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Abstract

Grounded language acquisition — learning how language-
based interactions refer to the world around them — is a
major area of research in robotics, NLP, and HCI. In prac-
tice the data used for learning consists almost entirely of tex-
tual descriptions, which tend to be cleaner, clearer, and more
grammatical than actual human interactions. In this work,
we present the Grounded Language Dataset (GoLD), a mul-
timodal dataset of common household objects described by
people using either spoken or written language. We analyze
the differences and present an experiment showing how the
different modalities affect language learning from human in-
put. This will enable researchers studying the intersection of
robotics, NLP, and HCI to better investigate how the multi-
ple modalities of image, text, and speech interact, as well as
how differences in the vernacular of these modalities impact
results.

1 Introduction

Grounded language acquisition is the process of learning
language as it relates to the world—how concepts in lan-
guage refer to objects, tasks, and environments (Mooney
2008). Embodied language learning specifically is a sig-
nificant field of research in NLP, machine learning, and
robotics. There are many ways in which robots learn
grounded language (Chen and Mooney 2008; Branavan et
al. 2009; Tellex et al. 2011; Thomason et al. 2015; 2018;
Matuszek 2018; Anderson et al. 2018; Das et al. 2018;
Chevalier-Boisvert et al. 2019; Hu et al. 2019; Vanzo et al.
2020), but they all require either multimodal data or natural
language data—usually both.

A significant goal of modern robotics research is the
development of robots that can operate in human-centric
environments. Examples include domestic service robots
(DSRs) that handle common household tasks such as cook-
ing, cleaning, and caretaking (Beckerle et al. 2017), robots
for elder care (Bedaf, Gelderblom, and Witte 2014), assis-
tive robotics for providing support to people with disabili-
ties (Chen et al. 2013), and rehabilitation robotics (Kubota
et al. 2020). To be useful for non-specialists, such robots
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Figure 1: GoLD is comprised of RGB and depth point cloud
images of 47 classes of objects in five high-level categories.
It includes 8250 text and 4059 speech descriptions gathered
with Amazon Mechanical Turk (AMT).

will require easy-to-use interfaces (Beer et al. 2012). Spo-
ken natural language is an appropriate interface for such
systems: it is natural, expressive, and widely understood, as
shown by the proliferation of natural language-based home
devices(Haeb-Umbach et al. 2019). To have a robotic sys-
tem flexibly understand language in dynamic settings and
realize it in physical, goal-oriented behaviors, it is necessary
to ground linguistic and perceptual inputs to a learned rep-
resentation of knowledge tied to actions.

Current approaches to grounded language learning re-
quire data in both the perceptual (“‘grounded”) and lin-
guistic domains. While existing datasets have been used
for this purpose (Johnson et al. 2016; Krishna et al. 2017;
Das et al. 2018; Nguyen and Daumé III 2019; Thoma-
son et al. 2019), the language component is almost always
derived from either textual input or manually transcribed
speech (Matuszek et al. 2014; Tellex et al. 2011). In prac-
tice, robots are likely to need to operate on imperfectly
understood spoken language. To that end, we present the
Grounded Language Dataset (GoLD), which contains im-
ages of common household objects and their description
in multiple formats: text, speech (audio), and automatically
recognized speech derived from the audio files. We present
experiments that demonstrate the utility of this dataset for
grounded language learning.

The primary contributions of this paper are as follows:
1. We provide a freely available, multimodal, multi-labelled
dataset of common household objects, with paired image



Figure 2: The data collection setup, inspired by Lai et al.
(2011). An Azure Kinect (Kinect 3) is mounted on a tripod,
pointed at the target object (in this case a soda bottle) on
a white turntable. Image and depth data is collected as the
object rotates on the turntable.

and depth data and textual and spoken descriptions. 2. We
demonstrate this dataset’s utility by analyzing the result of
known grounded language acquisition approaches applied to
transfer and domain adaptation tasks.

2 The GoLD Dataset

GoLD is a collection of visual and natural language data in
five high-level groupings: food, home, medical, office, and
tools. These were chosen to reflect and provide data for do-
mains in which dynamic human-robot teaming is a near-
term interest area. Perceptual data is collected as both im-
ages and depth while natural language is collected in both
text and speech. There are 47 object classes spread across
these high-level categories, each containing four to five in-
stances of the object for a total of 207 object instances. Dur-
ing imaging, the objects are rotated on a turntable, allow-
ing us to select four representative frames from different an-
gles for a total of 825 views. For example, within the food
category there is an apple class with five instances of ap-
ples, each with four distinct frames. Complete depth video
of the objects from all angles is also available, but only these
frames are labeled with multiple natural language descrip-
tions in both text and speech. GoLD is available on GitHub
https://github.com/iral-lab/UMBC_GLD.

Accuracy of Speech Transcriptions

Obtaining accurate transcriptions of speech in sometimes
noisy environments is a significant obstacle to speech-based
interfaces (Li, Tsao, and Sim 2013). In creating GoLD we
used the popular Google Speech to Text API, chosen be-
cause it is widely available, easy to use, and not tied to a spe-
cific domain or hardware setup. However, the resulting tran-
scriptions are therefore not tuned for optimal performance.
For a particular use case, a more focused automatic speech
recognition (ASR) system could be used on the sound files
included in the dataset. In order to understand the degree to
which learning is affected by ASR errors, 100 randomly se-
lected transcriptions were evaluated on a 4-point scale (see
table 2). These descriptions were also manually transcribed
(see table 5 for examples). Of those, 77% are high quality,

Table 1: Classes of objects in GoLD.

Topic Classes of Objects

food potato, soda bottle, water bottle, ap-
ple, banana, bell pepper, food can,
food jar, lemon, lime, onion

home  book, can opener, eye glasses, fork,
shampoo, sponge, spoon, toothbrush,
toothpaste, bowl, cap, cell phone, cof-
fee mug, hand towel, tissue box, plate

medical band aid, gauze, medicine bottle, pill

cutter, prescription medicine bottle,
syringe

office ~ mouse, pencil, picture frame, scissors,
stapler, marker, notebook

tool Allen wrench, hammer, measuring
tape, pliers, screwdriver, lightbulb

Table 2: Human ratings of 100 automatic transcriptions.
These ratings are designed strictly to assess the accuracy of
the transcription, not the correctness of the spoken descrip-
tion with respect to the described object.

Rating Transcription Quality Guidelines #

1 wrong or gibberish / unusable sound file 13
2 slightly wrong (missing keywords / concepts) 10
3 pretty good (main object correctly defined) 14
4 perfect (accurate transcription and no errors) 63

i.e., ‘perfect’ or ‘pretty good,” while 13% are rated ‘unus-
able’

In order to evaluate the replicability of the human-
provided ratings in table 2, two subsets of these ratings was
evaluated using Fleiss’ kappa (Fleiss 1971) (k) to measure
inter-annotator agreement across three raters. In both tri-
als, k = 0.6, representing moderate/substantial agreement
among the raters. Although a higher agreement would be
preferable, we observe that disagreement was never more
than one unit between the raters, most commonly two ratings
of 1 and one rating of 2. As Fleiss’ kappa does not incorpo-
rate concepts such as “near agreement,” for larger datasets,
a weighted kappa statistic may be more appropriate.

To get a more detailed understanding of transcription ac-
curacy, we compare the ASR transcriptions and the human-
provided transcriptions using the standard NLP metrics of
Word Error Rate (WER) and Bilingual Evaluation Un-
derstudy (BLEU) score. Word Error Rate is recognized
as the de facto metric for automatic speech recognition
systems, as WER strongly influences the performance of
speech (Cavazza 2001; Park et al. 2008; Saon, Ramabhad-
ran, and Zweig 2006). WER measures the minimum-edit
distance between the system’s results, the hypothesis, and
manually transcribed text, the reference. WER is typically
calculated as the ratio of word insertion, substitution, and
deletion errors in a hypothesis to the total number of words
in reference (McCowan et al. 2004). We evaluate WER for
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Figure 3: Distribution of Word Error Rate and BLEU scores
of automated compared to manual transcriptions. For higher-
quality transcriptions (rated 3 or 4), the mean WER drops to
0.09, and the mean BLEU score rises to 0.83.

the same subset, and the mean WER per transcription is ap-
proximately 21.3%. Out of 100 transcriptions, 42 had a zero
error rate, meaning the reference and hypothesis match ex-
actly.

BLEU is a closeness metric inspired by the WER met-
ric. The main idea is to use a weighted average of variable
length phrase matches against the references (Papineni et al.
2002). BLEU scores are widely used to measure the accu-
racy of language translations based on string similarity; we
adopt this system to evaluate the goodness of transcriptions.
BLEU scores are calculated by finding n-gram overlaps be-
tween machine translation and reference translations. In our
analysis, we use N = 4.

1
N ~
tput — length
BLEU = min | 1, outpy g Hprecisiom
reference — length Pt

(1
To mitigate the tendency of the BLEU score to penalize
longer sentences, we apply a smoothing function while cal-
culating scores and add 1 to both numerator and denomina-
tor while calculating precision (Lin and Och 2004). We find
that the mean BLEU score of the same subset of 100 tran-
scriptions is 0.71, and Figure 3 shows the distribution.

Comparative Analysis

We analyze both the text and speech descriptions for the
number of words used as well as mentions of color, shape,
and object name. Since both modes are used to interface with
robots, we wish to find any similarities or differences that
might inform system design techniques for grounded lan-
guage models. One of the learning targets in grounded lan-
guage acquisition is to learn attributes of physical objects
(as identified by natural language) such as color, shape, and
object type (Pillai and Matuszek 2018). These categories
are limited because they are expert-specified and prescribed;
the GoLD dataset is intended to support learning of un-
constrained, “category-free” (Richards and Matuszek 2019)

linguistic concepts. This would allow learning of attribute
terms such as “white” or “cylindrical,” but also unexpected
concepts such as materials (e.g., “ceramic coffee mug”).

To that end, we analyze the natural language descriptions
and find that color, shape, and object names often appear
in natural language descriptions of images. We apply a list
of 30 common color terms from large language corpora and
compared each description to see if it included one of these
terms (Mylonas et al. 2015). Similarly, we use a vocabulary
list of shape terms to count how many descriptions included
shape descriptions. It is worth noting that shape descriptions
are less well defined than colors and that a better vocabulary
of shape descriptions would be helpful towards this kind of
analysis. Finally, we consider how often descriptions con-
tain object labels, which would allow them to be linked to
external models.

Our initial hypothesis was that people would use more
words when describing objects verbally than when typing,
as it is lower effort to talk than to type. When comparing de-
scription length, we balance the number of speech and text
descriptions, using 4059 of each. However, we found no sig-
nificant differences in the average length of descriptions be-
tween speech and text (p > 0.35 using a Welch test or t-test)
and in the distributions of mentions of color, shape, or object
name between the two. While speech has slightly more av-
erage words per description, 8.72, compared to text at 8.38,
when stop words are removed the averages are 4.52 and 4.38
respectively (see fig. 4).

The larger mean drop in the speech descriptions is likely
due to the tendency of ASR systems to interpret noise or
murmur utterances as filler words, the inclusion of which
has been shown to detract from meaning (Engel 2001;
Engel, Charniak, and Johnson 2002; Stolcke and Droppo
2017). Text descriptions are a more consistent length than
speech, with a standard deviation of Cieptiengtn = 5.14
words, VErsus Ogpeechlength = S-0. When we remove stop
words, the standard deviation is 2.58 for text and 3.96 for
speech.

As the GoLD dataset contains 47 different classes, it is
useful to note the class-wise differences in length of descrip-
tions, in terms of the number of words. Table 3 is a sam-
ple of some classes with interesting length differentials. In
general, people tend to speak more, compared to what they
type, when describing relatively complex objects, like “sy-
ringe”, “measuring tape” or “cell phone.” On the other hand,
speech descriptions for more basic objects such as “banana”,
“spoon”, or “eye glasses” tend to be shorter even than their
text descriptions. However, when taken all together the dif-
ferential between text and speech length per object is not
significant with an average of 0.14 more words in speech de-
scriptions.

We wuse the Stanford Part-of-Speech (POS) Tag-
ger! (Toutanova et al. 2003) to count the number of nouns,
adjectives, and verbs in the descriptions. We are interested
in evaluating these occurrences because they play a central
role in defining groundings associated with any object. We
find that the mean number of noun tokens per description is

"https://nlp.stanford.edu/software/tagger.shtm]
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Figure 4: Density Estimate plots of sentence length (the
number of words) for the natural language descriptions
with stop words removed. We found no significant dif-
ference in length of description between text and speech.
Htextlength — 8.38, Otextlength — 5.14; Hspeechlength =
8.72, Ospeechlength = 8.0.

slightly higher in the text data (2.59) than the speech data
(2.49). Similarly, the average number of adjectives per de-
scription is marginally higher for text data (1.25) compared
to speech (1.17). Whereas the mean verb occurrence for text
and speech are 0.52 and 0.62, respectively demonstrating the
reverse trend.

Table 4 shows the top twenty most frequent tokens in both
categories. There is substantial overlap, as expected, since
the same objects are being described. Words related to color
are most commonly used to describe objects. People use
more filler words when describing the objects using speech;
for example, the word ‘like’ appears 166 times in speech
data whereas it was not significant in the text data. The
word ‘used’ appears frequently, typically used to describe
the functionality of certain objects. Developing grounded
language models around functionality for the analysis of af-
fordances in objects is an important research avenue that our
dataset enables, which is not possible in prior datasets that
do not contain the requisite modalities.

Table 3: Mean length (number of words with stop words re-
moved) in descriptions for selected categories, by descrip-
tion modality.

Category Length (Text) Length (Speech)
measuring tape 4.72 6.12
syringe 3.8 4.75
cell phone 4.17 4.98
sponge 4.025 3.925
food can 4.06 3.899
scissors 4.98 4.79
spoon 3.98 3.23
eye glass 4.86 4.03
banana 4.14 3.21

Table 4: Most frequent words in text (left) and speech (right).

Token % Frequency Token % Frequency

black 13.96 black 13.42
object 12.66 white 12.31
white 10.95 red 10.29
blue 10.49 blue 9.87
red 11.76 bottle 8.86
bottle 10.03 yellow 8.37
yellow 9.61 object 6.87
small 6.37 handle 6.62
used 6.19 color 5.93
green 6.01 green 5.56
pair 5.56 used 5.46
plastic 4.53 small 4.67
box 3.90 silver 4.06
silver 3.61 light 3.89
metal 3.30 box 3.81
pink 2.94 pair 3.74
picture 2.54 like 3.59
orange 242 plastic 3.57
large 2.53 looks 3.07
jar 2.08 pink 2.58
Related Datasets

Grounded language acquisition is in the unique position of
requiring a dataset that combines sensory perception with
language. These combined datasets are frequently hand-
crafted for the specific task that the research seeks to accom-
plish (?; Roy 2002), often leading to datasets with narrow
applications. For example, CLEVR (Johnson et al. 2016)
was designed as a benchmark for question answering tasks.
The dataset itself consists of scenes of colored toy blocks ar-
ranged in various positions. These scenes are annotated with
the color, shape, size, and spatial relation to other objects
within the scene. The simplicity of the scene along with the
narrow scope of annotations in turn limits the type and com-
plexity of questions that can be asked. As question answer-
ing and grounded language systems become more advanced,
there is a need for our datasets to reflect real world scenes
both in their composition and annotation. GoLD achieves
this by including real world objects of varying types and nat-
ural language.

A barrier to creating a dataset that includes speech is the
high cost of collecting audio or transcribing it into a form
that is usable by the intended system. Roy (2002) presents
a grounded language system that can generate descriptions
for targets within a scene of colored rectangles. The visual
data for this task is easily generated, but for the speech de-
scriptions, an undergraduate recorded 518 utterances over
three hours. The audio from this collection was then man-
ually transcribed into text. The manual audio transcription
task can take anywhere between four and ten hours per hour
of audio depending on the quality of the audio being tran-
scribed and the final quality of the transcription (Evers ;
2011; Weizs 2019). We overcome this challenge by utilizing
Speech-to-Text technology and evaluating the transcriptions
for their quality as described in section 2.

While not a grounded language dataset itself, it should be
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Figure 5: Subtrees highlighting object classes that appear in our dataset (light blue nodes), and the hierarchical structure of their
related concepts as derived from WordNet (Miller 1995) (white nodes). These object class subtrees mirror similar category
hierarchies reported in ImageNet (Deng et al. 2009) and UW RGB-D (Lai et al. 2011) datasets.

noted that the image collection of this work is heavily influ-
enced by the University of Washington RGB-D dataset (Lai
et al. 2011). Both datasets contain large numbers of every-
day objects from multiple angles. Our dataset is collected
with a now-state of the art sensor which enables us to cap-
ture smaller objects at a finer level of detail (such as an Allen
key, which is nearly flat against the surface). Additionally,
we select objects based on their potential utility for specific
human-robot interaction scenarios, such as things a person
might find in a medicine cabinet or first aid kit, allowing
learning research relevant to eldercare and emergency situa-
tions (Beckerle et al. 2017).

3 Dataset Creation

In this section, we discuss the steps involved in collecting
images, depth images, speech, and typed descriptions for ob-
jects in the GoLD dataset. This includes the tools used and
the crowd-sourcing activities required.

RGB-D Collection

Visual perception data is collected using a Microsoft Azure
Kinect, colloquially known as a Kinect 3, using Mi-
crosoft’s Azure Kinect drivers for Robot Operating System
(ROS)(Koubaa 2017).2 The Kinect 3 is an RGB-D cam-
era consisting of both a Time-of-Flight (ToF) depth camera
and a color camera which enables it to capture high-fidelity
point cloud data. We collected raw image and point cloud
data from 47 classes of objects across the five categories of
objects. Approximately five instances of each class are im-
aged for a total of 207 instances. Table 1 shows the high-
level topics as well as the specific classes that are collected
within each topic. The dataset contains 207 90-second depth
videos, one per instance, showing the object performing one
complete rotation on a turntable. It also contains 825 pairs

“https://docs.microsoft.com/en-us/azure/kinect-dk/

of image and depth point cloud from 207 objects, consist-
ing of manually selected representative frames showing dif-
ferent angles of each object (an average of 3.98 frames per
instance).

The Kinect Azure depth camera uses the Amplitude Mod-
ulated Continuous Wave (AMCW) ToF principle. Near in-
frared (NIR) emitters on the camera illuminate the scene
with modulated NIR light and the camera calculates the time
of flight for the light to return to the camera. From this a
depth image can be built converting the time of flight to dis-
tance and then encoded into a monochromatic depth image.
ROS allows for the registration of the color and depth im-
ages, matching pixels in the color to pixels in the depth im-
age, to build a colored point cloud of the scene. Point Cloud
Library (PCL) (Rusu and Cousins 2011) passthrough filters
are used to crop the raw point cloud to only include the ob-
ject being collected and the turntable.

Text Description Collection

We collect our text descriptions using the popular crowd-
sourcing platform Amazon Mechanical TURK, or AMT. As
described above, for each object instance, a subset of rep-
resentative frames was manually chosen. For each task on
AMT, these frames were shown for five randomly-chosen
objects, each paired with a textbox. The AMT worker is
asked to describe the object on the turntable in one or two
short, complete sentences; they are specifically asked to not
mention the turntable, table, other extraneous objects in the
background. Each task was performed ten times, for a total
of 40 text descriptions per instance. Removing objects for
which there were representative frame errors, this allowed
for the collection of 8250 total text descriptions.

The purpose of taking images of objects from a variety of
angles is to diversify what workers see. It is a known prob-
lem in vision systems that pictures tend to be taken from
‘typical’ angles that most completely show the object; for
example, it is rare for a picture of a banana to be taken end-



on. This aligns with our motivation of creating a dataset of
household objects to support research on grounded language
learning in a human-centric environment: a robot talking to
a person may have a partial view or understanding of an
object, or vice versa. Thus we consider it essential to cap-
ture multiple views of objects in our dataset, and have those
perhaps atypical views reflected in natural language descrip-
tions.

Speech Description Collection

As speech interaction is becoming more common with cur-
rent technologies, our dataset will allow researchers to de-
sign and test grounded learning solutions using this popu-
lar input modality. We collect audio data to capture the nu-
ances between spoken and written natural language. It is
common for people to restructure sentences before writing
them, but while speaking, we do not have the liberty to re-
frame or restructure them. Therefore, spoken sentences tend
to be unplanned, less well framed or grammatically incor-
rect (Redeker 1984). Humans support speech with body ges-
tures, eye gaze, expressions or pitch of the voice, details
that are missing in writing (Jaimes and Sebe 2007). Expe-
rienced writers may be able to overcome these differences
while communicating but these people usually hold formal
education (Miller 2006).

To collect spoken natural language data we develop a user
interface utilizing the MediaStream recording API.* The au-
dio clips are stored in an Amazon S3 bucket*, which is a
cloud storage service. Workers can play the recorded audio
and if not satisfied can record it again. A similar approach is
reported in recent work (Lane et al. 2010; Lee et al. 2015) to
collect data using web-based and mobile application-based
systems. We embed the interface into AMT and the recorded
audio files are collected from these tasks.

The task on Amazon Mechanical Turk had a simple in-
terface, showing a single image with “Record”, “Play”, and
“Submit” buttons. Each ‘task’ had five such images, shown
sequentially. In order to make the audio files compatible with
ASR systems, missing metadata was added. The audio files
were converted to text using Google’s Speech to Text API.
A subset of these transcriptions was evaluated for quality, as
explained in section 2 (some examples are shown in table 5).
This process resulted in a spoken-language dataset of 4059
verbal descriptions of 207 objects.

4 Applications

Grounded language is useful for many robotic tasks.
Grounded language acquisition (Alomari et al. 2017) is the
general task of learning the structure and meanings of words
based on natural language and perceptual inputs, usually vi-
sual but sometimes including other modalities such as hap-
tic feedback or sound (Thomason et al. 2018). Other tasks
include navigation (Unal, Can, and Yemez 2019) where a

3https://developer.mozilla.org/en-US/docs/Web/API/
MediaStream_Recording_API

*https://aws.amazon.com/s3/

>https://cloud.google.com/speech-to-text

robot needs to either understand directions to get to a des-
tination, or generate directions for someone or something
else. Teaching and understanding tasks (Chai, Cakmak, and
Sidner 2017) as well as asking for help on tasks (Tellex et
al. 2014) are important areas of language that make interac-
tions with robotic systems capable and productive. We focus
on manifold alignment for grounded language acquisition
as our example use of GoLD, because it is a grounded lan-
guage acquisition task that highlights the multimodal nature
of the data and the challenges unique to that setting. Since
grounded language acquisition is the most general and used
to some degree in all of these applications, we choose to fo-
cus on an example that highlights the use of GoLD towards
a grounded language acquisition task.

Example: Manifold Alignment

We conduct a learning experiment to show how GoLLD might
be used as a means to learn grounded language. We use man-
ifold alignment (Richards et al. 2019; Wang and Mahade-
van 2011; 2008; Andrew et al. 2013) with triplet loss (Bal-
ntas et al. 2016; Schroff, Kalenichenko, and Philbin 2015)
to embed the perceptual and language data from GoLD into
a shared lower dimensional space. Within this space, a dis-
tance metric is applied to embedded feature vectors in order
to tell how well a particular utterance describes an image.
Novel pairs can then be embedded to determine correspon-
dence. Alternatively, inputs from either domain can be em-
bedded in the intermediate space to find associated instances
from the other domain.

For example, a picture of a lemon and the description
“The object is small and round. It is bright yellow and edi-
ble.” should be closer together in the embedded space than
the same picture of a lemon and the incorrect description
“This tool is used to drive nails into wood,” since the lat-
ter description was used to describe a hammer. Through this
technique, even novel vision or language inputs should be
aligned, meaning that a new description of a lemon should
still be closely aligned in the embedded space. We would ad-
ditionally expect other similar objects, such as an orange, to
be described in a somewhat similar way, allowing for poten-
tial future learning of categorical information.

Vision. The vision feature vectors are created following
the work of Eitel et al (Eitel et al. 2015). The color and
depth images are each passed through a convolutional neu-
ral network that has been pretrained on ImageNet (Deng et
al. 2009; Russakovsky et al. 2015) with the last layer (which
is used for predictions) removed so that the final layer is
a learned feature vector. The two vectors, one from color
and one from depth, are then concatenated into a 4096-
dimensional visual feature vector.

Language. The language features are extracted using
BERT (Devlin et al. 2019). Each natural language descrip-
tion is fed to a “BERT-base-uncased” pretrained model
which gives us the individual embeddings of all the tokens
in the description. We obtain the description embedding by
performing average pooling over the word embeddings. Due



(a) Apple image frame.

(b) Apple depth point cloud.

(c) Hammer image frame. (d) Hammer depth point cloud.

Figure 6: Samples showing the alignment of the visual data in GoLD. Each instance contains a stream of RGB image frames
(taken as the object rotates on the turntable), as well as an aligned 3D point cloud capturing depth information. Note: the RGB
images have been cropped from the full size for display here.

Table 5: Some examples of transcription-quality ratings. The transcriptions with the exact match are rated as 4.

Rating Class of Object Described  Google Speech to Text Transcription Manual Transcription

1 toothpaste Institute best It’s a toothpaste
1 spoon did Persephone used to serving before 3]1?0:; sssg?or::fiirevililpg‘g)?d
1 soda_bottle lovesick 100 African Buffalo ;t is a plastic one and half
iter bottle of coke
2 stapler this.is the §tuff ipside mechanical this.is a ste.lple.r i.t is a mechanical
) device which joins Legends of paper device which joins pages of paper
2 can_opener emmanuel 10 opener with a A manual tin opener with a
- blue handle blue handle
2 hand_towel its a folded great owl it’s a folded gray towel
3 shampoo_bottle what is a bottle of shampoo that is a bottle of shampoo
Addison black color Mouse can it is a black color Mouse can

3 mouse be used in lapt t be used in lapt t

e used in laptop or system e used in laptop or system
3 coffee_mug Arizona white coffee mug There is a white coffee mug

to the contextual nature of its embeddings, BERT can differ-
entiate between different meanings of the same word in dif-
ferent contexts. This results in semantically richer language
features and a more meaningful embedding space. The re-
sulting 3072-dimensional vector is taken as the description’s
language feature vector and associated to the visual feature
vector of the frame it describes. Since the dataset contains
ten natural language descriptions for each frame of an ob-
ject, each visual feature vector is paired with ten different
language feature vectors. The same process is repeated for
the speech transcriptions.

Triplet Loss. The basic triplet loss function (Balntas et al.
2016; Schroff, Kalenichenko, and Philbin 2015) uses one
training example as an “anchor” and two more points, one
of which is in the same class as the anchor (the positive),
and one which is not (the negative). For example, while clas-
sifying images of dogs and cats the anchor might be a cat
image, the positive would be a different cat image, and the
negative would be an image of a dog. The loss function then
encourages the network to align the anchor and positive in
the embedded space while repelling the anchor and the neg-
ative. Typically the positive and negative instances are from
the same domain as one another. However, they may also be
from the same domain as the anchor in order for the the net-
work to be internally consistent, or from the other domain to
align the two networks. Each of the four cases is chosen uni-
formly at random during training for each training instance.

Negative Sampling. In our case there is no obvious con-
ceptualization of positive and negative examples of lan-
guage. Because language is not exhaustive, the fact that a
description omits particular concepts does not mean that the
omitted language would not describe the object (for exam-
ple, describing a lemon as a “yellow lemon” does not make
it a good counterexample for the concept ‘round’). Similarly,
a description can include language that is accurate for a de-
scription of a different object or even a different class; even
in our dataset, which focuses on deep coverage of a small
number of classes, “a round yellow thing” can be a lemon, a
light bulb, or an onion. This underpins the widespread diffi-
culty of finding true negative examples for natural language
processing.

One approach to solving this problem for natural lan-
guage processing relies on a different use of feature embed-
ding (Pillai and Matuszek 2018). We calculate the cosine
similarity between a language feature vector and all other
language feature vectors within the training set. Vectors that
are semantically similar will have a distance close to 1 while
those further apart will be closer to 0. Therefore, we take the
feature vector with the smallest cosine similarity as the neg-
ative and the largest as the positive. To get positive and neg-
atives of images, we find the positive and negative of the im-
age’s associated language and then take the associated im-
ages of those instances. For anchors (A), positive instances
(P), and negative instances (/V), we compute embeddings of
these points, then compute triplet loss in the standard fashion



with a margin o = 0.4 (Schroff, Kalenichenko, and Philbin
2015) with Equation 2:

L(A,P.N) = maX(Hf(A)—f(P)Hg—||f(A)—f(N)|\§+(g7

where f is the relevant model for the domain of the input
points.

Training. Two models are trained from the data, a text-
based language model and a transcribed speech-based lan-
guage model. The text model, T, is trained for 50 epochs on
6600 paired visual/text feature vectors and evaluated on a
held out set of 1650 examples from GoLD. A speech model,
S, is trained from 3232 language vectors and their associated
images and evaluated on a held out set of 828 transcriptions.
A third model, T+S, is trained from both text and speech
transcriptions to see how the combination of domains affects
learning. We are interested in how training may be affected
by differences in the way people describe objects through
their word choice or structure. The automated transcription
process also introduces noise into the speech descriptions,
which has an effect on downstream performance.

Evaluation. We evaluate the network using the Mean Re-
ciprocal Rank (MRR). The MRR is calculated by finding
the distance of an embedding of a vector in one domain to
all of the embeddings of the other domain, ordering them
by Euclidean distance, and finding the rank of the testing in-
stance in the ordered list. The reciprocals of these ranks are
summed over the testing set and then averaged by the num-
ber of testing examples. When the number of testing exam-
ples is very high, the MRR can quickly approach zero even
when the rank of the instance is in the top half of examples,
rendering the metric difficult to interpret. To counteract this
and to evaluate our model on a scenario that is more realis-
tic to what it might be used for, instead of ranking the entire
testing set, we rank a select few instances. The first ranking
is only on the target, positive, and negative instances and the
second is on the target and four other randomly selected in-
stances. The first evaluation tests that the triplet loss is hav-
ing an effect on the final model, while the second mimics
what the model might do when faced with identifying ob-
jects in a cluttered scene.

In both cases, we test (1) identifying objects from lan-
guage descriptions, and (2) choosing a description given an
object. We use x — y to denote a test query from domain
x, which identifies something to be returned from domain y.
L — V therefore denotes the test case in which language is
provided and an object must be chosen from its perceptual
data, and vice versa.

The combined “T + S” model is evaluated three separate
times. First, it is tested individually on held-out sets where
V is drawn first from text, then from speech. It is then eval-
uated on the combination of the two held-out sets. Because
we expect the speech and text to be similar, testing on the
combination of them should perform better than testing on
either evaluation set in isolation, and in fact, this is what we
see. Our results show that a grounded language model can
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be learned from the GoLD data. In particular, when rank-
ing the distances between an embedded target instance from
one domain with a selection of embedded instances from the
other domain, we expect the target to appear in the top half
of the rankings, which we consistently see.

Discussion. We are investigating, first, whether using the
GoLD data to train these models in a manifold alignment
experiment yields better performance than a random base-
line, and second, how the performance of a language model
trained on speech performs vs. typed text. Table 6 shows
the results from our experiments. In all cases our experi-
ments outperform the random baseline, where the target is
expected to have a rank halfway down the ordering. For the
Triplet MRR and Subset MRR, we would thus like our mod-
els to perform better than 1/2 and 1/3 respectively since
there are three objects in the triplet evaluation and five in
the subset. Table 6 shows, then, that our model has effec-
tively achieved manifold alignment, aligning similar exam-
ples while repelling dissimilar ones. The fact that the Sub-
set MRR is above 1/3, which is true in all cases (vision to
language, language to vision, whether speech or text), tells
us that our model is not just randomly selecting a target in-
stance. So, when given a subset of instances, we can say that
our model is able to select the target or rank the target highly.

The speech model performs marginally worse than the
text model. This could be due to the smaller training dataset,
but is probably fully explainable by the noise generated by
the transcription process. Speech transcriptions allow for a
one to one comparison of the two domains, but in future
work, we will train a model over the raw audio. In a system
that utilized one of these models, this would eliminate the
need for a transcription step and may provide more accurate
results since there may be tonal or inflection data that is lost
in the transcription process.

When the combined model is evaluated against each in-
dividual domain, we find the performance drop that we ex-
pected. The minor drop in performance when evaluating on
the combined held out set implies that the two domains are
different enough that a model trained on both modalities to-
gether has more difficulty reaching the level of performance
of a learned model trained on uniform data. While this is not
unexpected, it is heartening that the performance drop is rel-
atively small. Perhaps more importantly, the improvement
on the combined test set demonstrates that the model is be-
ing trained to effectively interpret either spoken or typed in-
put.

Another interesting aspect of these results is the relative
difference in the direction of the mapping, that is, which do-
main is chosen as the target. In particular, the V — L case
outperforms L. — V. That is, selecting the associated lan-
guage given a visual input is easier than selecting the as-
sociated vision given a language input. We suspect this ob-
served behavior could be due to differences in the manifolds
of the feature vector spaces. BERT is a highly pre-trained
model (Devlin et al. 2019). The visual domain, however, is
much more complex. Raw images, like an apple and a red
ball, may be very close together while it is unlikely that their



Table 6: Experimental results. Mean Rank Reciprocal for
models trained on Text and Speech descriptions. For Triplet,
MRR values above 0.5 demonstrate a successfully learned
alignment between language and perceptual data; for Subset,
MRR values above 0.33 demonstrate success. Triplet MRR
is calculated from the target and a positively and negatively
associated test data point, while Subset MRR is calculated
from the target and a subset of four random test data points.

Model Domain Triplet MRR  Subset MRR
Text L—>V 0.6658 0.4560
V—L 0.7342 0.4669
Speech L—>V 0.6661 0.4391
V—L 0.7289 0.4562
T+S L—>V 0.5954 0.4255
L — V(Teston T) 0.4670 0.4547
L — V (Teston S) 0.6651 0.4520
V—L 0.6762 0.4519
V — L (Teston T) 0.4389 0.4605
V — L (Test on S) 0.4587 0.4594

descriptions would be close together. BERT uses the con-
text of a word to generate the embeddings so in this exam-
ple even if the word “red” were used in both descriptions,
the language embedding would be different. The raw images
also all contain similar background scenery, the turntable,
and the table.

5 Discussion and Future Work

In this paper we present GoLD, a grounded language dataset
of images in color and depth paired with natural language
descriptions of everyday household objects in text and
speech. We aim to make this resource a useful starting point
for downstream grounded language learning tasks such as
spoken natural language interfaces for personal assistants
and domestic service robots.

To demonstrate a potential use of GoLD, we use the data
to train models that perform heterogeneous manifold align-
ment. We hope this dataset serves researchers as a resource-
ful starting point from which to explore many more tech-
niques, model architectures, and algorithms that further our
understanding of grounded language. In particular, the inclu-
sion of speech alongside written textual descriptions allows
for side-by-side comparisons of the two domains grounded
to physical objects, or for novel multimodal techniques in-
volving all three domains of vision, text, and speech.

The idiosyncratic properties of GoLD suggest many re-
search questions for future study. For example, we remark
that GoLD includes descriptions of the same object as ob-
served from multiple angles. One interesting question to ex-
plore, then, would be how to identify objects from a dif-
ferent perspective or when information is missing. Another
property of GoLD is that some descriptions focus on the use
of the object (mostly agnostic to perspective), while others
report perceptual qualities of the objects such as logos and
other identifying features uniquely visible from the annota-

tor’s current perspective on that object. This aspect could
be incorporated into a human-robot interaction study that
examines grounding language to objects in a physical as
viewed by embodied agents from different vantage points.

In the near term, we are interested in leveraging this
dataset to train robots to understand natural language in or-
der to perform tasks in a domestic context. The inclusion of
medical and kitchen supplies is critical to training a robot
for tasks such as cooking, cleaning, and administering care.
As we work toward this goal, we anticipate creating an ex-
panded catalog of items including the diverse ways in which
people describe and talk about the wide variety of items they
encounter every day.
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