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Abstract: We study SHG from metallo-dielectric multilayered structures 
with particular attention to the role played in the strong enhancement of 
generation process by the geometry of the elementary cell and by the 
excitation of short-range/long-range plasmons  
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1. Introduction  

SHG from metal surfaces in the non-plasmonic regime has been studied since the 
beginning of nonlinear optics [0] in the 60s. Nevertheless the subject of plasmonic SHG was 
addressed just several years later in 1974 [2] when SH from a single layer of silver in the 
Kretschmann geometry was studied both experimentally and theoretically. In this paper we 
analyze plasmonic SHG from metal/dielectric periodic stratifications. In particular we study 
SHG from structures made of Ag (silver) and MgF2 (magnesium-fluoride) due to the 
particular simple procedure to grow these materials with standard sputtering or thermal 
evaporation techniques. 

2. Results and Discussion 

Let us start our analysis by describing in Fig.1 the types of geometries studied.  
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Fig. 1. MgF2/Ag multilayered structures are grown on a hemi-cylindrical prism. 
The output medium is air. a) Symmetric elementary cell (MgF2/Ag/MgF2). b) 
Asymmetric (MgF2/Ag). c) Asymmetric (Ag/MgF2). d) Symmetric 
(Ag/MgF2/Ag). In the figures are also represented the input fundamental 
frequency (FF) pump field (λ=800nm, incident angle ϑ) and the reflected FF 
and SH fields. 
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The calculations are based on the theoretical model that we have developed in Ref. [3]. 
Under TM polarization, the Helmholtz equation for the H-field at the SH can be written as 
follows (see Ref. [3] for more details): 
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In Eq.(1) we have neglected the volume quadratic nonlinearity of metals (Lorentz term) 
[3] and just considered their surface nonlinearity (ds

(2)=10-18m2/V) because in the plasmonic 
regime it is the only one that can be efficiently excited. The results of the conversion 
efficiency are summarized in Table 1.  
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Tab. 1. Configuration at which the maximum conversion efficiency (η) of the reflected SH at 
λ=400nm is reached. N is the number of elementary cells. dAg and dMgF2 are the total thickness 
of the materials in the elementary cell. The input intensity is 6GW/cm2.  

These results show that the conversion efficiencies can be up to three orders of magnitude 
greater than the conversion efficiencies experimentally found and theoretically predicted in 
Ref [3] in the non-plasmonic regime. Also from Table 1 one realizes that there are three 
angles at which the maximum conversion efficiencies are achieved: ϑ~670, ϑ~630, ϑ~830 

which correspond respectively to the excitation of single interface plasmons (ϑ~670), long-
range (ϑ~630)/short-range (ϑ~830) plasmons. 

3. Conclusions  

We have studied SH generation in the plasmonic regime for Ag/MgF2 structures and found 
three orders of magnitude enhancement with respect to the non-plasmonic regime. Finally we 
would like to point out that our calculations also show that there are still vast margins of 
improvement for the conversion efficiencies by considering more sophisticated, non-periodic 
structures and by carefully choosing the output medium. 
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