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Abstract— In an open source cloud computing platform
such as OpenStack, operators use Role-Based Access Control
(RBAC) model to grant access to cloud resources. However,
these user-level role-based access control techniques fail to
include comprehensive user context. We believe a situational
aware framework will improve security by bringing in user’s
context to such cloud systems. In this paper, we create a seman-
tically rich context-sensitive access control system for Open-
Stack by incorporating the user’s current context attributes
like location, time, etc. In a proof-of-concept implementation,
we integrate a knowledge graph with our own access control
system to express and enforce the contextual-situation policies
in OpenStack. The proposed system provides enhanced, flexible
access control while minimizing the overhead of altering the
existing access control framework. We also discuss various
use cases, to highlight the benefits of our system and show
enforcement results.

Index Terms— Cybersecurity, Access Control, Knowledge
Graphs, OpenStack, Contextual Attributes

I. INTRODUCTION

Cloud computing environments allow developers, to create
accessible Internet-based ubiquitous services. Securing these
environments from unauthorized users formulates the need
for Access Control. Access control systems allow an appli-
cation to verify the identity of a user or another application.
Once authenticated they can create, read, write, or append
any resource or object. Generally, security administrators
appropriate roles, and these roles are used to authorize users
and applications via access control policies. These policies
play a vital role in regulating the behavior and functionality
of the system.

Policies control access rights within an organization, they
also dictate an organization’s operational behavior. For ex-
ample, a policy may require that an organization has to
encrypt its data as per some required minimum standard,
say, AES 256 while communicating with the outside world.
It may further restrict the movement of data by designating
specific intermediate routers. A challenge for both policies
and descriptive access control models is to be able to repre-
sent fine-grained context, this has led to the development of
various access control frameworks. Some such frameworks
are: Mandatory Access Control (MAC) [10], Discretionary
Access Control (DAC) [19], Role-Based Access Control
(RBAC) [6] and Rule-Based Access Control [16]. Among
these Role Based Access Control (RBAC) model is the most
widely used access control model [20]. Many applications
and platforms use a custom form of RBAC as per their needs
and requirements. Major cloud computing platforms such as
OpenStack [21] utilize RBAC as their authorization system.

ABAC, on the other hand, combines various attribute
information to provide greater flexibility. It allows a system
to express fine-grained control policies in a simple and
more powerful way [8]. The attribute information can be
based on user, subject, and resource properties [7]. This
inherent flexibility permits the creation of complex real-
world applications and systems.

So as to achieve this, we can add contextual attributes
to role centric system. A role-centric system can be aug-
mented with the user, environmental, application-oriented, or
a combination of these contextual attributes [5]. The system-
state machine can be further differentiated based on these
contextual attributes. Typically, the user context comprises
of a user’s location, profile, rights, the current authorization,
time, actions, etc. Similarly, the environmental context can
contain infrastructure, physical properties, and restrictions.
This can include, the system’s current time. Application
context defines the system flow to fulfill various application-
specific needs of a user. An example of such a scenario can
be, permitting communication only on an AES 256 encrypted
connection.

In this work, we develop a role-centric attribute-based
access control model for Openstack. We extend the existing
RBAC in OpenStack [22] with contextual attributes, by
adding them to core cloud access control systems. We create
policy representations where context-dependent information
is included in the access control models. In our system, we
can capture many of the contextual attributes like location,
time, etc.

The system utilizes a knowledge graph, which replaces
the existing access control module of OpenStack. It acts
as an authorization component by getting information and
permissions from the knowledge graph and then evaluates
authorization decisions. The OpenStack sub-modules then
enforce the decisions taken by our system. Our system
is versatile enough, so as to enforce different types of
access control policies. To facilitate communication between
OpenStack and our system, we implement a RESTful service.
This service takes an input API request from OpenStack,
along with the contextual information, and returns the access
control decision.

The rest of the paper is organized as follows – Section
II discusses our related work. We present our system’s
architecture and explain different components in Section III.
Various use-cases in Section IV. We evaluate our system in
Section IV-C. We discuss our future work and conclusion in
Section V.



II. RELATED WORK & BACKGROUND

In this section, we discuss some related work on access
control and give a brief background on OpenStack.

A. Access Control

Attribute based access control in cloud systems has been
studied with different traditional access control models like
DAC [19], MAC [10], and RBAC [6]. These models are
identity-centric, and identification is usually done through
role assignment [23]. These models, however, are suitable
for static systems, with a limited set of users and services
[14]. These systems are mostly centralized [9]. Policies in
attribute-based access control (ABAC) models are semanti-
cally more expressive than the RBAC model [8]. Jin et. al.
[10] created a combined attribute-based access control model
that can be configured with DAC, MAC, and RBAC [11].
They also created a proof of concept using an OpenStack
implementation, where they replaced the native RBAC [22].

Our approach is designed to incorporate contextual at-
tributes in OpenStack’s existing RBAC framework. Other
approaches to include attributes in OpenStack for cloud
federation and identity management have been discussed by
Chadwick et al. [4] and by Lee et al. [15].

Pustchi et al. [18] discussed an application of attribute-
based access control to enable collaboration between tenants
in a cloud IaaS platform. In our technique, we focus on
authorization within a single tenant. A formal role-centric
attribute-based access control (RABAC) model has been
proposed by Jin et al. [12], along with XACML profiles.
XACML is a general-purpose access control policy language
for managing access to resources. Joshi et al. [13], have
proposed a semantically rich access control system that
evaluates access decisions based on rules generated using
the organization’s confidentiality policies. Their proposed
system analyzes the multi-valued attributes of the user and
the requested document, before making an access decision.

B. OpenStack

OpenStack is an open-source cloud middleware that helps
orchestrate a cloud environment and provides various ser-
vices by virtualizing network, storage, and compute re-
sources. It also keeps the different offered services decou-
pled, and provides high scalability and availability.

In this paper, we use OpenStack’s Nova component to
demonstrate our access control extension. Nova is an Open-
Stack service that provides custom compute instances. An
operator can access multiple servers and OS services by
making API requests to the compute service. In the current
implementation, the compute service is integrated with the
OSLO policy engine [1], [17], as shown in Figure 1, to define
access control policies and to compute various access deci-
sions. Whenever a user wants to access a specific resource,
it submits a request to the OSLO policy engine. The OSLO
engine, using different policies defined, makes a decision to
allow or deny access.

Each OpenStack service defines the access policies for its
resources (for example, API access, the ability to attach to

a volume, ability to fire up instances, etc.) in an associated
policy JSON file. The policy file stores various rules for
which some roles have access to certain resources. Each
API call requires a corresponding permission structure to be
present in the policy file and dictates what level of access is
allowed. The syntax for the same is

api name : rule statement

. For example, a sample expression

“identity : create server′′ : “role : admin or owner′′

translates to: you must have admin or owner role for creating
a new server through the compute service. Administrators
will build access grant rules using default deny policy
architecture[3] where the destination will be a set of critical
API operations of OpenStack and action results will be set
to “Grant Access”. This procedure is analogous to a fire-
wall policy where everything is dismissed unless explicitly
approved.

Fig. 1. OpenStack Policy Engine Architecture

However, these access policies are rigid and do not capture
many of the contextual attributes like location, time, etc. In
this paper, we provide an extension for this existing access
control in OpenStack by incorporating contextual attributes
and reasoning capabilities.

III. AN ATTRIBUTE-BASED EXTENSION FOR OPENSTACK

Integrating access control models and policy specification
language like Web Ontology Language (OWL) gives us a
powerful architecture to formulate complex policies. The
associated reasoning framework can then be used to make
intricate access control decisions. Our system replaces the
existing policy engine in OpenStack and uses various user
attributes like time, location, etc. It then reasons over a
knowledge graph to deliver access decisions to different
OpenStack services. Figure 2, describes how our proposed
extension alters the existing OpenStack framework to make
better access control decisions using contextual attributes.
Our system bypasses the existing OSLO policy engine and
processes access control requests using two modules; the Re-
quest Preprocessing module and QueryEngine module. The
Request Preprocessing module combines users request with
contextual attributes and converts it to an RDF format. The
access control decision will be then taken by QueryEngine
module by reasoning over the input attributes and a carefully
crafted knowledge graph.



Fig. 2. Extended System Architecture

A. Request Preprocessing Module

The input to Request Preprocessing module is the request
from the user for granting access to a specific resource.
In our implementation, we bypass the input to the OSLO
policy engine to this module. This Module serves mainly
two purposes, first, it will aggregate the requesting user’s
contextual information using the knowledge store attached to
it, as shown in Figure 2. The information retrieved includes
contextual information about the user like current location,
time, host IP, etc. As an initial step, this knowledge store
needs to be populated with contextual attributes. This store
can be populated in different ways. It can be generated from
the request itself (for example location can be obtained from
IP addresses geo-location) or the information can be retrieved
from other OpenStack projects. For example, if the current
system is configured to use with OpenStack services like
keystone1 by implementing the OpenStack Identity API2,
user-related information can be fetched from them. The
second function of this module is to convert the request and
the information gathered from the knowledge store to RDF
format for further processing. The generated RDF will then
be passed on to the Query Engine module, where the access
control policies are evaluated and decisions are generated.

B. QueryEngine Module

Query Engine module reasons over a knowledge graph
and the input from the Request Preprocessing module and
generates access control decisions. The inferred decisions
are then returned back to the caller in our architecture. In
this architecture, we utilize the Query Engine as a cen-
tralized policy administration module that returns a set of
user permissions on objects based on the rules definitions.
Query Engine initially verifies the project in the target and
operation to be performed. Further, it makes the access
control decisions by calling different program functions of
Query engine utilizing contextual attribute extension for
OpenStack. First, it populates the knowledge graphs from the
RDF inputs received from the preprocessing module. Then
a standard reasoner like Pellet3 is used to reason over the
knowledge graph to determine access control decisions. Our
implementation also allows to specify rules using SWRL4.

1https://docs.openstack.org/keystone/pike/
2https://developer.openstack.org/api-ref/

identity/index.html
3https://www.w3.org/2001/sw/wiki/Pellet
4https://www.w3.org/Submission/SWRL/

The core component of this module is the knowledge
graph which abstracts the domain information. Figure 3
represents a sample knowledge graph which we generated
for our proof of concept implementation. The knowledge
graph represents many classes. One class Role class which
specifies different roles in an organization like admin, staff,
etc. This is similar to the OpenStack’s RBAC roles. Other
user context related classes include Location class and Time
class which define the location and time of the entity. Yet
another important class defines the Operations class which
defines all the operations available in the system.

Each of these classes is arranged in carefully crafted sub-
classes. For example, Work location, and NonWork locations
are sub-classes of the main Location class and the sub-
classes of Operations class include Critical and Normal.
Such carefully designed sub-classes can improve the ex-
pressiveness of the policies. For example, some operations
can be allowed only from work locations (e.g. Printing a
confidential document, reboot the physical server, etc.). With
these subclasses defined, administrators can easily define
rules like Critical Operations are allowed only if the request-
ing user’s location is an instance of a Work location using
the SWRL specification. The presence of knowledge graph
also helps to use the same knowledge graph with different
OpenStack services because of the commands are specific to
each service in OpenStack such as Nova, Glance, Cinder, etc.
Other standard policies, typically listed in OpenStack policy
files can also be expressed using similar rules.

IV. USE-CASE SCENARIOS & EVALUATION

In this section, we describe two scenarios; access control
using OSLO policy engine (Section IV-A) and access control
using our attribute-based extension (Section IV-B). Later in
Section IV-C, we evaluate our implementation by comparing
the time taken in both these scenarios. Our results show
that both scenarios take comparable time in these simple
scenarios. While we acknowledge that our results only shows
simple scenarios, it should be noted in actual systems, there
would be number of simple scenarios.

A. Simplified RBAC Policy Model with OSLO Engine

In this scenario, we use a subset of roles and resources
from OpenStack. The policies used include two roles (Admin
and Staff) and four Nova commands: compute extension-
create, compute extension-delete, compute extension-reboot,
and compute extension-show.

The permissions are determined by the OSLO policy
engine (which use RBAC policies) based on the user’s role
assigned for a specific project. The rules for each command,
for a generic user u, are given below.

Roles : {Admin,Owner}

Authorization rules for any user u:
• Compute extension-list:

Role(u) = Admin



Fig. 3. A Sample Knowledge-Graph utilized in our access control model. We also show an instance ‘User1’ asserted in the knowledge graph.

• Compute extension-create:

(Role(u) = Admin ∧Role(u) = Owner)

• compute extension-delete:

Role(u) = Admin ∧Role(u) = Owner

The above rules assert that a user must have an Admin
role to list existing servers, whereas to perform the compute
extension-create and compute extension-delete server oper-
ations the user is required to be an Admin or Owner. To
enforce the authorization policy, we define a similar policy
to approve each of these commands in our system. There are
two roles defined an Admin and an Owner along with the
relationship between commands and roles via operation sets.

B. An attribute based Role-Centric Access Control

Fig. 4. Some context Attributes used in the sample scenario

This section describes how our extension can be used to
generate policies integrating contextual attributes like time
and location with exiting role-based policies. In this scenario,
we use the same roles and commands as in Section IV-A.
Besides roles and commands, we use the contextual attributes
location, operation severity, and time while making access
control decisions. For simplicity we have considered location
attributes within the range of values {OfficeLocation,
NonOfficeLocation}, time attribute in the range of
{WeekdayWorkT ime, WeekdayOffT ime, Weekend},
and the Operation-severity attribute having the values in
range {CriticalOperation, NormalOperation}, as shown
in Figure 4. Contextual attributes are atomic valued, unlike
roles which imply that a user can have multiple roles
assigned but it can have only one location and time value. For
any user, accesses are defined based on their roles and their
associated user and operation attributes. The SWRL rules
which are used in the query engine are enumerated below.

Rule 1: CriticalOperations(?opr),
Employee(?emp), hasRole(?emp, ?rle),
Admin(?rle) -> hasRoleBasedAccess(?emp,
?opr)

Rule 2: CriticalOperations(?opr),
Employee(?emp), hasLocation(?emp, ?loc),
OfficeLocation(?loc) ->
hasLocationBasedAccess(?emp, ?opr)

Rule 3: WeekdayDayTime(?time), hasTime(?emp,
?time), CriticalOperations(?opr),
Employee(?emp) ->
hasTimeBasedAccess(?emp, ?opr)

Rule 4: hasRoleBasedAccess(?emp, ?opr),



Operation(?opr),
hasTimeBasedAccess(?emp, ?opr),
Employee(?emp),
hasLocationBasedAccess(?emp, ?opr) ->
hasAccess(?emp, ?opr)

.

The first three rules specify sample role-based, location-
based, and time-based rules. For instance, Rule 2 is an exam-
ple of a location-based policy in which an employee ‘?emp’
is authorized to all the instance of CriticalOperation class
only if the employee has the location which is the instance
of an OfficeLocation class. Similarly, many complex role-
based, time-based access, and location-based rules can be
evaluated using the reasoning framework. Rule 4 is then
used for making an overall decision i.e., an employee is
allowed to execute the operation if he has the location, time,
and role-based accesses are granted. The QueryEngine in
our extension will take in the inputs from the preprocessing
engine and reasons over the knowledge graph and rules to
the final generate access grants.

In figure 5, we have constructed a sample username:
‘User1’ and assigned few property values to it signifying
its current contextual attributes. This structure will be repre-
sented in RDF format by the preprocessing module.

Fig. 5. RDF for an instance of Class Employee

Figure 5 implies that User ’User1’ hasLocation
’OfficeSpace’ (an instance of Location class),
makeRequestAt ’10to5 Weekday’ (an instance Time
class), and hasRole ’SoftwareEngineer2’ (an instance of
Admin class which is a subclass of Class Role). Now assume
that User1 request access to operation RebootServer.
The first level of reasoning infers that User1 is an
admin user, since SoftwareEngineer2 is it instance and
RebootServer is a critical critical operation. The final
inference is to grant access to User1 and it is depicted in
Figure 6. Our system can be extended by mentioning more
users, roles, and operations available in OpenStack.

C. Evaluation

In this section, we evaluate the time required for autho-
rization in the existing OpenStack access control framework
and a contextual attribute-based policy extended OpenStack

Fig. 6. Inferred results on reasoning policy rules

access control framework by utilizing the Knowledge Graph
and our Policy System. For such a comparison, we take
the two use-case scenarios mentioned in Section IV-A and
Section IV-B.

To compare the performance, we developed a python script
which requests for a specific resource n number of times.
First, we ran the script against our first scenario, using OSLO
policy engine, and collected the time taken for a number of
requests ranging from 10 through 100 with an interval of
10. The experiment is then repeated for the second scenario,
with our proposed extended query engine, for the same range
of requests. A graph is then plotted, as shown in Figure 7
using the results from both the experiments with the number
of requests on the x-axis and time taken in seconds on the
y-axis

We develop a Python script to examine the performance
of Nova API commands and ascertain the time needed for
the set of requests (compute API service operation). The
graph shown below represents the overall time for the set of
requests executed by an OpenStack user. Our main aspiration
is to evaluate the time needed for authorization in exist-
ing OpenStack access control framework and a contextual
attribute-based policy extended OpenStack access control
framework by utilizing the Knowledge Graph and our Policy
System.

These graphs comprise of two curves, first for an RBAC
policy in OpenStack without any modifications (OS RBAC),
and second for our contextual-attribute enhanced role-centric
policy in OpenStack with Knowledge Graph and our policy
system. The overall request response time for these two cases
are quite similar since the access grant decision check time
for each of these cases are not significantly different from
each other. As we are using upgraded knowledge graph and
policy system features, there is not much latency in policy
evaluation time compared to old platforms like ‘cwm engine’
of REIN policy framework [2].

V. CONCLUSION

In this paper, we create a context-aware access control sys-
tem for OpenStack. We created a proof of concept, utilizing
a knowledge graph and a policy engine. Including contextual
attributes while evaluating access decision makes the system
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Fig. 7. Time Comparison for Authorization Requests

secure and also provides flexibility in writing complex access
control policies. We also discuss some use cases, where we
show the benefits of our policy system extension. Our work is
an initial attempt towards applying a combination of context
and role-centric access control models for OpenStack. In the
future, we will like to extend our model so as to resolve
access control policy conflicts in collaborative cloud systems.
Attribute and Role hierarchy aware systems are one of the
possible extensions to our model.
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