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Abstract

The quantum speed limit is a fundamental upper bound on the speed of quantum evolution. However,
the actual mathematical expression of this fundamental limit depends on the choice of a measure of
distinguishability of quantum states. We show that quantum speed limits are qualitatively governed by
the Schatten-p-norm of the generator of quantum dynamics. Since computing Schatten-p-norms can
be mathematically involved, we then develop an alternative approach in Wigner phase space. We find
that the quantum speed limit in Wigner space is fully equivalent to expressions in density operator
space, but that the new bound is significantly easier to compute. Our results are illustrated for the
parametric harmonic oscillator and for quantum Brownian motion.

1. Introduction

It has recently been argued that already the first generation of real-life quantum computers will be able to
perform certain tasks exponentially faster than classical computers [1]. This so-called ‘quantum supremacy’ [2]
rests in the fact that loosely speaking quantum state space is exponentially larger than the classical computational
space, and hence significantly less operations are necessary to perform the same computation. However, the
working principles of quantum computers and classical computers are fundamentally different, which makes it
not immediately clear how to quantify the ‘quantum speed-up’ [3]. To make matters even more involved, in the
theory of quantum computation ‘time’ is not actually a physical time, but rather a synonym for the ‘number of
computational operations’ [3]. The more practical question is, however, how fast a quantum computer could
actually operate.

To address this issue a somewhat opposite approach has been developed in quantum dynamics, where the
notion of a quantum speed limit has found wide-spread prominence. Whereas in the theory of quantum
computation one is after characterizing quantum speed-ups—the quest for faster and faster computations with
less and less single operations—the quantum speed limit sets the ultimate, maximal speed with which any
quantum system can evolve. This means, in particular, that every single quantum operation takes a finite,
minimal time to be accomplished—and thus even quantum computers will not be able to achieve any arbitrary
speed-ups. This quantum speed limit originates in the Heisenberg indeterminacy principle [4, 5],

AEAt Z /i /2. However, more than just being another expression of quantum indeterminacy the quantum
speed limit is a fundamental property of quantum dynamics as highlighted by famous debates between Einstein
and Bohr [6].

The first rigorous treatment was propsoed by Mandelstam and Tamm [7], who showed that the minimal
time a quantum system needs to evolve between orthogonal states is bounded from below by the variance of the
energy, Tos. = 7/ /2AE, where AE = ((H?) — (H?))"/2. Since, however, the variance of an operator is not
necessarily a good quantifier for dynamics [8], Margolus and Levitin [9] revisited the problem and derived a
second bound on the quantum evolution time in terms of the average energy E = (H) — E, over the ground
state with energy E,, 7qs1, = 7/ /2E. It was eventually realized that these two bounds are not independent, and
that only the unified bound is tight [ 10].

Nowadays, it has been established in virtually all areas of quantum physics [11-16] that the quantum speed
limit [17-20], sets a fundamental upper bound on the speed of any quantum dynamics. In particular in recent
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years, the quantum speed limit has been extensively studied and generalized for isolated [21-26] and open
[27-39] quantum systems. The renewed and concentrated interest was inspired by three letters [27-29], which
broadened the scope of the quantum speed limit beyond unitary dynamics. In particular, [27] showed that the
maximal speed of quantum evolution is given by the time averaged norm of the generator of the dynamics [27],
which only in the case of unitary dynamics and for orthogonal states reduces to the average energy E [25].

All treatments of the quantum speed limit have in common that the analyses start with a choice of a measure
of the distinguishability of quantum states. For instance, [28] studies the relative purity, [27] starts with the Bures
angle between initially pure states and time-evolved states, and [40] even defines an entirely new metric. Finally,
Pires et al [41] derived a whole family of quantum speed limits, which is based on a family of contractive
Riemannian metrics.

Thus, two natural questions arise: (i) are all of these treatments of quantum speed independent, or can the
quantum speed limit be universally characterized—independently of the chosen measure of distinguishability?
(i) Most of the expressions for the quantum speed limit are mathematically rather involved. Hence, can one find
amathematically simple bound that is computable and nevertheless captures the universal behavior?

In the following we will answer both questions. First, we will show that the quantum speed is universally
governed by any Schatten-p-norm of the generator of the quantum dynamics. In the second part of the analysis,
we will derive a new quantum speed limit in terms of the Wasserstein norm of the rate of change of the Wigner
function. We will argue that the quantum speed limit in Wigner phase space captures the same qualitative
behavior as the speed limits derived in density operator space. However, we will also see that the new quantum
speed limit is significantly easier to compute, for pure as well as mixed states, and for isolated as well as open
dynamics. As an illustrative example we will discuss the semi-classical, high temperature limit, and we will
confirm that the quantum speed limit is a pure quantum feature, i.e., that classical systems do not experience a
fundamental bound on their rates of change.

2. Quantum speed and the geometric approach

Webegin by briefly reviewing the main results of [27] and by establishing notions and notations. Consider a
quantum master equation,

Pt - Lt(pt)) (1)

where the dot denotes a derivative with respect to time. For isolated systems the Liouvillian superoperator, L;,
reduces to the von-Neumann equation, L;(p) = [H;, p,]1/i%, but we explicitly allow for any open systems
dynamics—Markovian as well as non-Markovian. Note that [27] theoretically predicted that non-Markovian
environments can speed up quantum dynamics. This was experimentally verified in cavity QED [35].

In geometric quantum mechanics [42] it has proven useful to quantify the distinguishability of quantum
states in terms of the Bures angle [43],

L(py p) = arccos(JF(py, p,)) = arccos(tr{ [y 1 7o D» @

where we further introduced the quantum fidelity F(p,, p,) [44]. To obtain an upper bound on the speed of
evolution one then considers the magnitude of the geometric speed, | £|, and it is easy to see that we have [27]

2cos (L)sin(L) L < |F(pg p)l- 3)
For initially pure states, p, = [1/o) (1o, equation (2) can be further simplified and it can be shown that [27]
2cos(L)sin(L) £ < | {(vol plo)| < min {||p, ||, forp € {1, 2, co}}. (4)

Here ||A[|, denotes the Schatten-p-norm of an operator, O, which is defined as
1/p
10, = (tr{lOIPH/P =(Z 0{) )
k

and the o are the singular values of O, i.e. the eigenvalues of the Hermitian operator |O] = v O'O. The more
familiar trace, Hilbert—Schmidt, and operator norms correspond respectively to p = 1, 2, and oo. Equation (4)
can then be used to define the quantum speed limit vqgy,

£ < VQSL _ 1
X R - .
2cos(L)sin(L) 2cos(L)sin(L)
Note that in contrast to [16] we did not include the denominator into the definition of vqg;.. The reason for this
choice will become obvious shortly.
Although useful for theoretcial predictions of experimental outcomes [35] equation (4) also left several
questions unaddressed. Probably the most immediate one is, how the above treatment would have to be

mln{”pth forpe {1’2)00}}' (6)
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generalized to initially mixed states. Generally this is a mathematically involved problem, since the quantum
fidelity, F(p,, p,), and its derivatives are non-trivial to handle. A comprehensive analysis of this issue was
proposed by Pires et al [41]. As proven by the Morozova—Cencov—Petz theorem, there is an infinite number of
contractive metrics, which are equivalent for pure states. One particular case with an interesting analytic
expression is the Wigner—Yanase information, A(py, 0,),

LYY (pg, p,) = arccos(A(py, p,)) = arccos(tr{ [py /P, }) ?)

which can be used to derive quantum speed limits instead of the Bures angle (2). Pires et al [41] then analyze an
infinite family of bounds to identify computable bounds. However, similarly to equation (6) the quantum speed
is bounded by a norm of the dynamics, || j, ||, and only the ‘prefactor’ depends on the choice of the starting point,
whether it be equation (2) or (7). Thus, the analysis of [41] makes the second question even more obvious:
namely, formulating quantum speed limits seems to be somewhat arbitrary, since every single treatment starts
with a choice of a measure of distinguishability in order to define the geometric speed. Hence, it would be
desirable to find a universal measure of quantum speed, and define the quantum speed limit exclusively in terms
of this measure.

Both, [27] and [41] make the strong case that the choice has to be a contractive, Riemannian metric on
quantum state space. This choice is justified if one would like to find tight bounds on the quantum speed [27]. If
one is only interested in the qualitative behavior, however, other measures might be more convenient to work
with. For instance, instead of choosing the Bures angle, L(p,, p,), we also could have worked with the Bures
distance [42],

L2 p) = 201 — JF(ppr p). ®)

One easily convinces oneself that a such defined geometric speed, L",leads toan inequality similar to
equation (3). Therefore, we observe already here that all of these treatments have in common that eventually the
quantum speed is characterized by a Schatten-p-norm, || 4,{|, = [|L(p)||,-

3. Quantum speed in density operator space

We have seen above that typically quantum speed is characterized by the dynamical behavior of the quantum
fidelity, F(py, p,). Since F(p,, p,) is mathematically rather involved several continuity bounds have been
derived. For instance, we have [42]

1 — JFoo o) < éfa(pt, p0) < T — F(oor 70 ©)

where ¢, denotes the trace distance, i.e., the Schatten-1-distance

a(pi po) = Il P — po Ih = tr{lp, — pol}- (10)

The obvious question is whether a quantum speed limit can be derived starting with the trace distance ;. Note
again that the here considered quantum speed is precisely the geometric speed as given by the rate of change of
the distance, £, which is bounded by the above defined quantum speed limit vqgp, (6). Therefore, we consider

4oy po) = tellp, = pol ™ (or = Po) i) (11)
which can be bounded from above by with the triangle inequality for operators, [tr{O}| < tr{|O|},as
G(pp po) < 12(ps pI < te{lp, 1) = [l lh- (12)

We immediately conclude that whether we choose the Bures angle (2) or the trace distance (9) only determines
the functional dependence of the geometric speed on the choice of the metric (4). The dynamics and, hence, the
actual quantum speed limit, however, is fully characterized by the trace norm of the rate with which the quantum
state changes.
We can go even one step further, and consider any Schatten-p-norm as a starting point of the derivation,
6 (e po) = Il e — po llp = (tr{lp, — P0|P})%’ (13)
for which the geometric speed is bounded from above by
fp(pt, Po) < ”ptHP (14)
A proof of the latter result can be found in appendix A. In conclusion we have that the actual quantum speed
limit is given by

vast = min {||p, ||, for p € [0, c0)}. (15)
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Equation (15) constitutes our first main result. Derivations of geometric quantum speed limits depend on a
rather arbitrary, although well-motivated choice of a measure of distinguishability of quantum states. The final
expression will be functionally depended on this choice, see for instance [28] for the relative purity, [27] for the
Bures angle, and [41] for the Wigner—Yanase information. However, since all of these measures fulfill continuity
inequalities [42] (see also equation (9)), the actual quantum speed limit vy, is given by the smallest Schatten-
p-norm.

We would like to emphasize that equation (15) only qualitatively characterizes the quantum dynamics.
Generally, the maximal speed of a quantum process depends on the (i) initial state, (ii) the dynamical manifold,
and (iii) the kind of quantum dynamics [45]. State independent bounds could now be obtained by, for instance,
maximizing vqsy, over all possible initial states. Since this, however, posses a formidable mathematical task, we
continue by deriving a mathematical more tractable bound on the quantum speed.

4. Quantum speed in Wigner phase space

The expression of the quantum speed limit, vqg in equation (15), is a powerful expression that can be used to
obtain physical insight into the dynamical properties of quantum systems [35]. However, computing the tightest
bound, i.e., the operator norm [27, 46] is far from being a trivial task. Imagine, for instance, we want to study a
driven, open quantum system such as in quantum Brownian motion [47]. In this case, the dynamics is typically
solved in a computationally convenient and continuous basis [48]. Extracting the singular values from such a
representation of the time-dependent density operator is computationally expensive, if it is at all feasible. Thus,
it would be desirable to find an alternative expression for v, which gives the same qualitative information, but
which is also much easier to compute.

Especially in the treatment of open quantum systems [48] as well as to study the semi-classical limit [49] it
has proven useful to express quantum states in their Wigner representation

1 2i
W(x, p) = — fdy (x +yl plx —y) ew(—%)- (16)

If we want to derive a quantum speed limit in Wigner phase space, we now need to choose a measure of
distinguishability. To this end, consider the total variation distance, which is given by the Wasserstein-1-distance
(501,

DW;, Wo) = [[We = Wolh = deIW(F, 1) — Wo(M)], 17)

with ' = (x, p). The Wasserstein-1-distance can be regarded as a generalization of the trace distance to (semi-)
probability distributions.
In complete analogy to above, we now consider the geometric speed

DOw, Wy = [ar LD Z Wy g (1)
(W@, t) — Wo(D)|
which can again be bounded with the help of the triangle inequality
DW, Wo) < [DW, Wo)l < [drw @, o, (19)

Comparing equations (12) and (19) we immediately see that we have obtained an analogous expression for the
quantum speed limit, vqgy, in Wigner space. In appendix B we show that if we consider the more general case of
any Wasserstein-p-distance [50],

Dy W) = W, — Woll, = ( far w, o - woop)”, (20)
we find
Dy(W;, Wo) < [ W[ @1
Hence we conclude that we have for the quantum speed limit in phase space v ,
vis, = min {||W, ||, for p € [0, 00)}. (22)

Equation (22) has the same functional form as the quantum speed limit derived in density operator space (15).
However, equation (22) is significantly easier to compute, since it only involves the absolute value of an
imaginary valued function, instead of the singular values of a high-dimensional operator.

What remains to verify is that v, (15) and vggL (22) contain the same physical information and that vqgy,

and ¢, behave qualitatively similarly.
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5. Qualitative comparison of the two approaches

In a mathematical sense, the Weyl-Wigner transform (16) is a well-defined, invertible integral transform
between the phase-space and operator representations of quantum states [51]. Therefore, one would expect vqg,
(15)and vQMgL (22) to be fully equivalent.

That this is, indeed, the case we will now illustrate by computing v, (15) and V(g‘gL (22) for a solvable
example. For the sake of simplicity we restrict ourselves to unitary dynamics induced by the parametric
harmonic oscillator with Hamiltonian,

H= L + le? x2. (23)
2M 2

It can be shown that the dynamics is fully analytically solvable [52]. For systems initially starting in the ground

state, po = |1o) (o, with
1/4
Yo(x) = (M“’°) exp(— o xz] (24)
wa

27%

the time-dependent density operator can be written as [53]

MUJO 1

&= |——53
Py h YP + wi X}

Wo 1 2 2 1 (a2 2y(, 2V ;
X exp| — —_[x" + + 1(x” — we X, X + YY) | 25
p( lz‘fﬁ T G S R+ Y] (25)

Here, X, and Y, are the solutions of the force free harmonic oscillator, X; 4+ w?X, = 0, with the boundary
conditions Xy = 0, Xp = 1, Yy = L,and Y; = 0.

Itis then a simple exercise to numerically obtain the quantum speed limits, vog;, (15) and V(S%L (22). Without
loss of generality, we computed vqgr. (15) from the trace norm (12), and v(g‘gL (22) from the Wasserstein-1-norm
(19). This is sufficient, since for pure states both the Schatten-p-norms as well as the Wasserstein-p-norms are
monotonicin p [46].

Specifically, vg1, can be obtained from a numerical singular value decomposition of p(x, y, t) (25), which s
a computationally rather expensive task. On the other hand, v, is obtained directly from the corresponding
Wigner function (16). In figure 1 we plot the numerical results for a linear quench, w? = wi — (Wi — wt/T,
for several values of the quench time 7. For the ease of comparison, we further normalized the quantum speed
limits vqgr, (15) and v(g‘gL (22) by their maximal value during the time interval t € [0, 7). We observe perfect
agreement of vqsr (15) and V(%VSL (22). Hence, we conclude that our initial expectation is indeed verified, namely
we find that vqg and v, are fully equivalent. In particular for the present case vos;, and 135, only differ bya
factor that is determined by their maximal value during the quench time 7. It is worth emphasizing again that the
quantum speed limit is significantly easier to compute in Winger phase space, since the computationally
expensive task of having to determine the singular values can be fully avoided.

6. Quantum speed in the semiclassical limit

We conclude the analysis by briefly studying the high-temperature, semi-classical limit. Within the geometric
approach to quantum speed it often proves useful to define the quantum speed limit time, 7y, which is given by
the inverse of the time-averaged quantum speed limit, vqgsr, [27]. Note that 7y, is not a physical time, but rather
a charaterisitic of the internal dynamics [7, 9].
We can thus define the quantum speed limit time in Wigner space as
ToOsL = —D(Mf’ WO‘)M . (26)
/7 fo dt vasp

For unitary dynamics it is easy to see that TgSL is proportional to 7, and hence, TS’SL, can be understood as an
expression of the Heisenberg indeterminacy principle for energy and time. For open systems, however, the
interpretation is less obvious [27]. Since the quantum speed limit V(‘z/\gL is fully determined by the metric
properties of the dynamics (22), it is not a priori obvious how 7, behaves in the semiclassical, high-temperature
limit kg T > 7y, where T'is the temperature and v the damping coefficient.

To address this question we turn again to the harmonic oscillator. Since we are now interested merely the
behavior of ¢}, in the limit of high-temperatures, we now consider an un-driven system with potential,

V (x) = 1/2 Mw} x?. In this case the exact master equation in Wigner space can be written as [54, 55]
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Figure 1. Quantum speed limits in density operator space vqst. (15) (blue, dashed line) and Wigner phase space v(‘ﬁgL (22) (red, solid
line) for p = 1, the harmonic oscillator (23), and normalized by their maximal value during the time interval ¢ € [0, 7]. Parameters
are wy = 1, w; = 2,M = 1, # = land: upper left panel: 7 = 0.1; upper right panel: 7 = 1; lower left panel: 7 = 5; lower right

panel: 7 = 10.
L ksT/hy =25
1.0[ kgT/fy = 10
0.8l kpT/hy =5
0.6+
04+
0.2+
‘ : : P — — kgT/hy : ‘ = /7
10 20 30 40 50 60 70 0.0 0.5 1.0 1.5 2.0
Figure 2. Quantum speed limit time T‘é"SL (26) (left panel) and quantum speed limit V(SVSL (22) for an open harmonic oscillator (27)
with the initial state of equation (28) for p = 1.Parametersare v = 2, 4= 1,M = l,wo = 1,7 = 2, pt, = 2, 0, = 0.5, ju, = 0,
and op = 0.5.
P , 2
8tW(x, P, t) = —M 8x + V (X)ap + 8p(7P + Dpp 813) + Dxp 6xp W(x, p, t), (27)

where Dpp = M/ + MBv/*(w§ — 7*) /12 and Dy = (v/%/12. Equation (27) is a quantum analog of the
Klein—Kramers equation, which describes the dynamics of a harmonic oscillator in contact with a bosonic bath
[54]. In figure 2 we plot the resulting quantum speed limit, v(g‘gL (22), together quantum speed limit time, T‘éVSL
(26), again for p = 1. Asinitial state we chose a narrow Gaussian

— 2 _ 2
x UP

2 2
207 20p

As expected, the quantum speed limit time 7(}g; vanishes in the classical, high-temperature limit. This
observation confirms that the quantum speed limit is a purely quantum phenomenon also in open systems.
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7. Concluding remarks

What is the ultimate limit on how fast a quantum system can evolve? At the verge of the age of quantum
computing this century old question is more topical than ever. In the present work we highlighted that the
maximal quantum speed can be fully characterized by the Schatten-p-norms of the generator of quantum
dynamics. We further showed that equivalent expressions can be found in Wigner phase space, where the
computationally expensive operator norm is replaced by the absolute value of an imaginary valued function. The
utility of the novel approach to quantum speed was illustrated by comparing the quantum speed limits in density
operator space and Wigner phase space for the parametric harmonic oscillator. As a consistency check we finally
verified that the bound is a pure quantum phenomenon, and that the dynamics of open classical systems is not
restricted by the quantum bound. Therefore, we imagine that our results could prove useful for practical
consequences and applications of the quantum speed limit, since for any situation the new bound is significantly
easier to compute than the operator norm of high-dimensional density matrices.
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Appendix A. Quantum speed from Schatten distance

This appendix is dedicated to a proof of equation (14). Consider the Schatten-p-distance

& (P> Po) = ||pr - Po”p = (tr{lp; — Po|p})l/p, (A.1)
where p is an arbitrary, positive, real number, p € [0, c0). Then the geometric speed can be written as
Zp(pp po) = (trllp, — polP D~ e (Lo, — po) T (o, — po) - (A2)

The latter expression looks rather involved, but it can be simplified by using, fp (P> Py) < |fp (P> pp)and
employing the triangle inequality for operators, [tr{O}| < tr{|O|}, toread

(P po) < (tr{lp, — pol? D~ tr{lp, — pol? =M1} (A3)
Equation (A.3) can be further simplified with the help of Holder’s inequality [56]
tr{|OB|} < (tr{|O]1 )!/N(tr{|B|22 })/: (A4)

whichistrue forall1/q, + 1/q, = 1. Now choosing B = p,and q; = p/(p — 1),forwhich g, = p, we finally
obtain the desired result (14)

£o(pp Po) < 114 lp- (A.5)

Appendix B. Quantum speed from Wasserstein distance

Finally, we proof the expression for the quantum speed limit in Wigner phase space (22). To this end, we start
with the Wasserstein-p-distance [50], which is given by

1/p
W, W) = [ Wi = Woll, = ([0 1w, o) - wo) ®.1)
Accordingly we have

. -
D, Wo) = ([ dr (W, 5 = w17
W, 1) = WD)

x| dD [W(T, 6) — Wo(D)P~! W, v, (B.2)
f (W, 1) — Wo()]
which can be simplified again with the help of the triangle inequality to read
Dy(Wer Wo) < | Dy(Wi, Wo)
11
< (f dl* |W(T', 1) — Wo(F)IP)P de W@, 1) = WP~ W (T, ). (B.3)
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In complete analogy to the derivation in density operator space, we now consider again Holder’s inequality [56]

Jadrwger < ([arifeom)™(faciger)"™, B.4)

which holdsforall 1/g, + 1/q, = 1. Once again choosing q, = p/(p — 1)and g = W, we finally obtain
Dp(Wz) Wo) < || Wel[p- (B.5)
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