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1. Introduction
Persistent, low-level (VEI 1-2) Strombolian eruptive activity is typical at many open-vent volcanoes around the 
world. Named after Stromboli (Italy), where the visually spectacular eruptions draw tourists and scientists to 
observe them from the relative safety of the summit, Strombolian eruptions have long been attributed to a process 
of gas slug ascent and bursting at a free (liquid) surface based on direct visual observations of bubble bursting at 
a lava lake at Heimaey Volcano, Iceland, in the 1970s (Blackburn et al., 1976). Strombolian eruptions are also 
linked to a type of very long period (2–100 s, VLP) seismic signal and the connection to the slug-bursting model 
has formed the basis for decades of detailed analysis and interpretation of VLPs at volcanoes worldwide, includ-
ing Stromboli (Chouet et al., 1999; Neuberg et al., 1994); Kilauea, USA (Ohminato et al., 1998); and Erebus, 
Antarctica (Aster et al., 2008; Knox et al., 2018; Rowe et al., 1998).

The established conceptual model for VLPs links them to the driving mechanism for Strombolian explosions 
through the acceleration of magma in the conduit around a rising gas slug and/or top-down pressure change 
caused by the burst of the slug and mass ejection at the surface (Chouet et al., 2003; James et al., 2006). This 
model predicts an impulsive infrasonic event, or explosion, resulting from the eruption due to the rapid expansion 
of gases following slug bursting (Bodurtha, 1980; Kinney & Graham, 1985).

We conducted an intensive week-long multi-instrumental field study at Stromboli in May 2018 to investigate the 
explosive mechanism, which resulted in a detailed catalog of hundreds of VLP events. Instead of clear explosions 
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in the infrasound data, we find an absence of infrasonic signals associated 
with most VLPs, which conflicts with the “slug” model. We propose a new 
model for VLPs, first presented by McKee et al. (2019), based on an upper 
conduit crystal mush “plug” (Oppenheimer et al., 2020; Suckale et al., 2016) 
that is consistent with our observations. Our proposed model for VLP genera-
tion likely applies to other subduction zone volcanoes with high water content 
basalts that drive significant shallow degassing-induced crystallization, such 
as Yasur, Vanuatu, and Fuego, Guatemala.

1.1. Stromboli Volcano, Italy

The Strombolian eruptive style is defined by relatively weak, discrete explo-
sions, which eject gas, molten magma, and lithics (Taddeucci et al., 2015), 
with Stromboli Volcano being the type locale. At Stromboli, the activity is 
centralized at a crater terrace (Figure 1), which at any given time has 3–10 (or 
more) active vents aligned from NE to SW (Harris & Ripepe, 2007). Eruptive 
activity varies from vent to vent and includes: small, ash-rich explosions that 
eject crystal-rich scoria; gas-rich explosions; gas-jetting events; and constant 
passive degassing (Ripepe et al., 2008). Jetting is a momentum-driven, fluid 
flow through a nozzle or vent (Tam, 1998). When a jet flow perturbs the 
atmosphere it creates a velocity shear causing turbulence which generates 
sound (Kundu & Cohen, 2008). During this archetypal, long-term average 
eruptive activity, which we refer to as normal activity, the visually docu-
mented explosion rate is about 3–12 explosions per hour (Ripepe et al., 2007) 
with passive degassing simultaneously occurring from multiple vents. 
At other times, gravity-driven transitions to effusive activity produce lava 
flows in the Sciara del Fuoco (Figure 1) (Falsaperla et al., 2008; Marsella 
et al., 2012). During effusive activity, the number and amplitude of VLPs 
remains high, but their relative source location is deeper in the magmatic 
conduit (Ripepe et al., 2015).

1.2. Models for Activity at Stromboli

There are currently two primary models for normal shallow eruptive 
processes at Stromboli Volcano: slug (Blackburn et  al.,  1976) and plug 

(Suckale et al., 2016). The models are likely applicable to other volcanoes around the world characterized by 
Strombolian activity. Here we describe the two conceptual models and later we evaluate the conceptual models 
in light of our seismo-acoustic observations.

1.2.1. Slug Model

The slug model was based on visual observations of explosions at (a) Heimaey Volcano in February 1973, where 
the eruption started as a 1,500 m long fissure eruption (Thorarinsson et al., 1973) and evolved to steady lava 
effusion through three vents at the time of observation, and (b) Stromboli Volcano in April 1975 (Blackburn 
et al., 1976). Blackburn et al. (1976) note there was significantly greater mass of gas erupted than solid parti-
cles in both systems, and the amount of gas erupted required a larger volume of magma than was erupted. They 
suggested that Strombolian explosions thus represent the bursting of large bubbles at a magma free surface, and 
that the pyroclasts are magma fragmented by the bubble expansion. The slug model is simple, explains the high 
gas/magma output of Strombolian explosions, and is consistent with observations at systems such as Kilauea 
(Chouet et al., 2010; Ohminato et al., 1998) or Erebus (Knox et al., 2018) where bursting bubbles have been 
observed at the surface of lava lakes. However, the slug model considers only a two-phase (melt/gas) magma, 
while magma commonly contains crystals (Francalanci et al., 2004, 2005; Métrich et al., 2001), and it assumes 
no difference in bubble bursting processes between an open lava lake and a closed to partially open system. Early 
observations of VLPs at Stromboli were linked to the slug model (Chouet et al., 2003) despite the lack of an 

Figure 1. Map of study area. (a) Stromboli is one of the Aeolian Islands north 
of Sicily, Italy. (b) The Island of Stromboli, and the yellow box is the area 
shown in (c). (c) Stromboli summit area, with light blue triangles marking 
the seismometer locations and white circles the infrasound sensors. The black 
arrows point to active vents.
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observable free surface and the lack of an independent and complete chronology of explosions. Previous work 
suggests that these large bubbles interact with the conduit walls and generate a VLP as they pass a bend or flare 
and then explode at the surface (Chouet et al., 2003; James et al., 2006).

1.2.2. Plug Model

Recently an alternate to the slug model was proposed based on 1-D modeling of gas flow through a crystal mush 
(Suckale et al., 2016). The model of Suckale et al. (2016) involves a semi-permeable solid plug in the top several 
hundred meters of the conduit of Stromboli volcano that modulates gas escape processes. In this model, gases 
percolate through this plug continually heating the pathways through which they travel. Pathways with high 
gas flux and thus high heat flux remain hot and therefore less restrictive gas escape routes (passive degassing). 
Pathways with lower gas flux are less hot, open due to tensile failure, and ultimately lead to explosive gas escape 
(explosions and jetting) (Suckale et al., 2016). In support of their conceptual model they note several observa-
tions: (a) the top few 100 m of Stromboli’s magma column contains highly porphyritic, water-poor magma with 
45%–60% phenocrysts and microphenocrysts, which erupt as scoria (Francalanci et  al.,  2004,  2005; Métrich 
et  al.,  2001); (b) low-porphyritic, water-rich magma with <10 vol% phenocrysts originates at approximately 
3 km depth and erupts as pumice during major eruptions (Bertagnini et al., 2003; Francalanci et al., 2004, 2005; 
Métrich et  al.,  2001); (c) rapid crystallization of plagioclase occurs at around 10  MPa (400–600  m depth) 
(Agostini et al., 2013; Conte et al., 2006); (d) the crater terrace, crater, and vent locations have been stable for 
hundreds of years and accommodate both continuous degassing and normal explosions (Calvari et  al.,  2005; 
Ripepe et al., 2005); (e) a common gas source feeds the vents several hundred meters below the surface (Genco 
& Ripepe, 2010; Kirchdörfer, 1999; Wielandt & Forbriger, 1999); and (f) self-potential surveys suggest there is 
a convective cell of gas and dense magmatic liquid (Ballestracci, 1982; Finizola et al., 2003). However, we note 
the crater/vent location stability and common gas source are also consistent with the slug model. While rapid 
crystallization at 10 MPa is noted, the 1-D modeling shows the plug thickness varies from several meters to 
about 800 m (Suckale et al., 2016). Ultimately the “plug” model considers the crystal-rich nature of the magma 
erupted at Stromboli. However, it does not address observations of varying gas signature between explosions and 
passive degassing (Aiuppa et al., 2010) or consider effects from the latent enthalpy of crystallization (Blundy 
et al., 2006).

2. Field Experiment
We deployed seven seismometers and infrasonic microphones between 12 and 19 May 2018 at the summit of 
Stromboli (Figure 1, McKee et al., 2018). We sampled the seismic wavefield at 100 Hz. The seismic stations 
consisted of Nanometrics Trillium 120 Compact Posthole sensors with Centaur digitizers. We deployed seven 
campaign Chaparral Physics Model 60 UHP infrasonic microphones with DiGOS DATA-CUBE digitizers and 
sampled the acoustic wavefield at 400 Hz. The average distance from vent to infrasonic sensor is 475 m.

3. Seismo-Acoustic Observations
Eruptive activity during the field campaign was characterized by fewer explosions (less than 2/hr by acoustic 
detection) with lower energy than normal activity, jetting from a small vent in the southwestern crater, and passive 
degassing from an incandescent central vent. Using a coincident recursive short-time-average/long-time-aver-
age (STA/LTA) trigger, we detected 1,900+ seismic events over the 7 days experiment period. We used a short- 
and long-term window duration of 10 and 20 s, respectively, and required that 4 of the 7 stations have an STA/
LTA ratio above 1.3. These seismic events were generally broadband with energy from 0.01 to 10 Hz. Most had 
VLP energy in the 0.01–0.5 Hz band (2–100 s period). A small number of events had little to no energy below 
1 Hz. We focus subsequent analyses on the VLP component of these broadband seismic events.

We detected ∼200 explosions (defined as discrete infrasonic events) using the same STA/LTA trigger and window 
lengths, and required 4 out of 7 stations to trigger with a ratio of 1.4. The explosions are broadband with energy 
from 0.1 to >20 Hz and peak pressures ranging from 2 to 72 Pa at about 500 m from the vent (Figures S2a and 
S2b in Supporting Information S1). We also identified about 500 jetting events, which span the infrasound and 
audible bands with energy up to at least 100 Hz, and have an impulsive onset and cessation. Jetting events were 
clearly audible to observers on the summit.
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4. Seismic Multiplet Analysis and VLP Characterization
We used PeakMatch to conduct multiplet analysis of all VLP events (Rodgers et al., 2015). Prior to cross-correlation, 
we removed the instrument response from the VLP waveforms and filtered events from 0.01 to 0.5 Hz (2–100 s). 
We windowed event waveforms starting 20 s prior to and 70 s after event onset. We executed PeakMatch such 
that all unique pairs of waveforms are fully cross-correlated. To assign a VLP to a given multiplet, we required its 
correlation value to be 0.7 or higher. Full details of the method are described by Rodgers et al. (2015).

The majority (68%) of detected VLPs comprise two main families with more than 100 events that span the 7 days 
of observation, along with 8 smaller families with 5–70 events in each. We focus subsequent analysis on the 
main two: Family 1 (F1) and Family 2 (F2). Figure 2 shows F1 and F2 VLPs through time and their respective 
stack recorded at seismic station SBCP. The horizontal black bars on the right side of Figures 2a and 2c indicate 
when an impulsive, infrasonic signal began within 10 s of the start of the VLP. F1 has over 500 events, each 
lasting approximately 25–30 s (Figures 2a and 2b). F2 has over 100 events and they are slightly longer in dura-
tion (25–35 s) (Figures 2c and 2d). F1 VLPs have a peak frequency of about 0.2 Hz (5 s), while F2 VLPs’ peak 
frequency is about 0.1 Hz (10 s). Both VLPs are part of a broadband seismic signal (Figures S1, S2c, and S2d 
in Supporting Information S1). The waveforms for each family are similar in period, shape, and duration from 
station to station (Figure S3 in Supporting Information S1) and pervasive throughout the week-long study period.

We find that most VLPs are not associated with detected explosions or jetting events (Figure 3a). Figures 3a 
and 3b show the VLP peak amplitude through time and infrasonic trace peak amplitude through time, respectively. 

Figure 2. Waveforms from seismic station SBCP for Families 1 and 2. (a) Shows time-aligned (x-axis) vertical component waveforms of Family 1 (F1) very long 
period (VLPs) plotted through time (y-axis). The F1 VLP repeats 500+ times over 7 days. Red is positive amplitude or upward motion of the ground and blue is 
negative or downward motion. For (b), the onset time-aligned VLPs are plotted on top of each other in gray and their average in blue. Similar plots for Family 2 are 
shown in (c and d), which occurs about 200 times over the same period. In (a) and (c) when the VLP signal appears stretched or blurred vertically it indicates extended 
time between VLPs, sometimes on the order of hours. The black horizontal ticks on the right y-axis of (a) and (c) indicate that the VLP happened at the same time as an 
explosion at the surface as recorded with infrasound sensors. Waveform amplitudes are normalized.
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Associated, detected explosions are highlighted in orange. This highlights the low rate of explosions relative to 
VLPs and the poor correlation between infrasonic and VLP peak amplitudes regardless of a detected explosion. 
About 4% and 1.6% of F1 VLPs align in time with explosions and jetting events, respectively, and about 28% 
and 4% of F2 VLPs align in time with explosions and jetting events, respectively. Figures 3c and 3d show an 
example of a Family 1 VLP and the corresponding infrasound data where there is neither an explosion or jetting 
event. Figures 3e and 3f show an example of an F2 VLP and the corresponding infrasound data in which there 
is an explosion. Note for Figure 3, the traces have not been shifted to account for travel time. Travel time for the 
infrasound ranges from 0.7 to 2.3 s depending on the station with an assumed air temperature of 25°C and sound 
speed c = 346 m/s. Travel time for the seismic P-wave ranges from 0.12 to 0.24 s with an assumed velocity of 
3,500 m/s (Chouet et al., 2003).

Although we have shown evidence that silent VLPs do occur at Stromboli, we concede that some of the silent 
VLPs in our catalog that occurred during periods of higher infrasonic noise may in fact have smaller explosion 
signals. Future work is needed to determine the exact percentage of silent versus non-silent VLPs. The study 
should be based on a longer period of observation with co-deployed wind sensors to assess silent VLP occurrence 
over longer periods of low/no background noise than possible given the short duration of our deployment.

For the VLPs that have corresponding explosions, infrasound onset aligns with the higher frequency seismic 
wave arrival, and the VLP signal starts earlier (Figures 3e and 3f and Figure S2 in Supporting Information S1). 
Figure 4 shows the particle motion for an F1 and F2 event. The particle motions and source locations are similar 

Figure 3. Very long period seismic event (VLP) peak amplitude from station SBCP (a) through time and (b) infrasound peak amplitude through time in the window 
10 s prior to 20 s after the VLP onset. VLPs and infrasound amplitudes with an associated explosion signal detected in the infrasound data are in orange, and silent 
VLPs are in blue. The gray line is the wind speed recorded at a weather station about 72 km to the SSE in Messina, Italy. In (c–f), we show examples of two VLPs 
recorded during a period of low infrasonic background noise (gray line and gray vertical bars in (a–b). (c–d) show an example of a high-amplitude “silent VLP” (green 
dot in a) with no corresponding infrasonic signal of explosion, and (e–f) show an example of a VLP with a corresponding low-amplitude infrasonic signal of explosion 
(green dot in b). (c) Infrasound trace from station SIEP band-pass filtered at 0.5–10 Hz (d) F1 VLP seismic trace from station SBCP filtered between 2–100 s. (e) same 
as (c) and (f) same as (d) but for a Family 2 (F2) VLP.
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between the two events. We examined the particle motion dip for all the VLPs in our catalog including those in 
F1 and F2. The dip of the VLP particle motion is −7.2 ± 2.9° for F1 and −8.2 ± 2.5° for F2 at station SBST, 
which corresponds to a depth of 140 ± 30 m and 150 ± 25 m vertically below the center of the crater, respectively 
(Figure S4 in Supporting Information S1).

5. “Silent” VLPs
Our analysis indicates that during a period of relatively low activity VLPs are consistently generated without 
an energetic subaerial expression (as detected in the acoustic data). We term these events “silent VLPs.” To our 
knowledge, these have only been reported in the literature during effusive activity at Stromboli in 2002 (Marchetti 
& Ripepe, 2005), 2007 (Ripepe et al., 2015) and 2014 (Ripepe et al., 2015, 2017). The lack of correspondence 
between VLPs and explosions during our study period is inconsistent with the “slug” model, which involves a 
gas bubble rising from some depth, expanding as pressure decreases, and then bursting at the lava free surface 
(Blackburn et al., 1976). Furthermore, previous work suggests silent VLPs during effusion have consistent char-
acteristics with changing source depth (Marchetti & Ripepe, 2005; Ripepe et al., 2015, 2017) with an unchanged 
conduit geometry, and are therefore not related to a bubble interacting with a fixed structural feature in the subsur-
face such as a bend or flare in the conduit. We suggest the characteristics and timing of silent and non-silent VLPs 
and explosions are better explained by the plug model (Suckale et al., 2016), and attribute the VLP signal to the 
interaction between a rising gas slug and the base of a semi-rigid magma plug which inhibits rise to the vent and 
explosive gas release.

We suggest that the plug acts as a control on the mechanism of gas escape and effectively facilitates a diversity 
of surficial activity. The VLP is generated by a gas bubble impinging upon and moving into the plug. However, 

Figure 4. Particle motion for a Family 1 (F1) and Family 2 (F2) very long period event. Further details of each in Figures 
S1 and S2 in Supporting Information S1. (a) Map view of particle motions with seismometer locations marked by light blue 
triangles. F1 event is plotted in gray and F2 in red. (b) North versus vertical and (c) East versus vertical particle motion.
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the complex pathway structure in the plug controls the gas escape and causes it to be variable. Gas escape 
could be through pressurized, transient explosions (non-silent); jetting (non-silent); convective release of ash 
and gas (silent); or passive release (silent). These phenomena are all observed, often at the same time, at Strom-
boli (Harris & Ripepe, 2007). Analogue experiments examining gas bubble rise below and through a solid-rich 
suspension also support the plug model (Oppenheimer et  al.,  2020); results show that solids start to impact 
bubble flow at particle volume fraction of 30 vol% (45–60 vol% phenocrysts and microphenocrysts at Stromboli 
(Francalanci et al., 2004, 2005; Métrich et al., 2001). At particle fractions greater than 38 vol% rapidly expand-
ing bubbles deformed and applied a high stress on the plug, but the bubbles were trapped when they were less 
overpressured. Silent VLPs may be generated by these less overpressured bubbles that can apply stress to the 
plug, but are ultimately trapped by it. Gas from these bubbles may escape through the plug, but at a rate that does 
not produce detectable audible or infrasonic signals. Conversely, VLPs with corresponding infrasonic signals of 
explosion are from bubbles with sufficient overpressure to ascend immediately through the plug and explode. The 
plug model allows for multiple bubbles rising in the conduit, which would allow for activity observed at Strom-
boli such as simultaneous explosions from different vents and continuous passive degassing with occasional 
explosions (Oppenheimer et al., 2020). Recent work suggests that Stromboli's activity is linked to near surface 
magma crystallinity and that variations in gas escape style are due to spatio-temporal variations in crystallinity or 
crystal-bubble interactions (Oppenheimer et al., 2020). The difference in gas ratios observed between passive and 
explosive degassing (Aiuppa et al., 2010; Burton et al., 2007) are compatible with the plug model. Gas bubbles 
from volatiles exsolving either from >4 km depth (CO2-rich) or from <1 km depth could interact with the plug, 
generate a VLP, and pass through the plug as described previously. We note that the plug model of VLP dynamics 
offers a resolution to a long-standing conundrum in the relative timing of VLPs and associated explosions, which 
require unrealistically high gas ascent velocities to comply with the slug model (Harris & Ripepe, 2007; Ishii 
et al., 2019).

We observe two repeating VLP families with distinct dominant frequencies, 0.2 Hz (5 s) and 0.1 Hz (10 s) for F1 
and F2 VLPs, respectively, but similar particle motions and depths. The different wavelengths suggest that two 
different scales of oscillation are excited. Perhaps the different length scales are due to the morphology of the 
bottom of the plug and how bubbles interact with it. We also observe that these VLPs occur with variable ampli-
tudes, which suggests these oscillations can be excited with varying energy. It may be the variation in bubble size 
passing into the plug that determines amplitude. F1 VLPs occur at a higher rate relative to F2 VLPs. This may 
indicate a higher rate of gas and heat flow into the F1 pathway relative to F2 VLPs. Perhaps the F1 VLPs record 
the bubbles moving into the plug that feed the passively degassing, incandescent vent in the center of the crater. 
Additional observations, such as high-resolution gas imaging, may allow testing of this hypothesis.

6. “Slug” Versus “Plug” at Volcanoes Worldwide
We have addressed the high rate of repeating VLPs at Stromboli Volcano with little to no associated explosive gas 
escape and how these observations do not reconcile with the prevailing source (slug) model, but are well-explained 
by the plug model. Further analysis of the characteristics of these VLPs and inverting for their respective source 
mechanisms are critical next steps to understanding their source processes, particularly with respect to the plug 
model. The slug model has been invoked at a number of systems highlighted in Table 1 (e.g., Chouet et al., 2003; 
Knox et al., 2018; Kremers et al., 2013). Table 1 shows low-viscosity magma volcanoes with well-constrained 
crystallinity where VLPs have been observed during Strombolian activity and further analyzed for source char-
acteristics documented in the literature. To our knowledge, these properties have only been documented for a 
small number of volcanoes despite the overall large number of geophysical and geochemical observations. This 
highlights the potential bias in our observations and understanding of VLPs in low-viscosity systems. Further, 
many volcano seismic deployments only consisted of short-period seismometers not sensitive to the VLP band. 
These limitations motivate future seismo-acoustic experiments to look for silent VLPs (notably those in bold as 
their vol% crystals is 38% or higher) and further investigate when the slug and plug models apply and improve 
understanding of their respective gas escape processes.
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7. Conclusion
During a period of low intensity, but normal, activity at Stromboli Volcano, we observed two families of repeat-
ing seismic VLPs. Using seismo-acoustic data we find that only about 4% of F1 VLPs and 28% of F2 VLPs 
have associated surficial explosions in the acoustic record. These two families of “silent VLPs” have roughly the 
same source location beneath the active crater based on particle motion analysis. We find the low occurrence of 
infrasound signals indicative of Strombolian explosions associated with VLPs does not support the prevailing gas 
slug VLP source model. We suggest the process of rising bubbles interacting with and passing into a complex, 
semi-permeable plug generates these silent VLPs and helps explain the variable acoustic and degassing regimes. 
At Stromboli, a natural next step for understanding the VLP characteristics and the processes at the base of the 
plug is through waveform source inversion; however, recent work shows this provides minimal constraints on the 
mechanism of Strombolian activity, and instead reflects conduit structure (Matoza et al., 2022). The infrasound 
signals (or lack there of) provide key support for the plug versus the slug model. Furthermore, the plug model of 
VLP dynamics offers a resolution to a long-standing conundrum in the relative timing of VLPs and associated 
explosions, which under the slug model require unrealistically high gas ascent velocities (Harris & Ripepe, 2007; 
Ishii et al., 2019; Patrick et al., 2011). Future integrated studies at other volcanoes are necessary to further under-
stand shallow conduit processes and gas escape mechanisms and their respective seismo-acoustic signatures.

Data Availability Statement
The seismo-acoustic data used in the study are available through the IRIS DMC via https://doi.org/10.7914/SN/
YI_2018. The PeakMatch software used for the multiplet analysis is available through GitHub at https://github.
com/simonrodgers/peakmatch-xcorr (Rodgers et al., 2015). The wind data are from Visual Crossing available at 
https://www.visualcrossing.com/weather/weather-data-services.
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