bits in the binary

representation of numbers do not have equal significance. The bit associated with

20 = 1 has substantially less importance than the bit associated with 25 = 32, and

the bits in between certainly reveal similar disproportions. However, the processing

unit performs generalization in an entirely neutral manner without favoring partic-

ular input entries over others. At the present stage in the theoretical development

of the processing unit, it is not yet equipped with an automatic method of detecting

the significance of input features as they relate to the output. If such a method could

be conceived, the masking matrix may be constructed in a manner which reduces
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the masking level weight for entry maskings which hide these significant features in

order to discourage such masking. The next experiment examines a manual usage

of these masking entry weights which leads to some improvement in the processing

unit performance.
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Figure 5.14: Learning curves of a processing unit applied to bipolar
encoded Iris data by exponential weight w with masking level l = 22.
Accuracy ratings are shown for entry masking generalization and entry
flipping generalization. Quantity w denotes the exponent of the masking
level weight 2−wj, where j denotes the number of masked entries from 0
to masking level l.

5.4.2 Bipolar Encoding with Custom Masking Weights

In this experiment, the processing unit learns the same bipolar encoding repre-

sentations of the Iris data, but the generalization mechanisms are tweaked to better

account for the disproportionate significance of the encoding entries. Each of the

four features are encoded in standard binary notation, but with −1 in place of 0 to

create bipolar vectors. There are 5 or 6 bipolar bits per feature, and each successive

bit doubles in the significance compared to the previous bit. The generalization

mechanisms are unable to detect this, so the masking of a bits representing 20 = 1

and 25 = 32 have equal weight. A more reasonable arrangement would be to give
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substantially less weight to the bit entry for 32 than the bit entry for 1.

Table 5.16 lists a weighting scheme for up to 6 bits of this bipolar representation

[16]. After some manual trial and error, this weighting method appeared to best

counterbalance the disproportionate significance of the bipolar encoding bits. To

summarize, the two leftmost bits of each feature denote values of 1 and 2, which are

assigned entry masking weight 1 since these are not very substantial compared with

the subsequent bits. The bit associated with value 4 is assigned entry masking weight

2−w where w is an adjustable exponential weight. Each subsequent bit is assigned

entry masking weight proportional to the square of the previous masking weight,

which reflects the general masking level weights seen in previous experiments. This

weighting method is applied in the construction of the masking and flipping matrices,

where these weights are applied to their respective single bit entry maskings. If an

entry masking masks more than one bit, then the associated weight is the multiple of

the single bit entry masking weights. For example, if the bits of entries representing

values 16 and 32 are both masked, then that entry masking will receive weight

2−3w2−4w = 2−7w. Each of the four encoded features are masked according to this

custom weighting method.

Table 5.16: Iris data encoding values and associated entry masking weights.

Entry value 1 2 4 8 16 32

Weights 1 1 2−w 2−2w 2−3w 2−4w

Table 5.17 records the leave-one-out cross-validation results of the processing

unit applied to the bipolar encoded Iris data set with the custom masking weights
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for entry masking (a) and entry flipping (b). These results should be compared to

the previous experiment in which the standard masking level weights are utilized.

Comparable performance can be seen when l ≤ 3, but greatly improved generaliza-

tion performance can be observed as l increases. Overall, the accuracies observed in

this experiment reflect the expected relationship between l and w that was demon-

strated in experiments on other data sets. Specifically, l is optimized to achieve the

best performance, but any further increasing of l can be counterbalanced by also

increasing w. This behavior is plotted in Figure 5.15 for entry masking (a) and entry

flipping (b) with w = 0, 1, and 5. It is notable that the processing unit is capable

of achieving the maximum observed accuracy of 96.6667% with entry masking, but

this same result could not be attained with entry flipping. As usual, both gener-

alization methods perform approximately the same when w is sufficiently large, as

indicated in Figure 5.16 with l = 22. However, entry masking appears to maintain

a slight advance over entry flipping, since the maximum observed accuracy with en-

try flipping is 95.3333%. Although not reported here, further increasing w beyond

5 did not remove this difference in comparative performance. The reason for this

difference is unclear, but it may be that the masking matrix better suits the custom

masking level weights selected for this experiment. In handcrafting these masking

level weights, the objective was to maximize the processing unit accuracy while us-

ing entry masking rather than entry flipping. The same masking level weights were

then applied in the construction of the flipping matrix without consideration that

another set of custom weights might be more suitable for the performance of entry

flipping.
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The Iris data set experiments demonstrate an important finding regarding the

processing unit generalization methods. These methods are unable to detect feature

significance and adjust the masking level weights accordingly, but these weights can

be manually adjusted to fulfill the objective of maximizing predictive accuracy. As

THPAM matures in its development, it may be necessary to conceive of an automatic

method of detecting feature significance and constructing the generalization matrices

with appropriate entry masking or entry flipping level weights.
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Figure 5.16: Learning curves of a processing unit applied to bipolar
encoded Iris data by exponential weight w with masking level l = 22.
Accuracy ratings are shown for entry masking generalization and entry
flipping generalization.

5.4.3 Comparison with Historical Results

In this experiment, stratified 10-fold cross-validation is again used to produce

a sample mean accuracy rating with which to compare to known historical results.

The WEKA implementations of the J48 decision tree, Naive Bayes, and multilayer

perceptron algorithms are reported to achieve 10-fold cross-validation accuracy rat-

ings of 96%, 96%, and 97.33%, respectively [4]. These results are reproducible with

WEKA 3.8.1, and the multilayer perceptron result is obtainable with the automatic

configuration of 4 input nodes, 3 hidden nodes, and 3 output nodes. The C4.5

decision tree algorithm is reported to achieve 10-fold cross-validation accuracies of

94.33% and 94.67% with boosting and bagging, respectively [11]. There are also re-
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ports of 10-fold cross-validation accuracy ratings of 97.333% with a one-against-one

support vector machine (SVM) ensemble using the radial basis function (RBF) ker-

nel, 96.667% with a one-against-all SVM ensemble using the RBF kernel, 97.333%

with a one-against-one SVM ensemble using the linear kernel, and 96.000% with a

one-against-all SVM ensemble using the linear kernel [8].

The processing unit is configured according to the prior experiments examining

the influence of the hyperparameters on the observed leave-one-out cross-validation

accuracy ratings. The maximum reported leave-one-out cross-validation accuracy is

96.6667% with the bipolar encodings and masking matrix configuration discussed in

Section 5.4.2. This is achieved with multiple values of masking level l and exponen-

tial weight w, but l = 22 and w = 5 are selected for this experiment. Figure 5.17

depicts a histogram plot of the 1,000 observed 10-fold cross-validation accuracy rat-

ings. The histogram bars have height proportional to the frequency of the accuracy

ratings and width roughly 2
3

to eliminate gaps present in the accuracy data. Note

that of the 150 Iris data instances, an incorrect classification reduces the observed

accuracy by 1/150 or roughly 0.6667%, producing gaps in the histogram plot if the

bar width is not suitably selected. Table 5.18 summarizes some statistical measures

reported in this experiment.

The experimental data demonstrates that the processing unit is capable of

performing on-par with several well-known learning algorithms in the current liter-

ature. The accuracy rating of 96.6667% occurs with frequency 430 out of the 1000

10-fold cross-validation accuracy samples, and the best reported accuracy rating of

98% compares well with the prior historical results. On a machine running macOS
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Figure 5.17: Histogram plot of the 1,000 stratified 10-fold cross-
validation accuracy ratings of the THPAM processing unit applied to
the Iris data set. The bar heights are proportional to the frequency of
the observed accuracies, and the bar widths are roughly 2

3
. Masking

generalization is used with according to the weighting scheme discussed
in Section 5.4.2 with l = 22 and w = 5.

version 10.12.4 with 16GB 1866 MHz PC3-14900 LPDDR3 memory and a 2.0 GHz

dual-core Intel Core i5 Skylake (6360U) with 4 MB L3 cache, the default WEKA

version 3.8.1 implementation of the multilayer perceptron performs 500 iterations to

learn the entire training set over 0.08 seconds. A serial implementation of THPAM

in C running on the same hardware requires only a single iteration to learn the

data set over 1.27 seconds. This discrepancy in the observed run times between the

multilayer perceptron and the processing unit can be explained by the fact that the

multilayer perceptron is capable of processing the four real-valued inputs directly

rather than having to encode them as 22-dimensional bipolar vectors. There cer-

tainly is room for improvement in the overall mean accuracy rating observed with

the processing unit, and there is yet a strong method of improving this further in

121



Table 5.18: Summary statistics of the 1,000 stratified 10-fold cross-validation accu-
racy ratings of the THPAM processing unit applied to the Iris data set. Masking
generalization is used with according to the weighting scheme discussed in Section
5.4.2 with l = 22 and w = 5.

Statistic Accuracy (%)

Mean 96.1493± 0.8431
Maximum 98.0000
Minimum 91.3333
Mode 96.6667

future work. Recall that the masking level weights in the masking matrix construc-

tion were manually customized so that the relative significance between the bipolar

encoded input entries could be better accounted for. Since this was performed man-

ually over few options, it is likely that these weights are not optimal despite the

considerable improvements in the observed leave-one-out cross-validation accuracy

ratings. An automatic method of determining these weights over a greater range

of values would yield further performance improvement on the Iris data set and in

other applications.

5.5 Summary

The THPAM processing unit implementation was applied to sample data sets

from the UCI Machine Learning Repository in order to examine its performance on

various data types and with several data encoding methods. On categorical data, it

was demonstrated that the processing unit achieves optimal predictive performance

when the feature categories are encoded in a manner that reflects their implied or-
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dering in their ranking via Hamming distances, if any such ranking exists. If the

data set contains missing values, the bipolar requirement on the input should be

relaxed to allow the missing values to be represented with zeros. If data or data

encodings contain features which are more significant than others, generalization

performance can be improved by manually adjusting the masking level weights so

that the masking of these features is discouraged. Generally, the entry masking and

entry flipping mechanisms are able to achieve comparable performance providing

the exponential weight parameter is sufficiently large. It was also observed that

maximum predictive accuracy can be attained even when the masking level is se-

lected to be the input dimension, again as long as the exponential weight is large

enough to counterbalance the presence of higher level entry maskings.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Backpropagation based artificial neural networks (ANN), namely multilayer

perceptrons, convolutional neural networks, and deep belief networks, are at the

forefront of machine learning research and application, serving reliably for many

purposes of pattern recognition, classification, function approximation, and signal

processing. However, these ANNs suffer from such shortcomings as difficult training,

lack of unsupervised learning ability, and ineffective online learning. The backprop-

pagation based ANNs loosely imitate functional clusters of biological neurons, but

biological plausibility is not strictly adhered to in the structure of ANNs. Tempo-

ral hierarchical probabilistic associative memory (THPAM) is a functional model of

biological neural networks that is intended to develop into a learning machine for

overcoming these shortcomings.

This dissertation involves the supplemental development and examination of

the processing unit as a learning machine. The entrywise product between ternary

vectors is demonstrated to be equivalent to the entrywise product of their orthogonal

expansions. This enables a new method of constructing masking matrices and an

alternative generalization method involving entry flipping. The entry flipping mech-

anism also can be applied in correlation learning to learn data clusters centered at
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a target input, and it can be used to equate the empirical probability formula to

a weighted sum which lacks the presence of orthogonal expansions. This may be

useful for simulating the performance of a processing unit on data sets consisting of

large input sizes, but it is unusable for online learning.

A parallel programming implementation of the processing unit architecture

is proposed in this work. The processing unit mechanisms largely rely on matrix

algebra and the orthogonal expansion representations of input vectors. Matrix alge-

bra computations are readily parallelizable with introductory knowledge of parallel

computing, but the orthogonal expansion implementation was unable to be entirely

parallelized. Scalability studies are reported herein, examining the speedup and

efficiency of the parallel implementation for fixed input sizes as more parallel pro-

cesses are utilized. The studies examine the performance of the parallel program

when running correlation learning and producing empirical probabilities on 10,000

arbitrary data instances. The program achieves suboptimal speedup and efficiency

due to the unparallelized portion of the orthogonal expansion, but the use of parallel

programming remains vital in reducing the run times from several hours to a few

minutes for sufficiently large problem sizes.

The predictive performance of the processing unit implementation is exam-

ined on sample data sets obtained from the UCI Machine Learning Repository.

Each data set consists of different data types, including categorical, binary, and

real-valued data, with which several encoding methods are considered to adequately

represent the data in the form of bipolar vectors suitable for the processing unit.

It is evident that Hamming distance relations between the encoded feature values
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significantly influence the predictive performance of the processing unit. Input data

should be encoded to reflect the natural ordering that exists between the feature

values, whether or not such an ordering is present. Cases of missing data entries can

be encoded by relaxing the bipolar restriction on the input vectors so that the miss-

ing data may be encoded with zeros, a natural extension of the utilization of zeros in

entry masking generalization. When data features are disproportionally significant

in determining the class label, it is apparent that the generalization mechanisms are

unable to detect such significance. The weights of the generalization matrices can

be manually adjusted to reflect the importance of particular features over others,

leading to greater predictive accuracy.

6.2 Future Work

There are a few processing unit mechanisms and applications proposed in

the original publications which remain unexamined in this work. Processing units

may not produce the orthogonal expansion of the entire input, but rather they

may produce several orthogonal expansions on randomly selected subsets of the

input. This would alleviate the curse of dimensionality imposed by the orthogonal

expansion algorithmic complexity, so this construction should be examined and, if

need be, further developed to perform comparably with the results included in this

work. It is also proposed that the processing unit may perform unsupervised learning

by constructing pseudorandom output labels as learning is performed. This must

especially be critically examined and developed in order to fully realize THPAM
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as a recurrent hierarchical network of processing units. Processing units connected

to the input are assigned to perform unsupervised learning on subsets of the input

data, and the processing unit outputs subsequently serve as input in a new layer

of processing units. This structure is theorized to detect and recognize objects and

shapes within images, and it could perform dimensionality reduction between layers,

enabling its application on more practical and interesting data sets.
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