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Abstract
The quantum speed limit is a fundamental upper bound on the speed of quantum evolution.However,
the actualmathematical expression of this fundamental limit depends on the choice of ameasure of
distinguishability of quantum states.We show that quantum speed limits are qualitatively governed by
the Schatten-p-normof the generator of quantumdynamics. Since computing Schatten-p-norms can
bemathematically involved, we then develop an alternative approach inWigner phase space.Wefind
that the quantum speed limit inWigner space is fully equivalent to expressions in density operator
space, but that the new bound is significantly easier to compute. Our results are illustrated for the
parametric harmonic oscillator and for quantumBrownianmotion.

1. Introduction

It has recently been argued that already the first generation of real-life quantum computers will be able to
perform certain tasks exponentially faster than classical computers [1]. This so-called ‘quantum supremacy’ [2]
rests in the fact that loosely speaking quantum state space is exponentially larger than the classical computational
space, and hence significantly less operations are necessary to perform the same computation. However, the
working principles of quantum computers and classical computers are fundamentally different, whichmakes it
not immediately clear how to quantify the ‘quantum speed-up’ [3]. Tomakematters evenmore involved, in the
theory of quantum computation ‘time’ is not actually a physical time, but rather a synonym for the ‘number of
computational operations’ [3]. Themore practical question is, however, how fast a quantum computer could
actually operate.

To address this issue a somewhat opposite approach has been developed in quantumdynamics, where the
notion of a quantum speed limit has foundwide-spread prominence.Whereas in the theory of quantum
computation one is after characterizing quantum speed-ups—the quest for faster and faster computations with
less and less single operations—the quantum speed limit sets the ultimate,maximal speedwithwhich any
quantum system can evolve. Thismeans, in particular, that every single quantumoperation takes afinite,
minimal time to be accomplished—and thus even quantum computers will not be able to achieve any arbitrary
speed-ups. This quantum speed limit originates in theHeisenberg indeterminacy principle [4, 5],

E t 2D D . However,more than just being another expression of quantum indeterminacy the quantum
speed limit is a fundamental property of quantumdynamics as highlighted by famous debates between Einstein
andBohr [6].

Thefirst rigorous treatmentwas propsoed byMandelstam andTamm [7], who showed that theminimal
time a quantum systemneeds to evolve between orthogonal states is bounded frombelow by the variance of the
energy, E2QSL t p= D , where E H H2 2 1 2D = á ñ - á ñ( ) . Since, however, the variance of an operator is not
necessarily a good quantifier for dynamics [8],Margolus and Levitin [9] revisited the problem and derived a
second bound on the quantum evolution time in terms of the average energy E H Eg= á ñ - over the ground
state with energyEg, E2QSL t p= . It was eventually realized that these two bounds are not independent, and
that only the unified bound is tight [10].

Nowadays, it has been established in virtually all areas of quantumphysics [11–16] that the quantum speed
limit [17–20], sets a fundamental upper bound on the speed of any quantumdynamics. In particular in recent
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years, the quantum speed limit has been extensively studied and generalized for isolated [21–26] and open
[27–39] quantum systems. The renewed and concentrated interest was inspired by three letters [27–29], which
broadened the scope of the quantum speed limit beyond unitary dynamics. In particular, [27] showed that the
maximal speed of quantum evolution is given by the time averaged normof the generator of the dynamics [27],
which only in the case of unitary dynamics and for orthogonal states reduces to the average energyE [25].

All treatments of the quantum speed limit have in common that the analyses start with a choice of ameasure
of the distinguishability of quantum states. For instance, [28] studies the relative purity, [27] starts with the Bures
angle between initially pure states and time-evolved states, and [40] even defines an entirely newmetric. Finally,
Pires et al [41] derived awhole family of quantum speed limits, which is based on a family of contractive
Riemannianmetrics.

Thus, two natural questions arise: (i) are all of these treatments of quantum speed independent, or can the
quantum speed limit be universally characterized—independently of the chosenmeasure of distinguishability?
(ii)Most of the expressions for the quantum speed limit aremathematically rather involved.Hence, can one find
amathematically simple bound that is computable and nevertheless captures the universal behavior?

In the followingwewill answer both questions. First, wewill show that the quantum speed is universally
governed by any Schatten-p-normof the generator of the quantumdynamics. In the second part of the analysis,
wewill derive a newquantum speed limit in terms of theWasserstein normof the rate of change of theWigner
function.Wewill argue that the quantum speed limit inWigner phase space captures the same qualitative
behavior as the speed limits derived in density operator space.However, wewill also see that the new quantum
speed limit is significantly easier to compute, for pure as well asmixed states, and for isolated aswell as open
dynamics. As an illustrative examplewewill discuss the semi-classical, high temperature limit, andwewill
confirm that the quantum speed limit is a pure quantum feature, i.e., that classical systems do not experience a
fundamental bound on their rates of change.

2.Quantum speed and the geometric approach

Webegin by briefly reviewing themain results of [27] and by establishing notions and notations. Consider a
quantummaster equation,

L , 1t t tr r=˙ ( ) ( )

where the dot denotes a derivative with respect to time. For isolated systems the Liouvillian superoperator, Lt,
reduces to the von-Neumann equation, L H , it t t r r=( ) [ ] , but we explicitly allow for any open systems
dynamics—Markovian as well as non-Markovian. Note that [27] theoretically predicted that non-Markovian
environments can speed up quantumdynamics. This was experimentally verified in cavityQED [35].

In geometric quantummechanics [42] it has proven useful to quantify the distinguishability of quantum
states in terms of the Bures angle [43],

F, arccos , arccos tr , 2t t t0 0 0 0 r r r r r r r= =( ) ( ( ) ) ( { }) ( )

wherewe further introduced the quantum fidelity F , t0r r( ) [44]. To obtain an upper bound on the speed of
evolution one then considers themagnitude of the geometric speed, ∣ ˙ ∣, and it is easy to see thatwe have [27]

F2 cos sin , . 3t0    r r( ) ( ) ˙ ∣ ˙ ( )∣ ( )

For initially pure states, 0 0 0r y y= ñá∣ ∣, equation (2) can be further simplified and it can be shown that [27]

p2 cos sin min for 1, 2, . 4t t p0 0    y r y rá ñ Î ¥ ( ) ( ) ˙ ∣ ∣ ˙ ∣ ∣ { ˙ { }} ( )

Here A p  denotes the Schatten-p-normof an operator,O, which is defined as

O O otr 5p
p p

k
k
p

p

1

1

åº = 
⎛
⎝⎜

⎞
⎠⎟( {∣ ∣ }) ( )

and the ok are the singular values ofO, i.e. the eigenvalues of theHermitian operator O O Oº∣ ∣ † . Themore
familiar trace, Hilbert–Schmidt, and operator norms correspond respectively to p 1, 2,= and¥. Equation (4)
can then be used to define the quantum speed limit vQSL,

v
p

2cos sin

1

2cos sin
min for 1, 2, . 6t p

QSL
   

 rº Î ¥ ˙
( ) ( ) ( ) ( )

{ ˙ { }} ( )

Note that in contrast to [16]we did not include the denominator into the definition of vQSL. The reason for this
choicewill become obvious shortly.

Although useful for theoretcial predictions of experimental outcomes [35] equation (4) also left several
questions unaddressed. Probably themost immediate one is, how the above treatment would have to be
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generalized to initiallymixed states. Generally this is amathematically involved problem, since the quantum
fidelity, F , t0r r( ), and its derivatives are non-trivial to handle. A comprehensive analysis of this issuewas
proposed by Pires et al [41]. As proven by theMorozova–Čencov–Petz theorem, there is an infinite number of
contractivemetrics, which are equivalent for pure states. One particular case with an interesting analytic
expression is theWigner–Yanase information, A , t0r r( ),

A, arccos , arccos tr , 7t t t
WY

0 0 0 r r r r r r= =( ) ( ( )) ( { }) ( )

which can be used to derive quantum speed limits instead of the Bures angle (2). Pires et al [41] then analyze an
infinite family of bounds to identify computable bounds.However, similarly to equation (6) the quantum speed
is bounded by a normof the dynamics, tr ˙ , and only the ‘prefactor’ depends on the choice of the starting point,
whether it be equation (2) or (7). Thus, the analysis of [41]makes the second question evenmore obvious:
namely, formulating quantum speed limits seems to be somewhat arbitrary, since every single treatment starts
with a choice of ameasure of distinguishability in order to define the geometric speed.Hence, it would be
desirable tofind a universalmeasure of quantum speed, and define the quantum speed limit exclusively in terms
of thismeasure.

Both, [27] and [41]make the strong case that the choice has to be a contractive, Riemannianmetric on
quantum state space. This choice is justified if onewould like tofind tight bounds on the quantum speed [27]. If
one is only interested in the qualitative behavior, however, othermeasuresmight bemore convenient towork
with. For instance, instead of choosing the Bures angle, , t0 r r( ), we also could haveworkedwith the Bures
distance [42],

F, 2 1 , . 8D
t t0 0 r r r r= -( ) ( ( ) ) ( )

One easily convinces oneself that a such defined geometric speed, D̇ , leads to an inequality similar to
equation (3). Therefore, we observe already here that all of these treatments have in common that eventually the
quantum speed is characterized by a Schatten-p-norm, Lt p t pr r=   ˙ ( ) .

3.Quantum speed in density operator space

Wehave seen above that typically quantum speed is characterized by the dynamical behavior of the quantum
fidelity, F , t0r r( ). Since F , t0r r( ) ismathematically rather involved several continuity bounds have been
derived. For instance, we have [42]

F F1 ,
1

2
, 1 , , 9t t t0 1 0 0 r r r r r r- -ℓ( ) ( ) ( ) ( )

whereℓ1 denotes the trace distance, i.e., the Schatten-1-distance

, tr . 10t t t1 0 0 1 0r r r r r r= - º - ℓ ( ) {∣ ∣} ( )

The obvious question is whether a quantum speed limit can be derived starting with the trace distanceℓ1. Note
again that the here considered quantum speed is precisely the geometric speed as given by the rate of change of
the distance, 1ℓ̇ , which is bounded by the above defined quantum speed limit vQSL (6). Therefore, we consider

, tr , 11t t t t1 0 0
1

0r r r r r r r= - --ℓ̇ ( ) {∣ ∣ ( ) ˙ } ( )

which can be bounded from above bywith the triangle inequality for operators, O Otr tr∣ { }∣ {∣ ∣}, as

, , tr . 12t t t t1 0 0 1 r r r r r r=     ℓ ℓ( ) ∣ ( )∣ {∣ ∣} ( )

We immediately conclude that whetherwe choose the Bures angle (2) or the trace distance (9) only determines
the functional dependence of the geometric speed on the choice of themetric (4). The dynamics and, hence, the
actual quantum speed limit, however, is fully characterized by the trace normof the ratewithwhich the quantum
state changes.

We can go even one step further, and consider any Schatten-p-norm as a starting point of the derivation,

, tr , 13p t t p t
p

0 0 0
p
1r r r r r r= - º - ℓ ( ) ( {∣ ∣ }) ( )

for which the geometric speed is bounded from above by

, . 14p t t p0 r r r   ℓ ( ) ( )

Aproof of the latter result can be found in appendix A. In conclusionwe have that the actual quantum speed
limit is given by

v pmin for 0, . 15t pQSL rº Î ¥ { ˙ [ )} ( )
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Equation (15) constitutes ourfirstmain result. Derivations of geometric quantum speed limits depend on a
rather arbitrary, althoughwell-motivated choice of ameasure of distinguishability of quantum states. Thefinal
expressionwill be functionally depended on this choice, see for instance [28] for the relative purity, [27] for the
Bures angle, and [41] for theWigner–Yanase information. However, since all of thesemeasures fulfill continuity
inequalities [42] (see also equation (9)), the actual quantum speed limit vQSL is given by the smallest Schatten-
p-norm.

Wewould like to emphasize that equation (15) only qualitatively characterizes the quantumdynamics.
Generally, themaximal speed of a quantumprocess depends on the (i) initial state, (ii) the dynamicalmanifold,
and (iii) the kind of quantumdynamics [45]. State independent bounds could nowbe obtained by, for instance,
maximizing vQSL over all possible initial states. Since this, however, posses a formidablemathematical task, we
continue by deriving amathematicalmore tractable bound on the quantum speed.

4.Quantum speed inWigner phase space

The expression of the quantum speed limit, vQSL in equation (15), is a powerful expression that can be used to
obtain physical insight into the dynamical properties of quantum systems [35]. However, computing the tightest
bound, i.e., the operator norm [27, 46] is far frombeing a trivial task. Imagine, for instance, wewant to study a
driven, open quantum system such as in quantumBrownianmotion [47]. In this case, the dynamics is typically
solved in a computationally convenient and continuous basis [48]. Extracting the singular values from such a
representation of the time-dependent density operator is computationally expensive, if it is at all feasible. Thus,
it would be desirable tofind an alternative expression for vQSL which gives the same qualitative information, but
which is alsomuch easier to compute.

Especially in the treatment of open quantum systems [48] aswell as to study the semi-classical limit [49] it
has proven useful to express quantum states in theirWigner representation

W x p y x y x y
p y

,
1

d exp
2i

. 16
 òp

r= á + - ñ -⎜ ⎟⎛
⎝

⎞
⎠( ) ∣ ∣ ( )

If wewant to derive a quantum speed limit inWigner phase space, we nowneed to choose ameasure of
distinguishability. To this end, consider the total variation distance, which is given by theWasserstein-1-distance
[50],

W W W W W t W, d , , 17t t0 0 1 0 ò= - º G G - G ( ) ∣ ( ) ( )∣ ( )

with x p,G = ( ). TheWasserstein-1-distance can be regarded as a generalization of the trace distance to (semi-)
probability distributions.

In complete analogy to above, we now consider the geometric speed

W W
W t W

W t W
W t, d

,

,
, 18t 0

0

0

 ò= G
G - G
G - G

G˙ ( ) ( ) ( )
∣ ( ) ( )∣

˙ ( ) ( )

which can again be boundedwith the help of the triangle inequality

W W W W W t, , d , . 19t t0 0   ò G G˙ ( ) ∣ ˙ ( )∣ ∣ ˙ ( )∣ ( )

Comparing equations (12) and (19)we immediately see that we have obtained an analogous expression for the
quantum speed limit, vQSL, inWigner space. In appendix Bwe show that if we consider themore general case of
anyWasserstein-p-distance [50],

W W W W W t W, d , , 20p t t p
p

p

0 0 0

1
 ò= - º G G - G  ( )( ) ∣ ( ) ( )∣ ( )

wefind

W W W, . 21p t t p0    ( ) ( )

Hencewe conclude that we have for the quantum speed limit in phase space vW
QSL,

v W pmin for 0, . 22W
t pQSL º Î ¥  { [ )} ( )

Equation (22) has the same functional form as the quantum speed limit derived in density operator space (15).
However, equation (22) is significantly easier to compute, since it only involves the absolute value of an
imaginary valued function, instead of the singular values of a high-dimensional operator.

What remains to verify is that vQSL (15) and vW
QSL (22) contain the same physical information and that vQSL

and vW
QSL behave qualitatively similarly.
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5.Qualitative comparison of the two approaches

In amathematical sense, theWeyl–Wigner transform (16) is a well-defined, invertible integral transform
between the phase-space and operator representations of quantum states [51]. Therefore, onewould expect vQSL

(15) and vW
QSL (22) to be fully equivalent.

That this is, indeed, the case wewill now illustrate by computing vQSL (15) and vW
QSL (22) for a solvable

example. For the sake of simplicity we restrict ourselves to unitary dynamics induced by the parametric
harmonic oscillator withHamiltonian,

H
P

M
M x

2

1

2
. 23t

2
2 2w= + ( )

It can be shown that the dynamics is fully analytically solvable [52]. For systems initially starting in the ground
state, 0 0 0r y y= ñá∣ ∣, with

x
M m x

exp
2

240
0

1 4
0

2

 
y

w
p

w
= -⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )

the time-dependent density operator can bewritten as [53]

x y t
M

Y X

M

Y X
x y x y X X Y Y

, ,
1

exp
2

1
i . 25

t t

t t
t t t t

0
2

0
2 2

0
2

0
2 2

2 2 2 2
0
2





r
w

p w

w
w

w

=
+

´ -
+

+ + - +
⎛
⎝⎜

⎞
⎠⎟

( )

[ ( )( ˙ ˙ )] ( )

Here,Xt andYt are the solutions of the force free harmonic oscillator, X X¨ 0t t t
2w+ = , with the boundary

conditions X 00 = , X 10 =˙ , Y 10 = , and Y 00 =˙ .
It is then a simple exercise to numerically obtain the quantum speed limits, vQSL (15) and vW

QSL (22).Without

loss of generality, we computed vQSL (15) from the trace norm (12), and vW
QSL (22) from theWasserstein-1-norm

(19). This is sufficient, since for pure states both the Schatten-p-norms aswell as theWasserstein-p-norms are
monotonic in p [46].

Specifically, vQSL can be obtained froma numerical singular value decomposition of x y t, ,r ( ) (25), which is
a computationally rather expensive task.On the other hand, vW

QSL is obtained directly from the corresponding

Wigner function (16). Infigure 1we plot the numerical results for a linear quench, tt
2

0
2

0
2

1
2w w w w t= - -( ) ,

for several values of the quench time τ. For the ease of comparison, we further normalized the quantum speed
limits vQSL (15) and vW

QSL (22) by theirmaximal value during the time interval t 0, tÎ [ ].We observe perfect

agreement of vQSL (15) and vW
QSL (22). Hence, we conclude that our initial expectation is indeed verified, namely

wefind that vQSL and vW
QSL are fully equivalent. In particular for the present case vQSL and vW

QSL only differ by a
factor that is determined by theirmaximal value during the quench time τ. It is worth emphasizing again that the
quantum speed limit is significantly easier to compute inWinger phase space, since the computationally
expensive task of having to determine the singular values can be fully avoided.

6.Quantum speed in the semiclassical limit

Weconclude the analysis by briefly studying the high-temperature, semi-classical limit.Within the geometric
approach to quantum speed it often proves useful to define the quantum speed limit time, QSLt , which is given by
the inverse of the time-averaged quantum speed limit, vQSL, [27]. Note that QSLt is not a physical time, but rather
a charaterisitic of the internal dynamics [7, 9].

We can thus define the quantum speed limit time inWigner space as

W W

t v

,

1 d
. 26W t

WQSL
0

0 QSL



ò
t

t
º t

( ) ( )

For unitary dynamics it is easy to see that W
QSLt is proportional to ÿ, and hence, W

QSLt , can be understood as an
expression of theHeisenberg indeterminacy principle for energy and time. For open systems, however, the
interpretation is less obvious [27]. Since the quantum speed limit vW

QSL is fully determined by themetric

properties of the dynamics (22), it is not a priori obvious how W
QSLt behaves in the semiclassical, high-temperature

limit k TB g , whereT is the temperature and γ the damping coefficient.
To address this questionwe turn again to the harmonic oscillator. Sincewe are now interestedmerely the

behavior of W
QSLt in the limit of high-temperatures, we now consider an un-driven systemwith potential,

V x M x1 2 0
2 2w=( ) . In this case the exactmaster equation inWigner space can bewritten as [54, 55]
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W x P t
P

M
V x P D D W x P t, , , , , 27t x P P PP P xP xP

2g¶ = - ¶ + ¢ ¶ + ¶ + ¶ + ¶
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( ) ( )

where D M M 12PP
2

0
2 2g b bg w g= + -( ) and D 12xP

2bg= . Equation (27) is a quantumanalog of the
Klein–Kramers equation, which describes the dynamics of a harmonic oscillator in contact with a bosonic bath
[54]. Infigure 2we plot the resulting quantum speed limit, vW

QSL (22), together quantum speed limit time, W
QSLt

(26), again for p=1. As initial state we chose a narrowGaussian

W x P
x P

,
1

2
exp

2
exp

2
. 28

x P

x

x

P

P
0

2

2

2

2p s s
m
s

m
s

= -
-

-
-⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )
( )

As expected, the quantum speed limit time W
QSLt vanishes in the classical, high-temperature limit. This

observation confirms that the quantum speed limit is a purely quantumphenomenon also in open systems.

Figure 1.Quantum speed limits in density operator space vQSL (15) (blue, dashed line) andWigner phase space vW
QSL (22) (red, solid

line) for p=1, the harmonic oscillator (23), and normalized by theirmaximal value during the time interval t 0, tÎ [ ]. Parameters
are 10w = , 21w = ,M=1, 1 = and: upper left panel: 0.1;t = upper right panel: 1;t = lower left panel: 5;t = lower right
panel: 10t = .

Figure 2.Quantum speed limit time W
QSLt (26) (left panel) and quantum speed limit vW

QSL (22) for an open harmonic oscillator (27)
with the initial state of equation (28) for p=1. Parameters are 2g = , 1 = ,M=1, 10w = , 2t = , 2xm = , 0.5xs = , 0Pm = ,
and 0.5Ps = .
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7. Concluding remarks

What is the ultimate limit on how fast a quantum system can evolve? At the verge of the age of quantum
computing this century old question ismore topical than ever. In the present workwe highlighted that the
maximal quantum speed can be fully characterized by the Schatten-p-norms of the generator of quantum
dynamics.We further showed that equivalent expressions can be found inWigner phase space, where the
computationally expensive operator norm is replaced by the absolute value of an imaginary valued function. The
utility of the novel approach to quantum speedwas illustrated by comparing the quantum speed limits in density
operator space andWigner phase space for the parametric harmonic oscillator. As a consistency checkwe finally
verified that the bound is a pure quantumphenomenon, and that the dynamics of open classical systems is not
restricted by the quantumbound. Therefore, we imagine that our results could prove useful for practical
consequences and applications of the quantum speed limit, since for any situation the new bound is significantly
easier to compute than the operator normof high-dimensional densitymatrices.

Acknowledgments

The authorwould like to thank SteveCampbell for insightful discussions. This workwas supported by theUS
National Science Foundation underGrantNo. CHE-1648973.

AppendixA.Quantum speed fromSchatten distance

This appendix is dedicated to a proof of equation (14). Consider the Schatten-p-distance

, tr , A.1p t t p t
p p

0 0 0
1r r r r r r= - º - ℓ ( ) ( {∣ ∣ }) ( )

where p is an arbitrary, positive, real number, p 0,Î ¥[ ). Then the geometric speed can bewritten as

, tr tr . A.2p t t
p

t t t0 0
1

0
2 1

0
p

p1
2r r r r r r r r r= - - -- -ℓ̇ ( ) ( {∣ ∣ }) {[( ) ] ( ) ˙ } ( )

The latter expression looks rather involved, but it can be simplified by using, , ,p t p t0 0r r r rℓ ℓ˙ ( ) ∣ ˙ ( )∣and
employing the triangle inequality for operators, O Otr tr∣ { }∣ {∣ ∣}, to read

, tr tr . A.3p t t
p

t
p

t0 0
1

0
1p

1r r r r r r r- -- -ℓ̇ ( ) ( {∣ ∣ }) {∣ ∣ ∣ ˙ ∣} ( )

Equation (A.3) can be further simplifiedwith the help ofHölder’s inequality [56]

OB O Btr tr tr A.4q q q q1 11 1 2 2{∣ ∣} ( {∣ ∣ }) ( {∣ ∣ }) ( )

which is true for all q q1 1 11 2+ = . Now choosing B tr= ˙ and q p p 11 = -( ), for which q p2 = , wefinally
obtain the desired result (14)

, . A.5p t t p0 r r r   ℓ ( ) ( )

Appendix B.Quantum speed fromWasserstein distance

Finally, we proof the expression for the quantum speed limit inWigner phase space (22). To this end, we start
with theWasserstein-p-distance [50], which is given by

W W W W W t W, d , . B.1p t t p
p

p

0 0 0

1
 ò= - º G G - G  ( )( ) ∣ ( ) ( )∣ ( )

Accordingly we have

W W W t W

W t W
W t W

W t W
W t

, d ,

d ,
,

,
, , B.2

p t
p

p

0 0

1

0
1 0

0

p
1

 ò

ò

= G G - G

´ G G - G
G - G
G - G

G

-

-

( )˙ ( ) ∣ ( ) ( )∣

∣ ( ) ( )∣ ( ) ( )
∣ ( ) ( )∣

˙ ( ) ( )

which can be simplified againwith the help of the triangle inequality to read

W W W W

W t W W t W W t

, ,

d , d , , . B.3

p t p t

p p

0 0

0

1

0
1p

1

 

 ò òG G - G G G - G G
-

-( )
˙ ( ) ∣ ˙ ( )∣

∣ ( ) ( )∣ ∣ ( ) ( )∣ ∣ ˙ ( )∣ ( )

7

New J. Phys. 19 (2017) 103018 SDeffner



In complete analogy to the derivation in density operator space, we now consider againHölder’s inequality [56]

x f x g x x f x x g xd d d , B.4q
q

q
q1 1

1
1

2
2ò ò ò( ) ( )∣ ( ) ( )∣ ∣ ( )∣ ∣ ( )∣ ( )

which holds for all q q1 1 11 2+ = . Once again choosing q p p 11 = -( ) and g Wt= ˙ wefinally obtain

W W W, . B.5p t t p0    ( ) ( )
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