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ABSTRACT
The Min-Hashing approach to sketching has become an impor-
tant tool in data analysis, search, and classi�cation. To apply it
to real-valued datasets, the ICWS algorithm has become a sem-
inal approach that is widely used, and provides state-of-the-art
performance for this problem space. However, ICWS su�ers a com-
putational burden as the sketch size K increases. We develop a
new Simpli�ed approach to the ICWS algorithm, that enables us to
obtain over 20x speedups compared to the standard algorithm. The
veracity of our approach is demonstrated empirically on multiple
datasets, showing that our new Simpli�ed CWS obtains the same
quality of results while being an order of magnitude faster.
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1 INTRODUCTION
The well known Jaccard similarity provides a valid kernel for mea-
suring the similarity between sets. Given one set S and a second
set O , it simply returns the ratio of their intersection over their
union, J (S,O) = |S∩O ||S∪O | . Seminal work by Broder introduced the
min-hashing idea, allowing J (S,O) to be computed accurately and
e�ciently by keeping only sketches of each set S and O , where a
sketch is a sub-set of the original sets [1–3].

Given a min-hash function Minhash, we can increase or decrease
the sketch size K to increase accuracy of the approximation or de-
crease the storage cost and compute time of the sketch. Algorithm 1
demonstrates its operation, and is used by all min-hashing algo-
rithms. This works because the probability of two sets producing
the same min-hash for a given seed (k) is equal to the Jaccard sim-
ilarity itself (i.e., ∀kP(Minhash(S,k) = Minhash(O,k)) = J (S,O)).
Min-hashing can thus be seen as a sampling method to compute
the similarity. Since the required min-hashes can be computed once
per set, and require only an equality check, they are often faster to
use in practice, especially for large systems.
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Algorithm 1 MinHash Approximation
Require: Two sets S andO that we want to compute the similarity

of.
1: s ← 0
2: for k ∈ 1, 2, . . . ,K do
3: if Minhash(S,k) = Minhash(O,k) then
4: s ← s + 1
5: end if
6: end for
7: return s/K

In this work, we are interested in applications in which items
from the set are weighted. That is to say, given an entry z ∈ S , we
associate with z a positive value given by w(S, z). We can then say
that ∀z ∈ S,w(S, z) > 0. If a value q < S , then w(S,q) = 0. The
Weighted Jaccard Similarity (WJS) (1), also known as the min-max
kernel, is the generalization of the J (S,O) to this use case, and
W JS(S,O) = J (S,O) when all weights are equal. While computing
min-hashes for approximating the Jaccard similarity can be done
in time O(D), where D is the number of items in the set [1, 2],
approximating the WJS requires a more expensive O(DK) time
per-set. Reducing the compute time required to construct these
hashes is the focus of this work. We obtain constant time speedups
of over 20x by mathematically simplifying the current approaches
to sketching the WJS and then exploiting this simplicity to produce
a simple and compact approximation.

W JS(S,O) =
∑
∀z∈S∪O min(w(S, z),w(O, z))∑
∀z∈S∪O max(w(S, z),w(O, z))) (1)

Manasse et al. [10] proposed the Consistent Weighted Sampling
(CWS) algorithm for the WJS problem. CWS produces a sketch of K
hashes directly from the weighted samples in the set. Each sample
in the sketch has a probability of collision with a sample from
another set equal to the WJS, which allows the WJS’s estimation by
taking multiple samples. This resulted in an ametorized O∗(DK)
time algorithm.

CWS was improved upon by Io�e [6] to produce the Improved
CWS (ICWS), which required only �xed constant time per hash, so
producing K hashes with a feature set of D features takes O(KD)
time per data point. ICWS is considered the state of the art for
approximating the WJS, as well as the L1 distance [6]. The ICWS
algorithm is presented in Algorithm 2.

The ICWS algorithms iterates through every item z in the set
S , and computes a value az for each feature. The minimum az
determines the min-hash, and returns it’s min-hash as a tuple of
two values. Each value must be the same to count as a match. The
value of az is stochastic, which is necessary that di�erent entries
z ∈ S will be selected for di�erent hash indexes k ∈ K . To ensure
that two di�erent sets S and O select the same values when equal,
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the Pseudo Random Number Generator (PRNG) is seeded using the
feature z and hash index k .

Algorithm 2 ICWS
1: procedure Minhash(Weighted Set S , hash index k)
2: for all z ∈ S do
3: Seed PRNG with tuple (z,k)
4: rz ∼ Gamma(2, 1)
5: cz ∼ Gamma(2, 1)
6: βz ∼ Uniform(0, 1)
7: tz ←

⌊
logw (S,z)

rz + βz
⌋

8: yz ← exp(rz (tz − βz ))
9: az ← cz

yz exp(rz )
10: end for
11: z∗ ← argminz az
12: y∗ ← yz∗

13: return tuple z∗, tz∗
14: end procedure

While e�ective, the ICWS algorithm’s O(KD) cost can make it
prohibitively expensive when large hash sizes K are necessary, or
when then the number of features D is large. For most applications,
values ofK in the hundreds or thousands is routinely necessary [14],
and large values of D are common for the information retrieval
problems ICWS is often applied to [2, 13]. For this reason a number
of works have looked at improving the runtime e�ciency of the
ICWS algorithm. Assuming all values are stored in 32-bit �oats
and integers,1 the ICWS algorithm requires 2K memory for the
sketch, and �ve random values sampled from the uniform distribu-
tion. This value of 5 comes from the two Gamma distributed values
rz and cz , which are computed as x = − logu1 − logu2 , where
u1,u2 ∼ Uniform(0, 1). Thus �ve uniform-random numbers need
to be generated at each step, which has a signi�cant cost [15]. In
addition to these memory and sampling requirements, a non-trivial
amount of expensive �oating point operations are necessary. Lines
3 through 9 of Algorithm 2 requires �ve logarithms, two exponen-
tiations, and four multiplications/divisions. We count all of these
operations as they tend to be the most expensive to perform, and
often overshadow the cost of �oating point additions/subtractions
or basic integer arithmetic.

In this work, we will introduce a simpli�ed variant of the ICWS al-
gorithm that improves hash creation time by an order of magnitude.
Our Simpli�ed CWS strategy continues to work in all scenarios that
ICWS does, such as when not all features are known in advance,
or there is no cap on potential feature value magnitude. Further,
existing techniques to improve ICWS’s runtime are compatible with
our approach.

Our improved runtime comes from reducing the work per feature
and hash (lines 3-9) down to just one �oating-point multiplication.
This simpli�cation is inspired by prior work that allows us to return
a sketch requiring only K memory units, which we will review
with other related work in section 2. We will then derive our
new Simpli�ed CWS algorithm in section 3, and provide extensive
1The value tz∗ is technically unbounded in size, but in practice would rarely exceed a
32 bit integer value.

empirical evidence of its quality and e�ciency in section 4. Finally,
we will conclude in section 5.

2 RELATEDWORK
The original Con�dence Weighted Sampling algorithm was intro-
duced by Manasse et al. [10], providing the �rst direct sketching
method for the Weighted Jaccard Similarity. Earlier work required
reducing the WJS problem to the standard un-weighted Jaccard,
but this results in an explosion in the feature set size and is un-
wieldy in practice [5]. The CWS algorithm was quickly improved
upon by Io�e [6], denoted as the seminal ICWS algorithm. This ap-
proach works with arbitrary non-negative weighted sets as inputs
and requires no communication between points (i.e., every datum
can be hashed independently of any other information). However,
the computational burden of this approach is still non-trivial. For
this reason Io�e also proposed to reduce the set of each input to
only the 200 most frequently selected features. This approach was
shown to work well heuristically and gain a speedup of 150x. How-
ever this approach only allows a speedup at inference time, as the
dataset must �rst be hashed (or “sketched”) to determine the most
frequently selected features. This necessarily re-introduces commu-
nication costs. In addition, the number of most frequently selected
features that need to be kept will be problem dependent. We note
that this inference speedup strategy is compatible with most ICWS
extensions, including the one presented in this work.

A number of other works have attempted to remedy the compu-
tational constraints of the ICWS algorithm in various ways. Most
of these works evaluate only one or two scenarios: classi�cation
performance, nearest-neighbor precision, or similarity bias. We
evaluate all of these scenarios, which will be detailed further in
section 4.

Li [7] improved upon ICWS’s memory requirements for storage
by introducing the 0-bit CWS strategy. The normal CWS sketch
contains a sequence of tuples (z∗, tz∗ ), and both values must be
equal to consider the pair a match. Li’s insight was that if z∗ match
or don’t match between two sketches, it is most probable that tz∗
will similarly either match or not. Thus the tz∗ can be dropped,
while maintain the same �delity as ICWS in practice. This does
not meaningfully improve the runtime of ICWS in most cases, but
does reduce the memory needed for storage by half. We refer
to this approach as ICWS-0Bit, and it is the inspiration for our
improvements. Li’s evaluation was done for classi�cation and word
bias, two of the three scenarios we evaluate.

Further work has been done to carefully analyze the ICWS
algorithm, and remove redundant steps to reduce the computa-
tional requirements while maintaining a mathematically equiv-
alent algorithm. Wu et al. [15] showed that ICWS could be re-
duced to requiring only four uniform-random samples from a Pseu-
dorandom number generator (PRNG) instead of �ve, four loga-
rithms/exponentiations, and �ve �oating point multiplications/divi-
sions per feature and hash. Evaluating on classi�cation and nearest
neighbor precision (two of the three scenarios we evaluate), they
found this reduced runtime by 20–33%, depending on the dataset,
and noted the importance of reducing the number of PRNG calls
is especially critical as the dataset size increases. In this work, we
reduce the cost to just one �oating point multiply, require no PRNG
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calls, and obtain a minimum speedup of over 7x, and up to 28x,
dramatically improving upon recent results.

One of the more novel approaches to the WJS problem was pre-
sented by Shrivastava [13], who developed a new approach that
was not based on the ICWS or CWS algorithms. Their approach’s
runtime is dependent on the average similarity between points,
as well as the largest maximum magnitude per feature. For this
reason communication is needed to determine the maximum possi-
ble feature value of all possible features before the algorithm can
start. This limits their approach’s applicability to scenarios with
bounded magnitudes and where all features are known up-front.
For example, recent work in malware detection wouldn’t be able to
make use of this approach [12]. When applicable, Shrivastava [13]
showed 1500x–6000x speedup for some datasets. Shrivastava also
concluded that di�erent approaches to the WJS sketching problem
work best for di�erent data sets, and that ICWS should still be
preferred when the number of non-zero features is of a similar size
as the sketch size K . Shrivastava evaluates only estimation bias,
which is one of our three scenarios.

3 SIMPLIFIED CWS, 0-BITS WITH ONE FLOP
Now that we have reviewed the literature on the Improved Con�-
dence Weighted Sampling algorithm, we show how we can simplify
ICWS by extending the reasoning of previous work. In doing so
we can construct an implementation of our Simpli�ed ICWS that
will require minimal compute time while avoiding expensive PRNG
sampling.

3.1 Simplifying the ICWS Algorithm
Li [7] showed that the tz∗ term in the minhash tuple was not strictly
necessary to obtain a high quality approximation of the Weighted
Jaccard Similarity. By removing this value from the hash, the size
of the hash is reduced by half. Because this uses “zero bits” of the
tz∗ portion of the hash, it was termed the 0-Bit CWS. This leaves
only the selected feature index z∗ as the value from the hash itself.
This is made possible by the fact that the selected feature index z∗
is selected from the z with minimum az value, and thus already has
information regarding both tz and the feature’s weight.

Our contribution is the realization that if we are using this infor-
mation, we can relax the procedure given by Io�e [6] for the ICWS
algorithm’s consistency property, and thus, the algorithm’s imple-
mentation. Given a �xed z, βz and cz , the consistency property
is shown using the fact that tk∗ is a unique integer satisfying the
bounds logw (S,z∗)

rz∗
+βz∗−1 < tz∗ ≤ logw (S,z∗)

rz∗
+βz∗ . Because we do

not keep or use the tz∗ value, there is no practical need to maintain
this bound. Thus we propose to remove the �oor function used to
compute this value, changing it simply to tz ← logw (S,z)

rz + βz .
This change allows us to propagate several simpli�cations for-

ward through the ICWS algorithm. First, note that we get

yz = exp
(
rz

(
logw(S, z)

rz
+ βz − βz

))
= exp

(
rz

(
logw(S, z)

rz

))
= exp (logw(S, z)) = w(S, z)

This allows the immediate removal of one random variable βz , and
the substituting ofw(S, z) for yz to obtain az =

cz
w (S,z) exp(rz ) . With

some simple algebra we can re-write this term asaz = w(S, z)−1cz exp(−rz ).
This reduces the mathematical operations from two exponentia-
tions, a logarithm, and four multiplications/divisions to just one
exponentiation and two multiplications/divisions. However, four
samples from the uniform distribution and an additional four log-
arithms are still needed to produce cz and rz . Some minor ap-
proximations and reductions can allow us to remove an additional
exponentiation and a uniform random sample, at the cost of only
one additional multiplication (which is less expensive).

The uniformity property for ICWS was shown by determining
that the probability of selecting az is equal to w(S, z)−1 ∑

j w(S, j)
[6]. Given that cz exp(−rz ) is a value �xed for all sets S , we can show
that we maintain this uniformity property. This can be seen by
noting that az is scaled at a rate ofw(S, z)−1 by de�nition. Since we
select the minimum value of az , it corresponds with the maximum
value of yz , which as we have just shown, is w(S, z). The Gamma-
based terms are independent and so can be marginalized out, leaving
the probability of selecting a feature w(S, i) as w(S, i)/∑j w(S, j).
Thus we maintain the ICWS algorithm’s uniformity property with-
out issue.

Because we have altered one of the the values used in the sam-
pling process, our expectation is that this new simpli�ed approach
will not match the exact behavior of ICWS, where the approaches
we reviewed in section 2 do. But since the tz∗ was not required,
we do expect our new approach to provide similar accuracy and
performance in machine learning and information retrieval appli-
cations. At �rst glance, these simpli�cations may appear to provide
little more than what was obtained in prior work that reduced the
number of operations in the ICWS algorithm [15]. However, We
will show below that our simpli�cation allows for considerable
exploitation of the new form of az , allowing us to dramatically
reduce the cost of producing sketches.

3.2 Exploiting Simplicity for E�ciency
Now that we have simpli�ed the algorithm, we take critical note
that the new az de�nition has the w(S, z) term entirely separated
from the functions involving the random Gamma samples cz and
rz . Rather than sample these values as we observe each feature,
for each minhash k , we can pre-sample a pool of values from the
distribution de�ned by the cz exp(−rz ) term. We can use a higher
quality PRNG for this step, and the pool need only be sampled once
for the entirety of the application.

When iterating over the features, we can select the pre-sampled
value from the pool by using a much simpler Linear Congruential
Generator (LCG) style PRNG on the feature index z combined with
the minhash index k . This entire procedure can be found in Algo-
rithm 3, and reduces the ICWS algorithm down to only one �oating
point multiply per feature and hash. Because we have now dramat-
ically reduced the number of FLOPs it is worth noting what other,
less costly, operations are being done. This includes one integer
multiplication, one integer modulo operation, and a random-access
lookup.

In our implementation, we choose primes p1 = 1073741827 and
p2 = 1073741831. Making these values prime ensures that the
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Algorithm 3 Simpli�ed CWS (SCWS)
Require: An array T of length |T |, where T [i] ∼ cz exp(−rz ), and

large primes p1 and p2
1: procedure Minhash(Weighted Set S , hash index k)
2: b ← kp2
3: for all z ∈ S do
4: γ ← (zp1 + b) mod |T | . LCG style index selection
5: az ← w(S, z)−1 ·T [γ ] . The only FLOP needed
6: end for
7: z∗ ← argminz az
8: return z∗
9: end procedure

modulus operation will result in an index selected uniformly from
the pool’s size. Because our system has a 32 KB L1 data cache
size, we make the pool store 4000 �oating point numbers. This
ensures that the pool of values will remain in L1 cache, ensuring in
turn that the random access lookup will return quickly and keep
the procedure from stalling on a memory access. We will see in
section 4 that despite this small pool size, we continue to get high
quality results with our SCWS algorithm that closely match that of
ICWS, while being an order of magnitude faster.

4 EXPERIMENTS
We will now describe a number of experiments we performed to
validate our new SCWS algorithm, comparing it to the original
ICWS algorithm and the ICWS-0Bit algorithm we are inspired by.
Because we have made a change to the ICWS algorithm to simplify
it as a whole, we will see that our new approach does not closely
mimic the original ICWS behavior like ICWS-0Bit does. Instead
we gain a signi�cant speed advantage over both ICWS and ICWS-
0Bit, while having qualitatively similar results. We will empirically
demonstrate that SCWS: 1) continues to return an accurate estimate
of the WJS between two points, 2) allows one to e�ciently build
classi�ers using feature hashing, and 3) continues to provide good
precision in selecting the true nearest neighbors under the WJS. We
conclude our experiments with a test of the pool size to demonstrate
that it need not be tuned to any particular problem, and the default
size of 4000 is at or past the point of diminishing returns. All code
was implemented in Java using the JSAT library [11].

4.1 Accurate WJS via Word Similarity
One test for the quality of a CWS scheme was proposed in Li and
König [8], where the bias and variance of their approaches were
compared using the word document frequencies as the sets. We
replicate their approach because it provides a more challenging
case for our algorithms due to a heavier tail in the distribution of
words. This means the weights for each word in a given document
will have a greater variability, and thus better exercise the WJS
properties than many common datasets.

To make our protocol reproducible, we specify that we use the
20 News-groups corpus as our collection of documents. We use
a simple tokenization on non-alphabetic characters and convert
everything to lower-case. Each row corresponds to a document,
and each column to a speci�c word in the corpus. The values in the

matrix indicating the number of occurrences of a word in a given
document. Our feature vectors for each word are then the columns
of the generated data matrix.

For each word-pair, we record the true WJS similarity, and plot
the average di�erence between WJS and each of our CWS algo-
rithms, as we increase the sketch size k from 1 up to 1000. These
results can be found in Figure 1. As expected, we see the average
di�erence between WJS and the CWS varieties approach zero as the
value of k increases. Each experiment was run 1000 times to obtain
a high precision estimate. Because a sketch of size K also contains
a sketch of size K − 1, we exploit this to provide a point-estimate
across all values of K while keeping experimental evaluation time
reasonable.2
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Figure 1: Plots show the di�erence between each CWS al-
gorithm, and the true WJS. The dotted black line shows the
value of zero for a perfect estimate and our new SCWS is in
red. Above each �gure is the word-pair under test, with the
true WJS. The x-axis shows the sketch size K , and the y-axis
shows the bias of the WJS estimated provided by each CWS
compared to the true WJS score. All �gures share the same
legend.

2Generating a new sketch for every value of K would have resulted in an experimental
runtime of several months.
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Word pairs were selected to try to cover a diversity of scores and
behaviors. In each case, we can see that the ICWS-0Bit algorithm
almost perfectly follows that of the original ICWS, with some ex-
ceptions, like the “subsidies-settlements” pairing. SCWS clearly
does not track the ICWS in exact behavior, but shows the same gen-
eral characteristics. In some pairings, such as “United-States”, all
three track together usually, the trackings are close - even if SCWS
is slightly more or less accurate, such as “IBM-PC” and “Hong-
Kong”. Other cases, like “Car-Bike” and “Subsidies-Settlements”
show SCWS coming out ahead, though this is not always the case.

Given these results, we can conclude that SCWS is not an un-
biased estimate of the ICWS’s behavior, as it frequently does not
mimic it in the same way the ICWS-0Bit does. But more impor-
tantly, we can conclude that SCWS is empirically a high quality
estimate of the WJS that retains the �delity of ICWS’s estimates.
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Figure 2: Same as Figure 1, but x-axis replaced with average
time to construct the sketch (in milliseconds).

The quality of results is approximately equivalent between all
approaches in this test, a theme we will see in other sections as
well. The other pertinent issue to the user of any CWS, is how long
will it take to obtain some (minimal) level of accuracy? In Figure 1
we plotted the error in the approximated WJS with that of the true
WJS as a function of the sketch size. We can instead plot this error
with respect to runtime, as shown in Figure 2.

From this view of the data, our SCWS approach uniformly domi-
nates the other curves. The “United-States” word pair is particularly
illustrative. Considering just sketch size, all methods were perform-
ing at in indistinguishable level. When time becomes a factor, our
SCWS sketch construction is up 28.2 times faster to reach zero
bias compared to either ICWS variant. This speed advantage is
still present when we look at word pairs like “Hong-Kong”, where
ICWS initially has faster convergence to the true WJS. At sketch
size of K = 1000, SCWS achieved an absolute error of approxi-
mately 0.012, where ICWS achieved this same error rate at only
K = 680. Even with ICWS having a smaller sketch size, SCWS at
K = 1000 is 17.6 times faster to construct compared to ICWS at
K = 680. This strengthens our results, showing that even when
SCWS may require a larger sketch size for a particular dataset, the
speed advantage can still be an order of magnitude faster.

4.2 Learning with SCWS
We now demonstrate that our new SCWS is e�ective for building
binary and multi-class classi�ers. Following prior work, we will
compare the performance of our approach with that of a linear
SVM and a Kernel SVM using the exact WJS as its kernel [7], and
show the performance over a range of the regularization penalty C
that is common with the SVM. For each of our CWS algorithms, we
will use the hashing scheme of Li et al. [9] to create feature vectors
from CWS min-hashes. For their approach using 8-bit hashes and
K = 4096 for our sketch size, and use the features to train a Linear
SVM model. The 8-bit hashes with K = 4096 combination has been
found to give the best classi�cation results with diminished returns
when increasing the hash size further [7, 9]. All feature values
are re-scaled to the range [0, 1] to avoid any issues with negative
weights. Since not all of the datasets we will use have a testing set,
we will use the standard training set and estimate generalization
with 5-fold cross validation in all cases.

Table 1: Summary of each dataset used, all sub-sampled so
that N = 20,000. D Indicates the dimension of the dataset,
and ‘Density’ the percentage of non-zero values in the cor-
pus. The right-most column shows how many times faster
SCWS was compared to the faster of ICWS and ICWS-0Bit.

Time to Hash (seconds)
Dataset D Density ICWS ICWS-0Bit SCWS Speedup
a9a 123 11.3 186 185 9 19.9
cod-rna 8 99.8 106 107 11 9.0
covtype 54 22.1 160 160 12 13.1
MNIST 780 19.2 1,937 1,922 86 22.1
ijcnn1 22 59.1 173 175 22 7.7
w8a 300 3.9 161 162 10 15.4
RCV1 47,236 0.14 661 658 52 12.6
URL 3,231,961 0.004 1,516 1,491 105 14.6

We perform this evaluation using eight datasets with varying
numbers of features and sparsity patterns, all of which are obtained
from the LIBSVM website [4]. For each dataset we sub-sample the
corpus down to 20,000 samples so that the Kernel SVM will run in a
reasonable amount of time. These datasets can be found in Table 1,
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where we also show how long it took each of the CWS algorithms
to produce the feature vectors (running the CWS algorithm, and
hashing the returned sketch into the 8-bit feature representation).
Of particular note is the right-most column of Table 1, which shows
the relative speedup of SCWS compared to the faster of ICWS and
ICWS-0Bit. Across all datasets, SCWS is between 7.7 and 22.1 times
faster.

The results of our approach can be seen in Figure 3, where the
performance of our SCWS is comparable to that of ICWS and its
0-bit variant. In some cases SCWS has equal, slightly worse, or
slightly superior performance compared to ICWS — depending on
the value of C and the dataset under consideration. In most cases
we can see the CWS algorithms outperform the linear SVM model,
and often equal or outperform the accuracy of the WJS kernelized
SVM. Tests were done over a large range of regularization values
withC ∈ [10−3, 102]. This range proves informative across datasets,
such as a9a, in which the CWS approaches matches the best kernel
and linear SVMs when given a strong penalty of 10−3, but drops
quickly as C increases. Similarly, all CWS have consistently high
performance on the IJCNN corpus, and are beaten by the WJS kernel
only for values of C ≥ 10.

Overall, we argue that our SCWS algorithm shows a high �delity
in approximating the WJS, even if it does not mimic the exact be-
havior of ICWS in this case. This was predicted by our derivation
in section 3, as we noted that the SCWS does make a simplifying
change to the original ICWS algorithm. On some datasets, such as
RCV1 and MNIST, our new SCWS perfroms better. On datasets like
URL and a9a, all CWS approaches produce about the same score.
There are also datasets like Covtype and and IJCNN where SCWS
performs slightly worse. In each case the standard deviation is
shown as a translucent shaded region of the same color, which indi-
cates that the variability in performance is also consistent for each
approach on each datasets, even as the value of the regularization
parameter C changes.

We note that in the worst case our new SCWS approach was
only 7.7 times faster than ICWS in creating the sketch and creating
the 8-bit feature vectorization scheme of Li et al. [9]. Comparing
ICWS and SCWS in this way is giving an advantage to ICWS, as
the vectorization scheme has a similar intrinsic cost regardless of
how the sketch was created. As the average number of non-zeros in
the dataset increases, so does the relative advantage of our SCWS
approach. For instance, on the MNIST dataset, we can see 22 fold
speedup of our new SCWS compared to ICWS. This is a dramatic
improvement over prior CWS works, which were able to obtain
improvements of no more than 40% in execution time [15].

4.3 Nearest Neighbor Precision
In this third test of the e�ectiveness of our approach, we examine
the precision of each CWS algorithm in correctly returning the
k-nearest neighbors (k-NN) of a point compared to the true WJS.
Our experiments follow the protocol used by Wu et al. [15]. We
will select a random set of 1000 points from the corpus to use as our
query set, and search query points for their nearest neighbors. We
will use precision at κ as our target metric, measured for multiple
sketch sizes and for κ ∈ {1, 25, 100, 500}. (That is, we measure
the precision when returning the single nearest neighbors, the 25
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Figure 3: Performance of linearmodels built fromCWSalgo-
rithms, compared to a linear and kernel SVM. The x-axis C
shows the regularization parameter’s value, and the y-axis
shows the accuracy of 5-fold cross validation. Each panel
is with respect to a di�erent dataset, which is indicated at
the top of each sub-�gure. All �gures share the same leg-
end. Note each �gure has a di�erent scale. Each CWS based
method shows has an opaque highlited region indicating
±2σ (best viewed digitally and in color).

nearest neighbors, etc.) These tests will use the entirety of each
corpus, rather than sub-sampling like the previous experiment of
subsection 4.2.
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Figure 4: Plots show the precision of selecting the true k-NN according to WJS for each CWS. Above each �gure is the dataset
under test and neighbor limit. The x-axis shows the sketch size K , and the y-axis shows the precision achieved by each CWS.
All �gures share the same legend and scale.

We present a selection of these results in Figure 4, showing each
dataset twice at two of the four precision levels. This is due due
to space limitations, but showing the results for two levels allows
us to demonstrate that the results are consistent across values of
κ given a speci�c dataset. We �nd that the relative performance
of ICWS, ICWS-0 Bit, and SCWS are consistent across precision
levels.

In these results we can see the same trend that we saw in the
two earlier sets of experiments. SCWS has the same general per-
formance as ICWS, and may have higher, lower, or about equal
precision depending on the dataset. In all cases, the SCWS precision
is monotonically increasing as the sketch size increases, consistent
with it approximating the true WJS.

On the covtype, cod-rna, and IJCNN datasets, the precision of
SCWS trails that of ICWS. We also note for these datasets that
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Figure 5: Contour plots showing the impact on pool size with respect to learning performance. The y-axis shows the size of the
pool. Color shows the accuracy of the model at each point, and the x-axis is the regularization parameterC or precision rate κ.
First row is classi�cation problems, second row is nearest neighbor retrieval. Each panel is with respect to a di�erent dataset,
which is indicated at the top of each sub-�gure. All �gures share the same legend. The dashed line indicates the standard pool
size of 4000 used in all experiments.

the 0-Bit approach follows but under-performs compared to the
original ICWS algorithm. This may be an indication that while the
tz∗ term removed from the 0-bit approach (and the random variable
β tied to it) play an occasional role in improving the quality of
results, it is not strictly necessary. The datasets which elicit this
gap between ICWS and ICWS-0Bit are the only ones in which
SCWS has a meaningful drop in precision.

SCWS outperforms both variants of ICWS on the a9a dataset, and
dramatically so on the RCV1 corpus. In the former case, SCWS has
superior precision at low sketch sizes, and the approaches converge
as the sketch size increases. For the latter case, SCWS starts at the
same precision as ICWS for small sketches, but quickly outperforms
it as the sketch size increases.

4.4 Robustness of Pool Size
The runtime e�ciency of our new SCWS method comes from using
a pool T of pre-sampled values of the distribution ∼ cz exp(−rz ),
rather than generating new random values manually each time.
Values are selected from the pool by a simple indexing strategy
to mimic sampling from the true distribution, but requires only
one FLOP rather than multiple expensive PRNG generations and
multiple FLOPs. An important question regarding the e�ectiveness
of our approach is how big should this pool should be, and what is
the pool size’s impact on performance?

We can test this by repeating some of our experiments with
multiple pool sizes, to look at the change in performance as the
size of the pool increases and decreases as other parameters are
held constant. We do this for four classi�cation and four precision

problems. The results are presented in contour plots, where the
y-axis is the size of the pool, and the x-axis shows the regularization
parameter C of the SVM or the precision at κ, for each respective
task. The color indicates the accuracy or precision (both on a
[0, 1] scale), with respect to the two variables. The goal is that the
performance of our SCWS algorithm will be constant with respect
to the pool size, once we reach a minimum threshold for the pool’s
intrinsic size. This would indicate that enlarging the pool of values
results in no further improvement on the accuracy of our method.
This is also critical to practical deployment of our method. If the
performance was overly sensitive to the pool size, it would become
a parameter that needs estimation for every new problem, requiring
an expensive hyperparameter search. Because we can show that
the performance is consistent once a minimum pool size is reached,
this minimum size can be used for multiple problems by default,
thus avoiding the additional overhead and keeping our approach
practical.

As we can see in Figure 5, this behavior bears out in practice.
Above the black dashed line, which marks the pool size of 4000
used in all other experiments in this paper, we can see that the color
is nearly-constant in the vertical direction. This means for a given
regularization penalty C (or precision value κ), the performance at
the 4000 pool size is the same as for any larger pool size, and thus
there is no need to waste additional memory increasing the pool of
values. Indeed, in these plots it is clear that even a pool of 2 million
values would have had no positive impact on accuracy compared
to our much smaller, and more practical, 4000 limit.

When one looks at the classi�cation results in the �rst row on
the MNIST dataset, which has high accuracy for all values of C , we
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see this re�ected in the contour plot, with results quickly reaching
convergence at a pool size of only 512. The a9a and covtype datasets
had their best performance for small values of C , and again, the
behavior in the contour plots matches this expectation. For a9a in
particular, we obtain the same peak classi�cation performance even
when the pool has as few as 32 elements. Thus we can rely on the
returned result as being accurate and representative of the CWS’s
performance. Both a9a and covtype also show slight variability in
their performance at higher values of C , which is what keeps the
contour plots from having a perfectly uniform color. This is ob-
servable in Figure 3 as well, and so is not an issue with our pooling
strategy. We note further that the performance in the most critical
region of C , where the model obtains the best performance, is con-
sistent. The precision tests show a similar pattern of constituency
by the 4000 threshold.

Empirically we see that we could use a smaller pool size in many
cases, down to about 1,000 entries. We note this carries a particular
importance because this pool size is four times smaller than the
hash size itself. When combined with the fact that hundreds of
feature values will be indexed into the pool per hash, the pool’s
size might seem disproportionately small relative to the number of
values being accessed from it. That is to say, one’s �rst intuition
might be that the pool should be large enough such that values
rarely get re-used, but in our case, we will reuse every value in the
pool hundreds of times.

Another positive phenomena in these results is that the region of
the contour plot with the highest performance (darker-red color as
the value approaches 1.0) is also the region of the plot least impacted
by decreases to the pool size T . For example, on a9a SVM plot in
the top left corner we see performance stabilize for all values of κ
at a pool size of aboutT = 2048. However, the SVM obtains its best
accuracies when the regularize C ≤ 10−2, and in this region even
a pool size of T = 32 is e�ective. In future work, any parameter
tunning that needs to be done after the application of SCWS could
be speed-up by using an adaptive value of K .

It may seem unusual that performance across multiple datasets
should be satis�able with a single pool size T . We explain this be-
havior by interpreting the de�nition of az = w(S, z)−1cz exp(−rz )
of SCWS. As was previously discussed, the probability of feature z
being selected is directly proportional to the feature value w(S, z),
which can be extracted from this de�nition. The sampled cz exp(−rz )
term, which is what the pool contains samples of, then acts as a
random perturbation of the ordering — where the probability of
perturbation is determined by the distribution, and interacts with
the feature value w(S, z)−1. Thus the speci�c value returned by
cz exp(−rz ) becomes irrelevant; we need only enough distinct val-
ues to enable selecting the minimum az value in a manner consis-
tent with the true distribution. In this light, we believe it is easy to
understand how our approach can work while using such a small
pool size.

5 CONCLUSION
In this work we have derived a new Simpli�ed CWS algorithm,
which enables us to obtain signi�cant speedups up to 22 times
faster than the original ICWS algorithm. Through extensive ex-
perimental tests we have validated that our new SCWS approach

obtains results of equivalent quality. These tests have covered the
bias of the approximation on individual points, in ranked retrieval,
and classi�cation — ensuring that we have tested a wide gambit
of potential use cases. These tests also show that the trick we use
to make SCWS fast (i.e. pre-sampling all random values into a
�nite sized pool) is robust with respect to the pool size. This new
approach extends the utility and practicality of the seminal ICWS
algorithm. In future work, we hope to develop formal bounds on
the approximation error between WJS and our new SCWS.
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